

Lecture Notes in Computer Science 3455
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Helen Treharne Steve King
Martin Henson Steve Schneider (Eds.)

ZB 2005:
Formal Specification and
Development in Z and B

4th International Conference of B and Z Users
Guildford, UK, April 13-15, 2005
Proceedings

13

Volume Editors

Helen Treharne
University of Surrey
School of Electronics and Physical Sciences
Guildford, Surrey GU2 7XH, UK
E-mail: H.Treharne@surrey.ac.uk

Steve King
University of York
Department of Computer Science
Heslington, York, YO10 5DD, UK
E-mail: king@cs.york.ac.uk

Martin Henson
University of Essex
Department of Computer Science
Wivenhow Park, Colchester, Essex, CO4 3SQ, UK
E-mail: hensm@essex.ac.uk

Steve Schneider
University of Surrey
School of Electronics and Physical Sciences
Guildford, Surrey GU2 7XH, UK
E-mail: S.Schneider@surrey.ac.uk

Library of Congress Control Number: 2005923295

CR Subject Classification (1998): D.2.1, D.2.2, D.2.4, F.3.1, F.4.2, F.4.3

ISSN 0302-9743
ISBN-10 3-540-25559-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25559-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11415787 06/3142 5 4 3 2 1 0

Preface

These proceedings record the papers presented at the 4th International Confer-
ence of B and Z Users (ZB 2005), held in the city of Guildford in the south-east
of England. This conference built on the success of the previous three conferences
in this series, ZB 2000, held at the University of York in the UK, ZB 2002, held
at the Laboratoire Logiciels Systèmes Réseaux within the Institut d’Informatique
et Mathématique Appliquées de Grenoble (LSR-IMAG) in Grenoble, France, and
ZB 2003, held in Turku in Finland hosted by Åbo Akademi University and the
Turku Centre for Computer Science (TUCS). ZB 2005 was held at the University
of Surrey, Guildford, UK, hosted by the Department of Computing. The Uni-
versity has always placed particular emphasis on the applicability of its research
and its relationship with industrial partners. In this context it is building up its
formal methods activity as an area of strategic importance, with the establish-
ment of a new group within the Department of Computing, and also with its
support for this conference.

B and Z are two important formal methods that share a common conceptual
origin; they are leading approaches in industry and academia for the specifica-
tion and development (using formal refinement) of computer-based systems. At
ZB 2005 the B and Z communities met once again to hold a fourth joint con-
ference that simultaneously incorporated the 15th International Z User Meeting
and the 6th International Conference on the B Method. Although organized lo-
gistically as an integral event, editorial control of the joint conference remained
vested in two separate but cooperating programme committees that respectively
determined its B and Z content, but in a coordinated manner.

All the submitted papers in this proceedings were peer reviewed by at least
three reviewers drawn from the B or Z committee depending on the subject
matter of the paper. For the first time for a ZB conference, reviewing, discussion
and selection of papers were undertaken entirely electronically, with no face-to-
face PC meeting. After an initial selection by each committee, a joint meeting
of the chairs took place to finalize the selections and the conference programme.

The conference featured a range of contributions by distinguished invited
speakers drawn from both industry and academia. The invited speakers ad-
dressed significant recent industrial applications of formal methods, as well as
important academic advances serving to enhance their potency and widen their
applicability. Our invited speakers for ZB 2005 were drawn from the UK, Aus-
tralia and France.

Cliff Jones is a Professor of Computing Science at the University of
Newcastle, UK. His career has been spent in both industry and academia, where
his interests have been at the interface between research and application. He was
behind the creation of the influential Vienna Development Method (VDM), one
of the better-known formal methods (alongside Z and B!), during his time at

VI Preface

IBM in the 1970s. His interest in formal methods has now widened to encom-
pass other aspects of dependability. Carroll Morgan is Australian Professorial
Fellow at the School of Computer Science and Engineering, University of New
South Wales, Australia. He has worked on Z, CSP, the refinement calculus, and
probabilistic logic. He is the author of the seminal book on the refinement cal-
culus ‘Programming from Specifications,’ and more recently (with Annabelle
McIver) of ‘Abstraction, Refinement and Proof for Probabilistic Systems.’ His
invited talk was sponsored by FME. Frédéric Badeau has been working on the
B Method since 1994, and was part of the team that became ClearSy in 2001.
He was involved in the development of the Atelier B tool, and has also worked
on the B language. He has participated in a number of B software industrial
projects within the railway industry. He has also been involved in some Event B
projects in a research and development context. It was a pleasure to have three
such eminent invited speakers at ZB 2005.

Besides its formal sessions the conference included tool demonstrations, ex-
hibitions, a doctoral student poster session and tutorials. In particular, a Work-
shop on Refinement (REFINE 2005) was held on 12th April 2005, supported
by the EPSRC RefineNet network, in association with the ZB 2005 meeting. In
addition, the International B Conference Steering Committee (APCB) and the
Z User Group (ZUG) used the conference as a convenient venue for open meet-
ings intended for those interested in the B and Z communities respectively.

In one respect, the ZB 2005 meeting marked the end of an era, with the
absence of a familiar face. Professor Jonathan Bowen, of London South Bank
University, had been heavily involved in all three of the previous ZB conferences,
and, prior to that, with Z User Group meetings since the first meetings in Oxford
in the late 1980s. His contribution to the popularization of Formal Methods
has been immense, both in conference organization and in his oft-cited website
devoted to the subject. Both the Z and B communities are very grateful to him
for his work, which continues in his activities with ZUG and with the BCS FACS
group.

The topics of interest to the conference included: industrial applications and
case studies using Z or using B; integration of model-based specification methods
in the software development lifecycle; derivation of hardware-software architec-
ture from model-based specifications; expressing and validating requirements
through formal models; theoretical issues in formal development (e.g., issues
in refinement, proof process, or proof validation, etc.); software testing versus
proof-oriented development; tools supporting tools for the Z notation and the
B Method; development by composition of specifications; validation of assem-
bly of COTS by model-based specification methods; Z and B extensions and/or
standardization.

The ZB 2005 conference was jointly initiated by the Z User Group (ZUG)
and the International B Conference Steering Committee (APCB). The Univer-
sity of Surrey Computer Science Department provided all local organization,
and financial backing was provided by ZUG. Without the great support from
local staff at the University of Surrey and Royal Holloway, University of Lon-

Preface VII

don, ZB 2005 would not have been possible. In particular, much of the local
organization was undertaken by Helen Treharne, with the assistance of Sophie
Gautier-O’Shea, Neil Evans and Rob Delicata. ZB 2005 was sponsored by the
Atomic Weapons Establishment (AWE), BCS-FACS (the British Computer So-
ciety Formal Aspects of Computing Science specialist group), BCS Guildford
Branch, FME (Formal Methods Europe), the University of Surrey, Royal Hol-
loway, University of London, and ZUG (Z User Group). BCS-FACS specifically
sponsored prizes for best papers at the conference, and AWE sponsored students
to attend the poster session. We are grateful to all those who contributed to the
success of the conference.

Online information concerning the conference is available under the following
Uniform Resource Locator (URL): http://www.zb2005.org/
This also provides links to further online resources concerning the B Method and
Z notation.

We hope that all participants and other interested readers benefit scientifi-
cally from these proceedings and also find it stimulating in the process.

February 2005 Helen Treharne
Steve King

Martin Henson
Steve Schneider

Organization

Programme and Organizing Committees

The following people were members of the ZB 2005 Z Programme Committee
and reviewed papers for the conference:

Co-chair: Martin Henson, University of Essex, UK
Co-chair: Steve King, University of York, UK

Keijiro Araki, Kyushu University, Japan
Rob Arthan, Lemma 1, Reading, UK
Jonathan Bowen, London South Bank University, UK
Neville Dean, Anglia Polytechnic University, UK
John Derrick, University of Sheffield, UK
Jin Song Dong, National University of Singapore
Mark d’Inverno, University of Westminster, UK
Wolfgang Grieskamp, Microsoft Research, USA
Ian Hayes, University of Queensland, Australia
Rob Hierons, Brunel University, UK
Jonathan Jacky, University of Washington, USA
Randolph Johnson, National Security Agency, USA
Kevin Lano, King’s College London, UK
Yves Ledru, LSR-IMAG, Grenoble, France
Andrew Martin, Oxford University, UK
Fiona Polack, University of York, UK
Steve Reeves, University of Waikato, New Zealand
Mark Saaltink, ORA, Ottawa, Canada
Thomas Santen, Technical University of Berlin, Germany
Graeme Smith, University of Queensland, Australia
Susan Stepney, University of York, UK
Ian Toyn, University of York, UK
Mark Utting, University of Waikato, New Zealand
Sam Valentine, York, UK

The following served on the ZB 2005 B Programme Committee and reviewed
papers for the conference:

Conference Chair: Steve Schneider, University of Surrey, UK
Chair: Helen Treharne, University of Surrey, UK

Richard Banach, University of Manchester, UK
Juan Bicarregui, CLRC, Oxfordshire, UK
Dominique Cansell, LORIA, University of Metz, France

X Organization

Daniel Dolle, Siemens Transportation Systems, France
Steve Dunne, University of Teesside, UK
Mamoun Filali, CNRS, IRIT, Toulouse, France
Marc Frappier, Université de Sherbrooke, Canada
Andy Galloway, University of York, UK
Henri Habrias, LINA, Université de Nantes, France
Adrian Hilton, Praxis Critical Systems, UK
Jacques Julliand, Université de Franche-Comté, Besançon, France
Régine Laleau, LACL, IUT Fontainebleau, France
Annabelle McIver, Macquarie University, Sydney, Australia
Luis-Fernando Mejia, Alstom Transport Information Solutions, France
Mike Poppleton, University of Southampton, UK
Marie-Laure Potet, LSR-IMAG, Grenoble, France
Ken Robinson, University of New South Wales, Australia
Emil Sekerinski, McMaster University, Canada
Véronique Viguié Donzeau-Gouge, CNAM, Paris, France
Marina Waldén, Åbo Akademi University, Finland

The following people helped particularly with the organization of the conference
in various capacities:

Conference Chair: Steve Schneider, University of Surrey
Local Committee Chair: Helen Treharne, University of Surrey
B Submissions: Helen Treharne, University of Surrey
Z Submissions: Martin Henson, University of Essex
Tools: James Heather, University of Surrey

Posters: Neil Evans, University of Surrey
Tutorials: Ken Robinson, University of New South Wales
Proceedings: Steve King, University of York
Local Arrangements: Sophie Gautier-O’Shea & Neil Evans,

University of Surrey
Website & CyberChair: Rob Delicata, University of Surrey

We are especially grateful to the above for their efforts in ensuring the success
of the conference.

Organization XI

Françoise Bellegarde, Université de Franche-Comté, Besançon, France
Didier Bert, LSR-IMAG, Grenoble, France
Jean-Paul Boidevex, IRIT, Toulouse, France
Pontus Boström, Åbo Akademi University, Finland
Michael Butler, University of Southampton, UK
Orieta Celiku, Åbo Akademi University, Finland
Frederic Gervais, CEDRIC (CNAM-IIE), GRIL, Université de Sherbrooke,
Canada
Alain Giorgetti, Université de Franche-Comté, Besançon, France
Andy Gravell, University of Southampton, UK
Maritta Heisel, University of Magdeburg, Germany
Thai Son Hoang, University of New South Wales, Australia
Olga Kouchnarenko, INRIA Lorraine, Nancy, France
Michael Leuschel, University of Southampton, UK
Yuan Fang Li, National University of Singapore
Brian Matthews, CLRC, Oxfordshire, UK
Dominique Méry, LORIA, Université Henri Poincaré, France
Stephan Merz, INRIA Lorraine, Nancy, France
Jean François Rolland, IRIT, Toulouse, France
Marianne Simonot, CNAM, Paris, France
Bill Stoddart, University of Teesside, UK
David Streader, University of Waikato, New Zealand
Jun Sun, National University of Singapore
Raymond Turner, University of Essex, UK
Guy Vidal-Naquet, Supélec, Gif, France
Norbert Volker, University of Essex, UK
Frank Zeyda, University of Teesside, UK

External Referees

We are grateful to the following people who aided the programme committees
in the reviewing of papers, providing additional specialist expertise:

Pascal André, University of Yamoussoukro, Ivory Coast
Christian Attiogbé, University of Nantes, France

XII Organization

Tutorial Programme

The following tutorials were scheduled on the day before the main conference
(April 12, 2005):

Expectation-Based Reasoning for Sequential Probabilistic Programs
Carroll Morgan, University of New South Wales, Australia

ProB: A Verification and Validation Tool for the B Method
Michael Leuschel, Michael Butler and Stephane Lo Presti, University of
Southampton, UK

Case Study of a Complete Reactive System in Event-B: A Mechanical Press
Controller
Jean-Raymond Abrial, ETH Zurich, Switzerland

Developing Z Tools with CZT
Mark Utting and Petra Malik, University of Waikato, New Zealand

Model-Based Testing Using Formal Models from Theory to Industrial
Applications
Bruno Legeard and Mark Utting, University of Waikato, New Zealand

Support

ZB 2005 greatly benefited from the support of the following organizations

The University of Surrey
Royal Holloway, University of London

and sponsorship from

AWE
BCS-FACS
BCS Guildford Branch
FME
The University of Surrey
Royal Holloway, University of London
Z User Group

Table of Contents

Specification Before Satisfaction: The Case for Research into Obtaining
the Right Specification

Cliff B. Jones . 1

Visualising Larger State Spaces in ProB
Michael Leuschel, Edd Turner . 6

Non-atomic Refinement in Z and CSP
John Derrick, Heike Wehrheim . 24

Process Refinement in B
Steve Dunne, Stacey Conroy . 45

CZT: A Framework for Z Tools
Petra Malik, Mark Utting . 65

Model Checking Z Specifications Using SAL
Graeme Smith, Luke Wildman . 85

Proving Properties of Stateflow Models Using ISO Standard Z and
CADiZ

Ian Toyn, Andy Galloway . 104

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm
Using B Abstract Systems

J. Christian Attiogbé . 124

An Extension of Event B for Developing Grid Systems
Pontus Boström, Marina Waldén . 142

The Challenge of Probabilistic
Carroll Morgan, Thai Son Hoang, Jean-Raymond Abrial 162

Requirements as Conjectures: Intuitive DVD Menu Navigation
Jemima Rossmorris, Susan Stepney . 172

A Prospective-Value Semantics for the GSL
Frank Zeyda, Bill Stoddart, Steve Dunne . 187

Retrenchment and the B-Toolkit
Richard Banach, Simon Fraser . 203

Event B

(Extended Abstract)

(Extended Abstract)

XIV Table of Contents

Refinement and Reachability in Event B
Jean-Raymond Abrial, Dominique Cansell, Dominique Méry 222

A Rigorous Foundation for Pattern-Based Design Models
Soon-Kyeong Kim, David Carrington . 242

An Object-Oriented Structuring for Z Based on Views
Nuno Amálio, Fiona Polack, Susan Stepney . 262

Component Reuse in B Using ACL2
Yann Zimmermann, Diana Toma . 279

GeneSyst: A Tool to Reason About Behavioral Aspects of B Event
Specifications. Application to Security Properties

Didier Bert, Marie-Laure Potet, Nicolas Stouls . 299

Formal Verification of a Type Flaw Attack on a Security Protocol
Using Object-Z

Benjamin W. Long . 319

Using B as a High Level Programming Language in an Industrial
Project: Roissy VAL

Frédéric Badeau, Arnaud Amelot . 334

Development via Refinement in Probabilistic B — Foundation and
Case Study

Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver,
Carroll Morgan . 355

Formal Program Development with Approximations
Eerke A. Boiten, John Derrick . 374

Practical Data Refinement for the Z Schema Calculus
Lindsay Groves . 393

Slicing Object-Z Specifications for Verification
Ingo Brückner, Heike Wehrheim . 414

Checking JML Specifications with B Machines
Fabrice Bouquet, Frédéric Dadeau, Julien Groslambert 434

Including Design Guidelines in the Formal Specification of Interfaces in Z
Judy Bowen, Steve Reeves . 454

Table of Contents XV

Some Guidelines for Formal Development of Web-Based Applications
in B-Method

Abdolbaghi Rezazadeh, Michael Butler . 472

Author Index . 493

Specification Before Satisfaction: The Case for
Research into Obtaining the Right Specification

—Extended Abstract—

Cliff B. Jones

University of Newcastle upon Tyne,
Newcastle, NE1 7RU, UK
cliff.jones@ncl.ac.uk

Model-oriented specification techniques like VDM [Jon80, Jon90], Z [Hay93] and
B [Abr96] have an enormous amount in common (cf. [Hay92, HJN94]). Among
other things that this formal methods community shares is the view that one
can start with a formal specification and show that a design/implementation
satisfies that specification. It is however obvious that, if a specification does not
actually reflect the real need, proving a program correct with respect to it is
somewhat pointless.

As computers have become more powerful and less expensive, they have be-
come ever more deeply embedded in the way nearly everyone works. In their
short sixty year history, computers have moved from batch processors in their
own buildings to work tools on every desk (or lap); essential components of ad-
ministration,retail trade, banking and vehicles; and are on their way to becoming
invisible dust sprinkled on who-knows-what. This, in itself, has changed the task
of understanding the requirements of a system. Above all, the close interaction
of people with computer systems makes it essential that designers consider the
whole system when formulating a specification of the technical parts.

It is often easiest to make the point by looking at accidents. Donald MacKen-
zie in [Mac94, Mac01] has traced the cause of just over 1100 deaths where com-
puter systems appear to be implicated (up to 1994). Three percent of the lives
lost appear to be attributed to bugs! Far more common causes of accidents ap-
pear to be where humans misunderstand what is going on in a control system or
the object being controlled. This is a much deeper issue than the details of an
interface; in many cases it is a fundamental question of the allocation of tasks
between person and machine. Key questions include the visibility of the state
of the system being controlled and the extent to which operations the user can
perform are clumped together.

Although accidents are shocking and thus grab attention, there is also a
significant penalty in the deployment of systems which make their users’ lives
more difficult than they need be. The enormous cost of systems which are so
unusable that they are not even deployed is reported weekly in newspapers.

Of course, we should use formal specification techniques and we still need re-
search to make them more widely usable. But it would appear to be worthwhile
to see whether there is also a technical response to the question of how one ar-
rives at a specification which does reflect the needs of the environment in which

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 1–5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 C.B. Jones

a system will be embedded. Does the formal methods community have a con-
tribution to make here? I believe so. Dines Bjørner’s forthcoming books [Bjø05]
tackle “domain modelling”. This paper sets out some further research challenges
to which we might be able to offer useful responses.

This invited talk will review some suggestions which have arisen in the six
year “Interdisciplinary Research Collaboration on Dependability” (DIRC) — see
the WWW pages at [WWW04] for details. DIRC is focusing its research on how
to design Dependable1 computer-based systems. The phrase “computer-based
systems” is intended to emphasize that most computer systems today are deeply
embedded into an environment which also involves people. For example, the
requirement in a hospital is for dependability of the overall system. Sometimes,
humans will use a computer system to achieve objectives even where they know
that it delivers less than perfect information; on other occasions, computers can
be programmed to warn when errors made by humans. People are less good
than computers at narrowly specified repetitive tasks but are much better at
recognising and reacting to exceptional situations. To achieve overall system
dependability, both humans and programs must be properly deployed.

Some insights from the DIRC project include:

– An approach being worked on with Ian Hayes and Michael Jackson [HJJ03]
looks at determining the specification of, say, a control system by first spec-
ifying a wider system including the phenomena of the physical world which
are to be influenced. To avoid having to build a model of the behaviour of
all physical components, assumptions about their behaviour are recorded
using rely conditions (cf. [Jon83]). This leaves a clear record of assumptions
which need to be considered before the control system is deployed. Devel-
opment from the derived specification of the control system is conducted in
the standard (formal) way.

– The design of boundaries that limit the propagation of failures is better ar-
ticulated for technical systems than for the human part of computer-based
systems. This is odd because the intuition about limiting, say, accounting er-
rors by auditors is long established. Many examples can be cited to suggest
that most human systems are “debugged” rather than designed. The motiva-
tion for where to place containment boundaries ought come from an analysis of
the frequency of minor faults and the the danger of their affecting a wider sys-
tem. This analysis ought precede the allocation of tasks to computers which,
in turn of course, must be done prior to their specifications being frozen.

– A major cause of near or actual accidents is a “cognitive mismatch”2 between
an operator’s view of what is going on and the actual state of affairs in the

1 The classic text on the terminology of dependability is [Lap92]; see also [Ran00];
an attempt to formalise the useful trichotomy between faults, errors and failures is
given in [Jon03].

2 Both of James Reason’s books [Rea90,Rea97] look at relevant issues: the earlier
reference looks at a division of the sort of errors that humans make; the second
has insightful analyses of many system failures. Perrow in [Per99] talks of “Normal
accidents”.

Specification Before Satisfaction 3

system they are trying to control. This was a significant factor in the “Three
Mile Island” reactor incident. John Rushby [Rus99] has looked at pilot errors
on the MD-88: in simulators, they frequently breach the required altitude
ceiling. Rushby’s careful formal analysis builds a state model of the pilot’s
understanding of the system and explores its interaction with a model of the
aircraft systems. It would be informative to compare this approach with rely
conditions.

– The general way in which processes (or procedures) are used in the human
parts of computer-based systems is interesting. If one contrasts a traditional
car production line with the depiction in the film “Apollo-13” of the search
for a solution to the need to improvise CO2 scrubbers in the damaged cap-
sule, one sees that processes both limit action and reduce the need for infor-
mation. Designing processes which cope with all exceptions is in many cases
impossible and one argument for relying on humans in computer-based sys-
tems is precisely that they notice when it is safer to violate a procedure than
to slavishly follow one that does not cover an exceptional case. Clearly, either
following an inappropriate process or deviating from a correct process can
both lead to system failure. But it is absolutely mandatory that thought is
given to processes in the design of a computer-based system. Interestingly,
one can spot errors in legislation where an algorithmic rule is frozen into law:
there have been several cases in financial legislation where a well-intentioned
trigger has had (or nearly had) counter-productive effects.

– Within DIRC, the role of advisory systems has received particular attention:
[SPA03] studies an image analysis prompter used in the analysis of mammo-
grams. Surprising conclusions include statistically significant evidence that
under the tested conditions the most accurate operators can offer less accu-
rate conclusions with the help of the advisory system than without its use. It
is clear that the role of such advisory systems has to be considered far more
widely than just by looking at their technical specifications. In fact, even pure
safety limiters (where one would believe they can only increase safety) have
been used by operators in a way which supplants their normal judgment.

– Systems can create other things whose dependability is the goal. In the
simplest case, a production line might manufacture silicon chips and faults in
the manufacturing process might result in faulty components for computers.
A software example is a compiler that, if faulty, could translate a perfect
program into machine code which does not respect the formal semantics of
the source language. In many cases, the creation process is human and, for
example, a designer of a bridge which fails to withstand expected forces is
at fault. The creation of computer software is just such a process and is
not always fault free! DIRC has provided an opportunity to look at Gerry
Weinberg’s conjectures in [Wei71] that different psychological types might
be more or less adept at different sub-tasks within the broad area known
as programming. The implications of this research for building dependable
systems might include steering people toward the tasks at which they are
likely to perform best (and probably be most content).

4 C.B. Jones

– If the above list were not daunting enough (and it is far from complete
even with respect to DIRC’s findings) there is another overriding concern.
The sort of computer-based system we have been studying will always evolve.
Designing a system which can be modified in reaction to a reasonable class of
evolutions in the environment is extremely challenging. One class of system
which has been studied within the DIRC project is generic systems. The
justification of this sort of system is that it can be instantiated for a range of
applications: characterising this range is itself a technical problem. It is clear
that issues around evolution will have a long-term impact on dependability.
There are related questions of how data survives such evolution which are
equally challenging.

DIRC has identified far more than the above set of issues; the selection here
has been based on the ease with which this one member of a project (involving
more than fifty researchers) could pull together the information.

One key experience from the first three quarters of the project is the in-
valuable role of interdisciplinarity. Looking at experiments on psychological type
and debugging performance required wholehearted collaboration of psychologists
and computer scientists; tackling the mammography advisory system involved
interaction between statisticians, sociologists and psychologists. DIRC could list
many more examples of how our combination of psychologists, statisticians, so-
ciologists and computer scientists has made real progress that no one of these
disciplines could have accomplished.

My own disposition is to seek technical approaches to problems and I hope
that the list above indicates that this is a viable challenge. But the DIRC project
has been a superb example of collaboration and if faced with a complex applica-
tion area, I would now know how to call on the expertise of other disciplines. In
particular, the painstaking gathering of observational data needs sociologists.

We have learned two general things in the DIRC project which are worth
passing on to others who might wish to follow such a wide interdisciplinary ap-
proach. Collaboration has to be based on respect for the disciplines of other
researchers: values differ and publication strategies vary between disciplines
but if it is good research by the standards of the other discipline one should
not –for example– argue that it is not presented in the style of one’s own disci-
pline. The other message is to tackle application problems together as a team.
With an “operations Research” (OR) like team representing several disciplines
terminology problems disappear, contributions become understood and some-
thing is achieved which no single discipline could have envisaged.

Acknowledgments

My research acknowledgment is to the many colleagues involved in DIRC; it is
a privilege to lead such an exciting project.

We are all grateful to EPSRC for the six year funding window which we feel
was essential to foster such a wide interdisciplinary span.

Specification Before Satisfaction 5

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 1996.

[Bjø05] D. Bjørner. Software Engineering (3 vols.). Springer-Verlag, 2005.
[Hay92] I. J. Hayes. VDM and Z: A comparative case study. Formal Aspects of

Computing, 4(1):76–99, 1992.
[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall International,

second edition, 1993.
[HJJ03] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification

of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 154–169. Springer Verlag,
2003.

[HJN94] I. J. Hayes, C. B. Jones, and J. E. Nicholls. Understanding the differences
between VDM and Z. ACM Software Engineering News, 19(3):75–81, July
1994.

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International, 1980. ISBN 0-13-821884-6.

[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceedings
of IFIP’83, pages 321–332. North-Holland, 1983.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990. ISBN 0-13-880733-7.

[Jon03] Cliff B Jones. A formal basis for some dependability notions. In Bern-
hard K. Aichernig and Tom Maibaum, editors, Formal Methods at the
Crossroads: from Panacea to Foundational Support, volume 2757 of Lec-
ture Notes in Computer Science, pages 191–206. Springer Verlag, 2003.

[Lap92] Jean-Claude Laprie. Dependability: basic concepts and terminology—in
English, French, German, Italian and Japanese. Springer-Verlag, 1992.

[Mac94] Donald MacKenzie. Computer-related accidental death: an empirical ex-
ploration. Science and Public Policy, 21:233–248, 1994.

[Mac01] D. MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT
Press, Cambridge, Mass., 2001.

[Per99] Charles Perrow. Normal Accidents. Princeton University Press, 1999.
[Ran00] B. Randell. Facing up to faults. The Computer Journal, 43(2):95–106,

2000.
[Rea90] James Reason. Human Error. Cambridge University Press, 1990.
[Rea97] James Reason. Managing the Risks of Organisational Accidents. Ashgate

Publishing Limited, 1997.
[Rus99] John Rushby. Using model checking to help discover mode confusions and

other automation surprises. In Proceedings of 3rd Workshop on Human
Error, pages 1–18. HESSD’99, 1999.

[SPA03] L Strigini, A. Povyakalo, and E. Alberdi. Human machine diversity in the
use of computerised advisory systems: A case study. In DSN 2003-IEEE
International Conference on Dependable Systems and Networks, pages 249–
258, San Francisco, USA, 2003.

[Wei71] Gerald M. Weinberg. The Psychology of Computer Programming. Van
Norstrand, 1971.

[WWW04] WWW. www.dirc.org.uk, 2004.

Visualising Larger State Spaces in ProB

Michael Leuschel1,2 and Edd Turner1

1 Department of Electronics and Computer Science,
University of Southampton,

Highfield, Southampton, SO17 1BJ, UK
2 Institut für Informatik, Heinrich-Heine Universität Düsseldorf

{mal, ent03r}@ecs.soton.ac.uk

Abstract. ProB is an animator and model checker for the B method.
It also allows to visualise the state space of a B machine in graphical
way. This is often very useful and allows users to quickly spot whether
the machine behaves as expected. However, for larger state spaces the
visualisation quickly becomes difficult to grasp by users (and the com-
putation of the graph layout takes considerable time). In this paper we
present two relatively simple algorithms to often considerably reduce the
complexity of the graphs, while still keeping relevant information. This
makes it possible to visualise much larger state spaces and gives the user
immediate feedback about the overall behaviour of a machine. The algo-
rithms have been implemented within the ProB toolset and we highlight
their potential on several examples. We also conduct a thorough experi-
mentation of the algorithm on 47 B machines and analyse the results.

Keywords: Formal Methods, B-Method, Tool Support, Model Check-
ing, Animation, Visualisation, Logic Programming.

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in a
range of critical domains, most notably railway control. B is based on the notion
of abstract machine and the notion of refinement. The variables of an abstract
machine are typed using set theoretic constructs such as sets, relations and func-
tions. The invariant of a machine is specified using predicate logic. Operations
of a machine are specified as generalised substitutions, which allow deterministic
and nondeterministic assignments to be specified. There are two main proof ac-
tivities in B: consistency checking, which is used to show that the operations of a
machine preserve the invariant, and refinement checking, which is used to show
that one machine is a valid refinement of another. These activities are supported
by industrial strength tools, such as Atelier-B [24] and the B-toolkit [5].

ProB [18] is an animation and model checking tool for the B method. ProB’s
animation facilities allow users to gain confidence in their specifications, and un-
like the animator provided by the B-Toolkit, the user does not have to guess the
right values for the operation arguments or choice variables. The undecidability

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 6–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Visualising Larger State Spaces in ProB 7

of animating B is overcome by restricting animation to finite sets and integer
ranges, while efficiency is achieved by delaying the enumeration of variables as
long as possible. ProB also contains a model checker [9] and a constraint-based
checker, both of which can be used to detect various errors in B specifications.

ProB shows the user a graphical view of the state space the model checker
has already explored. For this ProB makes use of the Dot tool of the graphviz
package [4]. This feedback is very beneficial to the understanding of the specifi-
cation since human perception is good at identifying structural similarities and
symmetries [10]. Such a feature works well for small state spaces, but in practice
specifications under analysis often consume thousands of states, which severely
limits the usefulness of the graph.

Take the following example machine (distributed with ProB).

MACHINE phonebook
SETS Name ; Code = {c1,c2,c3}
VARIABLES db
DEFINITIONS scope_Name == 1..3
INVARIANT

db : Name +-> Code
INITIALISATION

db := {}
OPERATIONS
cc <-- lookup(nn) = PRE nn : Name & nn : dom(db) THEN

cc:=db(nn) END;
add(nn,cc) = PRE nn:Name & cc:Code & nn /: dom(db) THEN

db := db \/ { nn |-> cc} END ;
delete(nn,cc) = PRE nn:Name & cc:Code & nn: dom(db) &

cc: ran(db) & db(nn) = cc THEN
db := db - { nn |-> cc} END

END

The full state space of this example (with Name set to cardinality 3) has 65
states and 433 transitions. As can be seen, the visualization of the state space
in ProB is possible (depicted in Fig. 1; the reader is not expected to be able to
read the labels, just get a general impression of the visualization) but is quite
difficult to grasp by humans and certain “obvious” aspects of the state space
are not be easy to identify in the visualization. For example, it is not obvious to
spot what the actual enabled operations are or that one can do at most three
consecutive calls to the add operation.

The question is whether the state space of B machines can be rendered in ways
more suitable for human understanding. It turns out that there are surprisingly
few tools and techniques that addressed this problem in general or for B in
particular. In this paper we thus present various (complimentary) techniques
to improve the visualisation of larger state spaces. These techniques have been
implemented in the ProB toolset and we illustrate the performance of them on
various examples. We also empirically evaluate the techniques on a large number
of examples and show that the techniques can be surprisingly effective.

8 M. Leuschel and E. Turner

Fig. 1. Phonebook machine - Original State Space

2 The DFA-Abstraction Algorithm

The state space generated by ProB can be viewed as non-deterministic labelled
transition system (LTS), where the edges are labelled with terms of the form
op(a1, . . . , an) and op(a1, . . . , an)→ r1, . . . , rk, where op is the name of the ope-
ration that has been applied and a1, . . . , an are the arguments of the operation.
The first form is used for operations that do not return values, whereas the sec-
ond form is used for operations that do and where r1, . . . , rk are the returned
values.

Formally, an LTS is a 4-tuple (Q, Σ, q0, δ) where Q is the set of states, Σ the
alphabet for labelling the transitions, q0 the initial state and δ ⊆ Q×Σ ×Q is
the transition relation. By q →a q′ we denote that (q, a, q′) ∈ δ. As usual, we

Visualising Larger State Spaces in ProB 9

extend this to sequences of transitions so that q →a1,...,ak
q′ denotes the fact

that there exists a sequence of states q0, . . . , qk such that q0 = q, qk = q′ and
qi →ai

qi+1. The set of reachable states of an automaton is defined to be the
set {q ∈ Q | q0 →γ q for some sequence of states γ}. Finally, the traces of an
automaton L is the set of sequences traces(L) = {γ ∈ Σ∗ | q0 →γ q for some
q ∈ Q}.

One way to reduce the complexity of an LTS is to abstract away from certain
details of the labelling function. For example, the user may not be interested
in seeing (all) the arguments of (all) the operations. To this end we now define
abstraction functions and a way to apply them to construct simplified LTS.

Definition 1. An abstraction function for an LTS (Q, Σ, q0, δ) is a function α
from Σ to some new alphabet Σ′.

The α-abstraction of the LTS is then defined to be a new LTS (Q, Σ′, q0, δ
′)

where δ′ = {(q, α(a), q′) | (q, a, q′) ∈ δ}.

For the experiments later in the paper we have used α(op(a1, . . . , an)) =
op/n for operations without return values and α(op(a1, . . . , an)→ r1, . . . , rk) =
op/n → k for operations that return values, but any other abstraction (or even
the identity function) can be used instead.1 This encodes a common perspective
where the user is interested in seeing which operations can be applied, but is not
interested in the actual arguments.

Now, the α-abstraction on its own is not yet very useful, as we have not
yet diminished the number of states (even though we may have reduced the
number of transitions). The first thing that comes to mind in that respect is the
classical minimization algorithm for Deterministic Finite Automaton (DFA) [2,
14]. Indeed, a finite LTS can be viewed as a Non-Deterministic Finite Automaton
(NFA) simply by marking all states as final states (basically the only difference
between an NFA and an LTS is the notion of final states). We can then convert
this NFA into a DFA using another classical algorithm [2, 14], to then apply the
minimization algorithm. This is exactly what we have done in our first so-called
DFA-Abstraction Algorithm, which we have implemented and integrated into
the ProB toolset. In summary, the DFA-Abstraction Algorithm computes

– the α-Abstraction of an LTS
– then determinizes the resulting intermediate LTS by converting sets of reach-

able states of the NFA into single states of the DFA,
– before minimizing it by computing maximal equivalence classes of the DFA,

yielding the result LTS.
The algorithm is shown on a small example in Fig. 2.

This algorithm was was primarily applied as a control: something to which
other algorithms could be compared. We were also aware that it had the potential

1 We have decided to show the number of arguments n and the number of return values
k in our abstracted graphs. This is largely a matter of taste and α(op(a1, . . . , an) →
r1, . . . , rk) = op could have been used instead (as one is not allowed to have two
different operations with the same name anyway).

10 M. Leuschel and E. Turner

Fig. 2. Illustrating the DFA-Abstraction Algorithm

to collapse symmetrical subgraphs. It hence turns out to be very useful in some
cases, while in other cases increasing the size of the graph (as is well-known, the
NFA to DFA conversion can lead to an exponential blow-up, even though this
is rarely observed in practice).

How to Read DFA-Abstracted Graphs. Every node in the graph corre-
sponds to a set of states of the animated B machine. Obviously, we lose in-
formation from the α-abstraction, i.e., we loose the operation arguments. The
DFA conversion and minimization algorithms preserve the set of traces that can
be performed. However, because of determinization, multiple B states are put
together into a single node. Hence, if a node in the DFA-abstracted graph has
an outgoing edge marked with op/n this does not guarantee that the operation
can be applied in all B states covered by this node. Thus, to make the graphs
more informative, our LTS visualization algorithm checks whether an outgoing
edge can be performed in all covered B states: if it does the edge is drawn solid,
otherwise the edge is dashed.

In Fig. 3 you can see the effect of our algorithm on the full state space of
Fig. 1. The reduction is considerable, and the graph can now be easily digested
by a human. Furthermore, even though we have lost the operation arguments,
the reduced graph still contains a lot of useful information (especially since all
edges are solid). For example, one can see that it is only possible to add three
entries into the phonebook. It is also clear that one can only perform a delete or
lookup after something has been added to the phonebook. One can also deduce
that add and delete are state changing operations.

An alternative approach to using a DFA-Abstraction would be to minimize
the NFA – which is attractive considering that it is possible for an NFA to be
exponentially smaller in size when compared to an equivalent DFA. However,
the problem of minimizing NFAs is computationally intractable [16, 20], and we
have hence decided not to go down this route.

Another approach, documented in [15], attempts to reduce, and not minimize,
the size of an NFA while retaining language equivalence. Our experiments so far

Visualising Larger State Spaces in ProB 11

Fig. 3. Phonebook machine - DFA

have shown that the reductions gained are not as useful as our DFA-Abstraction
or Signature Merge approach described in the next section.

3 Merge States with Same Outgoing Transitions

This technique was devised after studying a collection of graphs produced by
ProB. It works by merging all states with the same enabled operations and so
it may produce an automaton that is not equivalent (as far as the traces of
possible operations are concerned) to the original one. However, the technique
can achieve a big reduction in the size of the automaton while still preserving
the information about which B operations are enabled in a particular state (i.e.
the traces of length 1). To do this, we first introduce the concept of a signature
of a state, which represents the operations (i.e., transition labels) that can be
performed in that state.

Definition 2. Let (Q, Σ, q0, δ) be an LTS. We define the signature of a node
q ∈ Q, denoted by signature(q), as follows: signature(q) = {a | q →a q′ for
some q′ ∈ Q}.

If signature(q) = ∅ then we say that q is deadlocked. An automaton is said
to deadlock iff there is a reachable state that is deadlocked. If a ∈ signature(q)
then we say that a is enabled in q. An automaton is said to be quasi-live for
transition a iff there exists a reachable state where a is enabled.

12 M. Leuschel and E. Turner

Definition 3. Let (Q, Σ, q0, δ) be an LTS. The Signature-Merge of the LTS is
defined to be a new LTS (Qs, Σ, qs

0, δ
′) where Qs = {signature(q) | q ∈ Q},

qs
0 = signature(q0), and δs = {(signature(q), a, signature(q′)) | (q, a, q′) ∈ δ}.

Basically, the effect of a signature-merge is to merge all states which have a
common signature. This ensures that at least for traces of length 1 we do not
lose any precision. There are a few more properties that are preserved by the
Signature-Merge:

Proposition 1. 3 Let L = (Q, Σ, q0, δ) be an LTS and LS its Signature-Merge.
Then L deadlocks iff LS deadlocks. Also, for any a ∈ Σ, L is quasi-live for a iff
LS is quasi-live for a. Finally, traces(L) ⊆ traces(LS).

The last property means that if a certain sequence is not possible in the
Signature-Merge then it cannot be performed in the original LTS either.

The overall algorithm we have now implemented is to first compute the α-
abstraction of an LTS and then perform the Signature-Merge on the abstracted
LTS.

How to Read Signature-Merge Graphs. As with the DFA-Abstracted
graphs, every node in the graph corresponds to a set of states of the animated
B machine. However, if a node has an outgoing edge marked with op/n we are
not sure that this particular edge can be taken in all B states covered by this
node: we only know that there is at least one covered state where this edge can
be followed. Hence, contrary to the DFA-conversion and minimization, signature
merging does not preserve the set of possible traces. However, all the states as-
sociated with the node have the same signature: so we at least know that the
operation op is possible in all B states covered by the node. We can also apply
Proposition to deduce information about deadlocks and about traces that are
not possible in the original machine.

To facilitate the interpretation of the Signature-Merge graphs, we will actu-
ally differentiate the edges according to whether an edge is definitely possible in
all states that have been merged together. Such edges are called definite, as for-
mally defined below, and will be drawn as solid lines, while edges which are not
definite will be drawn as dashed lines. This gives the user clear visual feedback
and allows to infer more properties about the underlying B machine.

Definition 4. Let (Q, Σ, q0, δ) be an LTS and (Qs, Σ, qs
0, δ

′) its Signature-Merge.
A transition (signature(q), a, signature(q′)) ∈ δ′ is called definite iff ∀p ∈ Q
such that signature(p) = signature(q): ∃p′ with signature(p′) = signature(q′)
and (p, a, p′) ∈ δ. In other words, for all other nodes p that have been merged
together with q, we can also perform the transition a leading to the same state
(in the Signature-Merge graph).

In Fig. 4 you can see the effect of this algorithm on the full state space of
Fig. 1. The reduction is considerable, and the graph can now be easily digested
by a human. Note that the reduced graph will not change even if we allow
more entries to be added into the phonebook (e.g., by changing the cardinality

Visualising Larger State Spaces in ProB 13

Fig. 4. Phonebook machine - Signature Merge

of the set Name). So, in principle, one could even visualise the machine for an
unbounded set Name. This is not the case for the DFA (where if we allow 100
entries the DFA will have 100 nodes). However, some of the precision of the DFA
visualization is lost: we can no longer spot how many entries can be added; all
we can see is that we can add at least two entries, but not exactly how many.
Still, the signature based approach has managed to keep relevant information.
For example, it is still obvious from the graph that we can only lookup or delete
entries after adding an entry, and we can see that it is possible to reach a state
where it is no longer possible to add entries.

Extending the Algorithm. We can make the algorithm more precise by di-
minishing the α-abstraction, e.g., by not abstracting away certain arguments.
This could be guided by the user and also applies to the DFA-Abstraction al-
gorithm. Second, the signature of a node basically corresponds to all the traces
of length 1 that can be performed from that node. We could thus extend the
notion of a signature and compare all the traces of length 2,3,. . . .2

On the other hand we can make the algorithm less precise and achieve more
reduction in several ways. First, one could make α more aggressive, e.g., by
mapping several operations together (e.g., maybe the user is not interested in
some of the operations). Second, instead of merging nodes if they have exactly
the same signature, we could merge them if the signatures are sufficiently close

2 In the limit we obtain the classical equivalence preserving minimization algorithm.

14 M. Leuschel and E. Turner

(e.g., they are the same except for one element or we only look at the signature
as far as a certain number of operations of interest is concerned).

In practice it may be good to combine both approaches: e.g. the user could
type a certain number as a target for the ideal number of nodes (say 20) and then
the graph is progressively made less or more precise to approach that number.

4 Two More Complicated Examples

Figures 5, 6, and 7 show the behaviour of our algorithms for the “scheduler”
example taken from [7, 3]. Again, both algorithms perform very well, providing
clear graphs about the overall behaviour of the system.

Fig. 5. Scheduler machine - Original State Space

Visualising Larger State Spaces in ProB 15

Fig. 6. Scheduler machine - DFA

Another example is taken from our ABCD3 project where we have developed
various B models for a distributed online travel agency, through which users can
make hotel and car rental bookings. Here is one of the (partial) models where the
DFA algorithm works extremely well: basically, the original graph is unreadable
due to the large number of nodes and transitions, while Fig. 8 is quite clear and
provides interesting feedback about the system.

5 Empirical Evaluation

TheDFA-Abstraction andSignature-Merge algorithmsdescribed in this document
have been implemented within ProB and are available in ProB 1.1 and later.

3 “Automated validation of Business Critical systems using Component-based De-
sign,” EPSRC grant GR/M91013.

16 M. Leuschel and E. Turner

We have conducted both an empirical evaluation of our algorithms, with con-
crete numbers on the size reductions achieved, and a more informal evaluation.
Some of the examples of the latter are found in the various figures of this paper
(notably in the preceding section). A more extensive list of figures is presented
in an accompanying technical report [19]. This informal evaluation suggests that
the algorithms are often surprisingly efficient at deriving informative graphs.
However, on some examples they fail to help the user, but overall they are a
very useful addition to the ProB toolset. The precise numbers presented in the
rest of this section underline this more informal evaluation.

Fig. 7. Scheduler machine - Signature Merge

Tables 1 and 2 below show key statistics obtained after applying the Signature-
Merge and the DFA-Abstraction algorithms on 47 arbitrary state spaces that had
been previously model checked with the ProB model checker: Table 1 shows

Visualising Larger State Spaces in ProB 17

Fig. 8. TravelProB machine - DFA

percentages of states and transitions compared to the original state space4 and
Table 2 shows the overall statistics.

Signature-Merge produced the best results, reducing the number of states by
at least 85% and the number of transitions by at least 87% in half of the state
spaces tested. Moreover, 80% of the graphs had at least 43% fewer states and
59% fewer transitions than the original. The best case produced a graph with
approximately 99% fewer states and transitions. The DFA-Abstraction technique

4 Some of the machine names in Table 1 appear more than once, however their imple-
mentations differ.

18 M. Leuschel and E. Turner

Table 1. Size of state space compared to original (%)

Sig. Merge DFA-Abstr.
Machine Name States Transitions States Transitions

Ambulances 0.24 0.02 0.86 0.10
Baskets 6.33 2.02 21.52 8.59
B Clavier code 100.00 42.11 133.33 42.11
bibliotheque 73.33 58.49 93.33 75.47
B Site central 60.00 12.50 80.00 12.50
CarlaTravelAgency 9.09 30.09 60.61 78.76
CarlaTravelAgencyErr 13.33 43.17 67.5 71.22
countdown 0.13 0.10 7.97 7.77
Cruise 29.54 18.19 1203.97 901.35
CSM 83.12 86.60 101.30 100.00
DAB 40.00 4.88 80.00 7.32
dfa 75.00 57.14 150.00 100.00
dijkstra 42.86 33.33 100.00 66.67
DSP0 12.24 10.61 16.33 12.12
Fermat 11.76 3.70 58.82 20.99
FinalTravelAgency 0.93 0.57 7.69 6.12
FunLaws 1.95 0.63 14.79 6.49
FunLaws 4.28 2.45 20.23 15.39
GAME 8.97 5.30 32.79 20.45
GSM revue 36.36 28.57 63.64 50.00
Inscription 25.93 16.03 33.33 19.08
inst adapted 1.07 0.41 17.17 6.68
Jukebox 15.00 4.53 1225.00 616.83
Level0 0.26 0.03 1.43 0.16
m0 100.00 99.98 150.77 150.29
Main 100.00 100.00 150.00 100.00
mm0 3.55 2.44 43.65 40.52
monitor 9.88 3.59 39.51 18.90
phonebook7 6.15 1.62 9.23 2.31
Queues 42.86 22.22 57.14 22.22
Results 66.67 45.45 83.33 45.45
Rubik2 0.09 0.10 100.03 100.00
RussianPostalPuzzle 2.04 1.71 27.21 22.33
rw 90.00 94.59 105.00 100.00
scheduler 22.22 14.05 33.33 20.66
SensorNode 60.00 18.18 80.00 18.18
SeqLaws 15.79 22.41 71.05 101.72
SetLaws 1.23 0.72 17.40 11.78
station 25.00 14.61 28.57 14.61
Teletext 16.00 5.71 48.00 35.71
Teletext 21.43 9.84 107.14 100.00
TheSystem 14.04 43.09 72.81 69.92
TransactionsSimple 16.79 33.33 76.34 83.01
TravelAgency 9.09 34.55 59.66 62.83
TravelAgency trace check 0.33 0.93 38.75 40.92
TravelProB 0.80 0.26 3.83 0.95
UndefinedFunctions 29.41 13.99 70.59 37.82

also gave good results; half of the graphs having at least 40% fewer states and at
least 64% fewer transitions, and the best case again reduced the number of states
and transitions by 99%. The worst case didn’t follow the trend of producing a
reduction, but in fact increased the size of the original graph by approximately
ten times. A result like this should not come as a surprise since, after all, it is
possible for a DFA to be exponentially greater in size than an equivalent NFA.

Visualising Larger State Spaces in ProB 19

Table 2. Statistics of reductions on 47 arbitrary state spaces

Signature Merge NFA to DFA
Statistic States Transitions States Transitions

Minimum 0.09 0.02 0.86 0.10
Maximum 100.00 100.00 1225.00 901.35
Median 15.00 12.50 59.66 35.71
Average 27.77 22.23 107.76 73.33
80th Percentile 56.57 40.6 100.02 96.6
Std. Dev. 31.05 27.95 241.50 155.05

However, only a small proportion of the applications of this technique had this
effect; approximately 80% of the tests produced a reduction.

6 Discussion and Related Work

Tables 1 and 2 show some encouraging results. The often considerable reduction
of the original state space by the DFA-Abstraction algorithm can be explained
by its ability of finding regular behaviour amongst abstracted transitions, and
collapsing duplicated instances of it into a single path. A good example of this
is shown in the original Phonebook example (Figure 1) and the DFA reduced
Phonebook example (Figure 3).

The Signature-Merge algorithm gave better reductions than the DFA-Abstra-
ction reduction, producing non-equivalent graphs to the original that do not show
the exact behaviour. However, they remain useful since they can still be used
to check many properties (e.g., to check whether a certain execution path may
exist in the full state space).

The three algorithms, DFA minimization [2, 14], Computing Small NFAs [15]
and the Minimal Unambigous ε-transition NFAs [17] were also tested but were
found to be less effective than the two mentioned above. One reason for this
is that they do not implement any α-abstraction — hence future testing will
attempt to incorporate this.

In addition to the two main algorithms, several other approaches for im-
proving the visualization of state spaces were implemented and tested, and are
documented in the following subsections.

Integrated Java/Swing Visualizer. Fig. 9 shows a version of ProB that has
been developed using Java to take advantage of its cross platform compatability
and rich graphical user interface library. Various panes in the main window
present the user with information relating to the current state; including the
variables and values of the current state, a history of operations executed, a
hierarchical expansion of enabled operations (top left pane) and a state space
visualization. There is also an integrated specification editor to facilitate any
changes necessary. As can be seen in the central pane of the screenshot, the
user has several choices of visualization to choose from – some of which allow

20 M. Leuschel and E. Turner

Fig. 9. Screenshot of Java version of ProB

operations to be selectively removed from the visualization e.g., to remove self
loops and improve clarity.

User Defined Constraints. Through previous experience gained with model
checkers, it was proposed that a better understanding of the system might be
gained if the user were able to directly query the state space. Therefore we
extended our tool by enabling the user to define constraints on system variables
and on values of operation arguments, and to subsequently view a graph of all
states in which these hold, and the relationship between them, if any. This is
generally useful when the user is interested in exposing some subtle aspect of the
state space, which a more general algorithm would be unlikely to reveal without
user intevention. It should be noted that the effectiveness of reducing state spaces
using this technique depends largely on the user’s literacy in the specification
language and their understanding of the system; however its potential makes it
a feature worth keeping and extending in the future. As mentioned, it is also
possible for the user to selectively turn off visible operations in the visualization,
to further reduce the size of the graph: see the tick boxes in the middle of
Figure 9.

Subgraphs. Another method of reducing the size of the graph is to show only
part of it: a subgraph – hence our system has the option to view the subgraph

Visualising Larger State Spaces in ProB 21

that connects one or more states. This is particularly useful when one wants to
view all paths that lead to a state that violates the system invariant.

More Related Work

In addition to considering algorithms and techniques that produce smaller graphs,
with the goal of finding a more effective visualization, we must also consider the
other aspects that affect this. These are outside the main scope of the present
paper, but the interested reader is referred to [21], [8], [11], and [13].

The final aspect regards the influence of the size of a graph on the efficiency
of the graph layout algorithm. This issue is somewhat orthogonal to the issues
addressed in the present paper. Few layouting techniques can claim to deal effec-
tively with thousands of nodes even though graphs of this size appear frequently
in application domains, including model checking. The size of a graph can make
a normally good layout algorithm completely unusable. Therefore many visual-
ization techniques attempt to reduce the size of the graph to display. A large
quantity of the important techniques are documented in [13], one of which ap-
pears particularly relevant to our overall goal: that of clustering. A clustering
layout algorithm generally assigns nodes of a graph that satisfy some condition,
into the same cluster (the condition may be an equivalence relation). Edges be-
tween clusters are displayed to represent the relation between the nodes of one
cluster with those of another. Some good results have been witnessed and tested
for large graphs containing thousands of vertices [12]. However, these graphs
were representing deterministic protocols; it would be interesting to see if one
could find a suitable clustering technique for the elements of the state space of
a nondeterministic B model.

Finally, one can view the work in abstraction-based model checking, where
abstractions are applied during exploration, as very related to our work. For
example, the data abstraction of [9] is similar to our α-abstraction. However,
the purpose of all these model checking works (e.g., [22, 23, 6]) is to obtain more
efficient model checking, and not visualization by humans.

Acknowledgements

We would like to thank Michael Butler for stimulating discussions and feedback
on the paper. We are also very grateful to anonymous referees of ZB’2005 for
their very useful comments.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques and

Tools. Addison-Wesley, 1986.

22 M. Leuschel and E. Turner

3. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Ut-
ting, and N. Vacelet. BZ-testing-tools: A tool-set for test generation from Z and
B using constraint logic programming. In Proceedings of FATES’02, Formal Ap-
proaches to Testing of Software, pages 105–120, August 2002. Technical Report,
INRIA.

4. AT&T Labs-Research. Graphviz - open source graph drawing software. Obtainable
at http://www.research.att.com/sw/tools/graphviz/.

5. B-Core (UK) Limited, Oxon, UK. B-Toolkit, On-line manual., 1999. Available at
http://www.b-core.com/ONLINEDOC/Contents.html.

6. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state
systems compositionally and automatically. In Proceedings of CAV’98, LNCS,
pages 319–331. Springer-Verlag, 1998.

7. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - a constraint solver for B. In
J.-P.Katoen and P.Stevens, editors, Tools and Algorithms for the Construction and
Analysis of Systems, LNCS 2280, pages 188–204. Springer-Verlag, 2002.

8. S. Casner and J. Larkin. Cognitive Efficiency Considerations for Good Graphic De-
sign. In 11th Annual Conf. of the Cognitive Science Society, Ann Arbor, Michigan,
August 1989.

9. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
10. H. W. F. Ham and J. Wijk. Visualization of State Transition Graphs. In IEEE

Symposium on Information Visualization, pages 59–63, San Diego, CA, USA, Oc-
tober 2001.

11. M. Fitter and T. Green. When Do Diagrams Make Good Programming Languages?
Int. Journal of Man-Machine Studies, pages 235–261, 1979.

12. J. Groote and F. Ham. Large State Space Visualization. In TACAS, volume 2619
of Lecture Notes in Computer Science, pages 585–590. Springer, 2003.

13. I. Herman, G. Melanon, and M. S. Marshall. Graph Visualization and Navigation
in Information Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000.

14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

15. L. Ilie and S. Yu. Algorithms for Computing Small NFAs. In MFCS, volume 2420
of Lecture Notes in Computer Science. Springer, 2002.

16. T. Jiang and B. Ravikunar. Minimal NFA Problems are Hard. SIAM Journal on
Computing, 22(6):1117–1141, 1993.

17. S. A. John. Minimal Unambigous ε-NFA. In 9th International Conference on
Implementation and Application of Automata (CIAA-2004), Kingston, Ontario,
Canada, July 2004.

18. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

19. M. Leuschel and E. Turner. Visualising larger states spaces in ProB. Technical
report, School of Electronics and Computer Science, University of Southampton,
January 2005.

20. A. Malcher. Minimizing Finite Automata is Computationally Hard. Springer-
Verlag Berlin Heidelberg, 2710:386–397, August 2003.

21. N. L. N. Dulac, T. Viguier and M.-A. Storey. On the use of Visualization in
Formal Requirements Specification. In IEEE Joint International Conference on
Requirements Engineering, pages 71–81, Essen, Germany, September 2002.

Visualising Larger State Spaces in ProB 23

22. V. Rusu and E. Singerman. On proving safety properties by integrating static
analysis, theorem proving and abstraction”. In Tools and Algorithms for the Con-
struction and Analysis of Systems TACAS ’99, LNCS. Springer-Verlag, 1999.

23. H. Sadi and N. Shankar. Abstract and model check while you prove. In Proceedings
of CAV’99, LNCS, pages 319–331, Trento, Italy, July 1999. Springer-Verlag.

24. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 1996.
Available at http://www.atelierb.societe.com/index uk.html.

Non-atomic Refinement in Z and CSP

John Derrick1 and Heike Wehrheim2

1 Department of Computing, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

2 Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. In this paper we discuss the relationship between notions
of non-atomic (or action) refinement in a state-based setting with that
in a behavioural setting. In particular, we show that the definition of
non-atomic coupled downward simulation as defined for Z and Object-Z
is sound with respect to an action refinement definition of CSP failures
refinement.

1 Introduction

In this paper we investigate the relationship between definitions of non-atomic
(or action) refinement in a state-based setting with that in a behavioural setting.
In particular, we show that the definition of non-atomic coupled downward sim-
ulation as defined for Z and Object-Z in [8] is sound with respect to non-atomic
refinement on CSP failures sets. This work fits into two strands of work in the
formal specification community. The first is that of integrating formal specifica-
tion notations, and the second of relating notions of refinement across different
paradigms.

Work on integrating formal specification languages is being driven by the
desire and need to tackle the design of systems which cross paradigm boundaries,
for example, those needing explicit notions of communication as well as state, as
well as providing some formality to informal languages such as UML. Work in this
sphere typically shows how existing languages can be combined in a useful and
meaningful way, whilst preserving their original syntax and semantics. Examples
include combinations of Object-Z and CSP as defined by Smith [21], Fischer [9]
and Mahony and Dong [16]. Other combinations of process algebras with Z or B
include those investigated by Galloway [11] and Treharne [23]. A survey of some
of these approaches is given in [10].

Work on relating notions of refinement typically compares the relative
strengths of the refinement relations in different semantic domains. This, of
course, links into work on integrating formal specification languages since it
opens the way for uniform methods of refinement to be defined for integrated
notations. Our particular interest here is that provided by state-based languages
such as Z and Object-Z and the process algebra CSP. Refinement in state-based
languages is based upon data refinement, and downwards and upwards simu-
lations are the standard way to verify such refinements. This contrasts with a

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 24–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Non-atomic Refinement in Z and CSP 25

behavioural setting such as CSP where process refinements are used to compare
implementations and specifications, and, in particular, we are interested here in
CSP failures-divergences refinement. There are two facts relevant to this paper:
downwards simulations are sound with respect to failures-divergences refine-
ment, and both notions of refinement assume the granularity of the refinement
is unchanged.

The latter means that operations and events are assumed to be atomic, and
thus indivisible upon refinement. This is well known to be an unrealistic assump-
tion in a general software development setting, and consequently there has been
work on non-atomic or action refinement, whereby the granularity of the oper-
ations or events can be broken in a refinement. Work in a state-based setting
includes [5, 8]. The latter, which builds upon relevant work for process algebras
[17, 18], is our starting point. Specifically this paper takes the definition of non-
atomic refinement as given in [8] and shows that it is sound with respect to a
notion of non-atomic refinement defined on failure sets, that is, defined for a
behavioural context.

The structure of the paper is as follows. In Section 2 we define non-atomic
refinement in Z. In Section 3 we provide the corresponding definition for CSP,
and in Section 4 we show the state-based definition is sound with respect to the
process algebraic version. We also show the monotonicity of parallel composition
with respect to non-atomic refinement. In Section 5 we then generalise our results
by considering the role of input and output. We conclude in Section 6.

2 Non-atomic Refinement in Z

This section deals with the state-based part of non-atomic refinement. It de-
fines non-atomic coupled downward simulations (as presented in [8]) which are
used to verify non-atomic refinements between Z specifications. A Z specification
A = (AState,AInit , {AOpi}i∈I) consists of a state space with an initialisation
condition and a set of operations performing transformations on the state space.
We assume a blocking model for operation executions, i.e. an operation can only
be executed when its precondition evaluates to true. This fits well with the fail-
ure semantics of CSP and is therefore most often assumed in integrations of Z
or Object-Z and CSP.

Refinement in formal methods is used to compare an implementation with an
abstract specification: the implementation should only exhibit behaviour which
is also present in the specification. The technical tools for showing refinement
relationships in state-based languages are simulation relations (viz. downwards
or upwards simulation relations, see [25, 6]) which allow one to verify refinements
on a step-by-step basis. In contrast to standard refinement, non-atomic refine-
ment assumes that operations in the abstract specification may be split into a
number of concrete operations in the implementation. The purpose of simula-
tion relations is thus to show that an abstract operation AOp is simulated by a
sequence of concrete operations COp1

o
9 COp2

o
9 . . . o

9 COpn (for simplicity n will
in the following always be two).

26 J. Derrick and H. Wehrheim

Before giving a formal definition we explain the general concept behind non-
atomic refinement by means of a small example. The example will be used
throughout the whole paper and later be enhanced with inputs. The abstract
specification contains operations to translate and multiply coordinates x , y , u
and v : operation Translate shifts x and y by 4 and 2 respectively, and operation
Multiply multiplies u and v by 10. The constants will later be replaced by values
of input variables.

AState
xA, yA : Z

uA, vA : Z

AInit
AState ′

x ′
A = y ′

A = 0; u ′
A = v ′

A = 1

Translate
ΔAState

x ′
A = xA + 4; y ′

A = yA + 2
u ′
A = uA; v ′

A = vA

Multiply
ΔAState

u ′
A = uA × 10; v ′

A = vA × 10
x ′
A = xA; y ′

A = yA

The abstract specification is refined into a concrete specification in which both
Translate and Multiply are split such that the two coordinates are modified in
two consecutive steps. Boolean flags b and c are used to control the ordering of
the steps: TransX has to occur before TransY and MultU before MultY .

CState
xC , yC : Z

uC , vC : Z

b, c : B

CInit
CState ′

x ′
C = y ′

C = 0; u ′
C = v ′

C = 1
b′ ∧ c′

TransX
ΔCState

c ∧ ¬c′

x ′
C = xC + 4; y ′

C = yC ;
u ′
C = uC ; v ′

C = vC ; b′ = b

TransY
ΔCState

¬c ∧ c′

y ′
C = yC + 2; x ′

C = xC ;
u ′
C = uC ; v ′

C = vC ; b′ = b

MultU
ΔCState

b ∧ ¬b′

u ′
C = uC × 10; vC = v ′

C ;
x ′
C = xC ; y ′

C = yC ; c′ = c

MultV
ΔCState

¬b ∧ b′

v ′
C = vC × 10; uC = u ′

C ;
x ′
C = xC ; y ′

C = yC ; c′ = c

To show that C is a non-atomic coupled downward simulation of A we augment
the standard non-atomic conditions with further conditions relating to the ne-
cessity for the two specifications to be coupled. In the sequel we always assume

Non-atomic Refinement in Z and CSP 27

that an abstract operation AOp is split into the sequence COp1
o
9 COp2. Gener-

alising standard downward simulation conditions to the non-atomic case leads
to the following requirements as introduced in [5].

Definition 1. Non-atomic downward simulation without IO transformations A
specification C is a non-atomic downward simulation of the specification A if
there is a retrieve relation R such that every abstract operation AOp is recast
into a sequence of concrete operations COp1

o
9 COp2 and the following hold.

∀CInit • (∃AInit • R)
∀AState; CState; CState ′ • (COp1

o
9 COp2) ∧ R ⇒ ∃AState ′ • R′ ∧AOp

∀AState; CState • R ⇒ (preAOp ⇐⇒ preCOp1)
∀AState; CState; CState ′ • R ∧ COp1 ⇒ (preCOp2)′

This already covers a range of aspects: similar to the non-atomic case a retrieve
relation R is used to relate abstract and concrete state space and every concrete
initial state has to be linked with an abstract initial state. Furthermore, the
execution of a sequence COp1

o
9 COp2 has to be matched by an abstract opera-

tion AOp, and in related states COp1 is enabled if and only if AOp is enabled
(blocking model). The last condition guarantees that immediately after a COp1
the refinement can be completed by a COp2.

Looking at our example the following relation R shows that C is a non-atomic
downward simulation of A.

R
AState; CState

xA = xC ; yA = yC ; uA = uC ; vA = vC ; c ∧ b

Nevertheless, this is not yet sufficient: it allows a number of undesirable be-
haviours of the concrete system. For instance, the concrete system can execute
COp2 without ever having performed a COp1, and it might, once a third opera-
tion DOp has been executed after COp1, never be able to complete the sequence.
This can be ruled out by using coupled simulations: the retrieve relation R is
completed by a family of relations RS which allow for a closer comparison of con-
crete and abstract system. Intuitively, RS is used to relate abstract states with
intermediate concrete states, i.e. states in which a refinement sequence has only
been partly executed. S is a sequence of concrete operations which records which
decompositions have been started but not finished. On idle states (i.e., states
where all refinement sequences have been completed, S = 〈 〉) RS has to agree
with R. This is the coupling condition C which gives the definition its name.

Notation. The notation S \〈COp1〉 stands for removing COp1 from the sequence
S , i.e., is shorthand for S � (ranS \ {COp1}). We also write COp1 ∈ S for
COp1 ∈ ranS .

Definition 2. Non-atomic coupled downward simulation without IO transfor-
mations A specification C is a non-atomic coupled downward simulation of the

28 J. Derrick and H. Wehrheim

specification A (denoted A na C) if there is a retrieve relation R showing that
C is a non-atomic downward simulation of A, and there is a family of simulation
relations RS such that the following hold.

C R〈 〉 = R

S1 ∀AState,CState,CState ′ • RS∧COp1 ⇒ ∃AState ′ • ΞAState∧(RS�〈COp1〉)′

S2 ∀AState,CState • RS ∧ COp1 ∈ S ⇒ preCOp2

S3 ∀AState,CState,CState ′ • RS ∧ COp2 ⇒ COp1 ∈ S ∧ ∃AState ′ • AOp ∧
(RS\〈COp1〉)′

Condition S1 is used to record the started but not yet finished refinements in
RS , condition S2 guarantees that started refinement may always be completed
and S3 rules out that refinements can be started ”in the middle”, i.e. a COp2
occurs with no previous (uncompleted) COp1. In our example, we could use the
following relations RS .

R〈TransX 〉

AState
CState

xA = xC − 4; ¬c ∧ b
yC = yA; uC = uA; vC = vA

R〈MultU 〉

AState
CState

uA × 10 = uC ; c ∧ ¬b
xC = xA; yC = yA; vC = vA

R〈TransX ,MultU 〉

AState
CState

xA = xC − 4; uA × 10 = uC
¬c ∧ ¬b; yC = yA; vC = vA

One relation is still missing, R〈MultU ,TransX 〉, which in fact we take to equal
R〈TransX ,MultU 〉. As can be seen by the execution traces of the concrete and
abstract specification in Figure 1, this definition also allows for an overlap of
refinements: the refinements of Translate and Multiply can be executed in an
interleaved manner. This is, however, only allowed if there is a (sequential) ab-
stract counterpart of this interleaved execution. For example, it would not be
possible if the operations manipulate a common part of the state space.

In fact, starting with a given relation R there is a canonical way of finding
(the smallest) family of relations RS (if they exist at all). They can be inductively
computed by the following set of equations:

R〈 〉 =̂ R (1)

RS�〈COp1〉 =̂ (RS [CState ′/CState] o
9 COp1)[CState/CState ′] (2)

where [CState ′/CState] represents the obvious global substitutions.

Non-atomic Refinement in Z and CSP 29

Translate

TransX MultU TransY MultV

(0,0,1,1)

(0,0,1,1)

(4,2,1,1)
(4,2,10,10)

(4,2,10,10)
(4,0,10,1)(4,0,1,1) (4,2,10,1)

Multiply

R RRTM RM
RT

Fig. 1. A concrete and the matching abstract trace

With this definition, conditions C and S1 automatically hold by construction.

In RS�〈COp1〉 the abstract state remains unchanged (compared to RS) and is
related to the concrete state reached after executing COp1. Condition S2 then
still requires checking (which is easy) as does S3 (in which lies some complexity).
To check S3 we define the effect of finishing a concrete non-atomic operation as
follows.

RS�〈COp1〉 =̂
(((RS [CState ′/CState] o

9 COp2)[AState ′/AState] o
9 AOp)

[AState ′/AState,CState ′/CState])
Condition S3 is equivalent to checking that RS�〈COp1〉 equals1 RS\〈COp1〉.

3 Non-atomic Failures Refinement

We are interested in the interplay between state-based and behavioural refine-
ments, and thus we now transfer these ideas to a behaviour-oriented setting like
the process algebra CSP, where process refinement is used to compare imple-
mentations and specifications. For this, we assume that the specification and
implementation are built over two distinct alphabets, α for the abstract and γ
for the concrete level: α contains all abstract operations AOpi , i ∈ I , and γ all
concrete operations COpi

1,COpi
2, i ∈ I .

In CSP, refinement compares processes according to their failure sets: failures
record the traces a process may execute together with the refusals, i.e. the set
of operations (or events) that can be refused after a certain trace. CSP has
two different semantic models based around the stable failures and the failure-
divergence model which differ in the way they treat internal (τ) operations. Since
the operational semantics of Z we use here generates no τ transitions at all, we
restrict ourselves to comparing failures only, and thus the two models coincide.
Thus abstract and concrete processes A and C are represented by failure sets
FA and FC , respectively:

1 [8] contains an example of its calculation.

30 J. Derrick and H. Wehrheim

FA ⊆ α∗ × P α
FC ⊆ γ∗ × P γ

Due to absence of internal actions we can define the traces of A, TA, to be the
set {(tr ,X) ∈ FA • tr} (and similarly TC). In order to transfer the state-based
definition to a failures context we first define what it means for all refinements
to have been completed.

Definition 3. A trace tr ∈ γ∗ is completed iff for all pairs COp1 and COp2 ∈ γ
we have #〈i | tr [i] = COp1〉 = #〈j | tr [j] = COp2〉. The set of all completed
traces of C is denoted Comp(C).

The completed traces are those which have to have an abstract counterpart. We
also define an abstraction operator on completed traces and their refusals.

tr ↑= (tr � {COpi
2 | i ∈ I })[COpi

2 �→ AOpi , i ∈ I]
X ↑= (X \ {COpi

2 | i ∈ I })[COpi
1 �→ AOpi , i ∈ I]

The abstraction operator on traces removes all COp1s and then replaces COp2s
by AOps, similarly, the abstraction operator on failures removes all COp2s and
then replaces COp1s by AOps. The abstraction operator on traces could also be
applied to divergences when a semantic model of CSP with divergences is needed
(which is not the case here).

For the proof of soundness we will need one more definition on traces: the
non-completed part of a trace tr is tr� =̂ squash(tr �{tr [i] = COp1∧¬∃ j > i •
tr [j] = COp2 • i}). For instance, 〈COp1,DOp1,COp2,EOp1〉� = 〈DOp1,EOp1〉.

We are now in a position to define a non-atomic version of failures refine-
ment for processes. In it the ordering on the abstract level is determined by the
ordering of completions on the concrete level, and the definition coincides with
standard failures refinement when there are no non-atomic decompositions.

Definition 4. A set of failures FC is a non-atomic coupled refinement of a set
of failures FA (denoted FA fna FC) if the following hold:

1. ∀(tr ,X) ∈ FC • tr ∈ Comp(TC)⇒ (tr ↑,X ↑) ∈ FA

2. ∀(tr ,X) ∈ FC ,∀ i ∈ I •
∀ tr1, tr2 • tr = tr1 � 〈COpi

1〉� tr2,COpi
2 �∈ ran tr2 ⇒ COpi

2 �∈ X
3. ∀ i ∈ I , tr � 〈COpi

2〉 ∈ TC ⇒ ∃ tr1, tr2 • tr = tr1 � 〈COpi
1〉 � tr2 ∧ COpi

2 �∈
ran tr2

The second condition is the analogue of S2: as long as the refinement sequence is
not completed COp2 may never be refused. The third condition is the analogue of
S3: a refinement may not be started in the middle. Both the coupling condition
and S1 are incorporated in the first condition: since we are comparing traces
here, we still have the whole execution history present in the comparison and do
not have to record it in a relation RS .

Non-atomic Refinement in Z and CSP 31

The following example gives two CSP processes describing the behaviour of
an abstract and a concrete system performing translate and multiply operations.

PA = Multiply → Translate → PA � Translate → Multiply → PA

PC = MultU → (TransX → TransY → Skip ||| MultV → Skip); PC

In the failure set of PC there are, for instance, the following three failures with
completed traces:

(tr1,X1) =̂ (〈 〉, {TransY ,MultV }),
(tr2,X2) =̂ (〈MultU ,TransX ,MultV ,TransY 〉, {TransY ,MultV }),
(tr3,X3) =̂ (〈MultU ,MultV 〉, {MultU ,MultV ,TransY }),

a non-completed trace is 〈MultU ,TransX ,MultV 〉. Using the abstraction oper-
ators we get tr1 ↑= 〈 〉, X1 ↑= ∅, tr2 ↑= 〈Multiply ,Translate〉, X2 ↑= ∅ and
tr3 ↑= 〈Multiply〉, X3 ↑= {Multiply}. Obviously, PC is a non-atomic coupled
refinement of PA.

4 Integration

We are ultimately interested in using the notion of non-atomic refinement in
an integrated specification formalism combining a state-based specification lan-
guage such as Z or Object-Z with a process algebra such as CSP. Integrations
of this type include CSP-OZ [9] and Object-Z/CSP [21] which both use a fail-
ures semantics. The semantics is obtained by giving a failure semantics to the
(Object-)Z part and composing it with the CSP part using CSP parallel com-
position. This poses the question of correspondence between the two notions
of non-atomic refinement: if two Z specifications are related by a non-atomic
coupled downwards simulation is there also a non-atomic process refinement
relationship between them? This question has been intensively studied in the
standard atomic case (see [4, 7, 3, 15, 12, 4]) and will now be answered for the
non-atomic setting.

In the atomic case, data refinement in a state-based system is verified by
a combination of upward and downward simulations. To investigate the rela-
tionship with failures refinement a correspondence is set up between operations
and events, and under this correspondence downward simulation is sound with
respect to failures-divergences refinement. That is, if C is a downward simu-
lation of A then C is a failures-divergences refinement of A under this inter-
pretation of operations as events. This is the result we will generalise to the
non-atomic case. (The corresponding result for upward simulations is left for
future work.)

To verify the result we establish the correspondence between a state-based
system and its failures by deriving a failure semantics for Z specifications in
two steps: first, we define an operational semantics by means of transition sys-
tems, and then we derive the failures from the transition system. A transition

32 J. Derrick and H. Wehrheim

system T = (Q , In,−→) labelled over A has the usual components: Q is a set
of states, In ⊆ Q are the initial states and −→ ⊆ Q × A × Q is the transition
relation.

Definition 5. Let S = (State, Init , {Op}i∈I) be a Z specification. The opera-
tional semantics of S , T (S), is given by a transition system (Q , In,−→) labelled
over {Opi | i ∈ I } such that Q = State, In = Init and q −Opi−−→ q ′ iff (q , q ′) ∈ Opi .

Note: In this definition we are explicitly using the fact that the semantics of an
operation is taken to be a set of bindings [25]. Thus (q , q ′) ∈ Opi means that q
and q ′ are the before and after states, respectively, of the operation Opi .

We also need the following, standard, definition. Note that we are assuming
to have no internal (i.e., unobservable) actions in the transition system.

Definition 6. Let T = (Q , In,−→) be a transition system labelled over some
alphabet A, q , q ′ ∈ Q , ai ∈ A and tr ∈ A∗.

1. q −a1...an−−−−→ q ′ iff there are states q0, q1, . . . , qn such that q = q0, qi −ai+1−−→ qi+1
and qn = q ′.

2. The (maximal) set of events refused in a state q ∈ Q is refs(q) =̂ A \ {a ∈
A | q −a→}.

3. The set of failures of T is

F(T) =̂ {(tr ,X) ∈ A∗ × P A | ∃ q ∈ Q , q0 ∈ In : q0 −tr−→ q ∧ X ⊆ refs(q)}

With these definitions at hand we can formulate the following correspondence
result: a non-atomic coupled downward simulation between Z specifications in-
duces a non-atomic coupled refinement on their failure sets.

Theorem 1. Let A,C be Z specifications. Then the following holds:

A na C ⇒ F(T (A)) fna F(T (C))

We prove this theorem in two steps: first, we define a notion of non-atomic
coupled simulation on transition systems and show a correspondence result for
Z specifications and transition systems (which is, in fact, straightforward). In
the second step we prove correspondence between non-atomic refinement on
transition systems and on their failure sets (which is less straightforward).

Definition 7. A transition system TC = (QC , InC ,−→C) is a non-atomic cou-
pled downward simulation of a transition system TA = (QA, InA,−→A) (denoted
TA tna TC) if there is a relation R ⊆ QA ×QC satisfying the following

1. ∀ q0 ∈ InC • ∃ q ′
0 ∈ InA • (q ′

0, q0) ∈ R,
2. ∀(q1, q2) ∈ R • ∀ q ′

2 ∈ QC • q2 −COp1COp2−−−−−−−→ q ′
2 ⇒ ∃ q ′

1 ∈ QA • q1 −AOp−−→ q ′
1 and

(q ′
1, q

′
2) ∈ R,

3. ∀(q1, q2) ∈ R • q1 −AOp−−→ iff q2 −COp1−−−→
4. ∀ q1 ∈ ranR • ∀ q ′

1 ∈ QC • q1 −COp1−−−→ q ′
1 ⇒ q ′

1 −COp2−−−→,

Non-atomic Refinement in Z and CSP 33

and there is a family of relations RS ⊆ QA×QC , S ∈ γ∗, such that, in addition,
we have:

C R〈 〉 = R,

S1 ∀(q1, q2) ∈ RS • ∀ q ′
2 ∈ QC • q2 −COp1−−−→ q ′

2 ⇒ (q1, q ′
2) ∈ RS�〈COp1〉,

S2 ∀(q1, q2) ∈ RS • COp1 ∈ S ⇒ q2 −COp2−−−→,
S3 ∀(q1, q2) ∈ RS • ∀ q ′

2 ∈ QC • q2 −COp2−−−→ q ′
2 ⇒ COp1 ∈ S ∧ ∃ q ′

1 ∈ QA •
q1 −AOp−−→ q ′

1 ∧ (q ′
1, q

′
2) ∈ RS\〈COp1〉.

Theorem 2. Let A,C be Z specifications. Then

A na C ⇔ T (A) tna T (C) .

Proof: Easily follows by the definition of the operational semantics (see Defini-
tion 5) of a Z specification. �

Theorem 3. Let TA,TC be transition systems.

TA tna TC ⇒ F(TA) fna F(TC) .

Proof of Theorem 3: Let TA = (QA, InA,−→A),TC = (QC , InC ,−→C) be the
transition systems and R,RS ⊆ QA×QC be the relations proving TA tna TC .

1. Let (tr ,X) ∈ FC . Then by definition of failures there are states q1, . . . qn
such that q1 ∈ InC , qi −tr [i]−−→C qi+1,X ⊆ refs(qn). We inductively construct
a sequence p1, . . . pn ∈ QA with p1 ∈ InA, (pi , qi) ∈ RS ,S = tr [1 . . . i − 1]�:

– Choose p1 such that p1 R q1 (possible by initialisation condition),
then tr [1 . . . 0] = 〈 〉, 〈 〉� = 〈 〉.

– If qi −COp1−−−→ qi+1 then set pi+1 to pi ,
then tr [1 . . . i]� = tr [1 . . . i − 1]� � 〈COp1〉 and by S1 (pi+1, qi+1) ∈ RS

with S = tr [1 . . . i]�.
– If qi −COp2−−−→ qi+1 then choose pi+1 such that pi −AOp−−→ pi+1 (by S3),

then tr [1 . . . i]� = tr [1 . . . i − 1]� \ 〈COp1〉,
hence by S3 (pi+1, qi+1) ∈ RS with S = tr [1 . . . i]�.

We need to show that tr ∈ Comp(TC) ⇒ (tr ↑,X ↑) ∈ FA. Let tr be a
completed trace. Then (pn , qn) ∈ R〈 〉 and by construction p1 −tr ↑−−→ pn .
Concerning the refusals: if COp1 ∈ X then qn −COp1−−−�, hence pn −AOp−−� (by
condition 3 of Definition 7) which implies AOp ∈ refs(pn). It follows that
X ↑⊆ refs(pn) and hence (tr ↑,X ↑) ∈ FA.

2. Let (tr ,X) ∈ FC , and tr1, tr2 be traces with tr = tr1 � 〈COp1〉 � tr2 such
that COp2 �∈ ran tr2. We have to show that COp2 �∈ X . A construction
analogous to (1) gives us the existence of pairs (p1, q1), (pn , qn) such that
q1 −tr−→ qn , p1 −tr ↑−−→ pn , q1 ∈ InC , p1 ∈ InA and (pn , qn) ∈ RS where S = tr�.
Hence COp1 ∈ S and by S2, qn −COp2−−−→. It follows that COp2 �∈ X .

34 J. Derrick and H. Wehrheim

3. Let tr � 〈COp2〉 ∈ TC . Again we can construct pairs of states (p1, q1),
(pn−1, qn−1), (pn , qn) such that p1 ∈ InA, q1 ∈ InC , q1 −tr−→ qn−1 −COp2−−−→
qn , p1 −tr↑−→ pn−1, (pn−1, qn−1) ∈ RS ,S = tr�. By S3 it follows that COp1 ∈
S , and hence by definition of � there are traces tr1, tr2 such that tr =
tr1 � 〈COp1〉� tr2 and COp2 �∈ ran tr2. �

When using non-atomic refinement in an integrated specification formalism the
above correspondence theorem is not the only result of interest. The main ques-
tion is whether a separate non-atomic refinement of the state-based and the
behaviour-oriented part gives a non-atomic refinement of the combination. The-
orem 1 only partly answers this question. Additionally, we need to know whether
non-atomic refinement is preserved under parallel composition (the operator used
for combining the semantics of the separate parts), or, rephrased whether parallel
composition is monotone with respect to non-atomic refinement.

Parallel composition in CSP, denoted ||A, requires the joint execution of all
events in A and an arbitrary interleaving of the remaining events [20]. When
composing a Z and a CSP part of an integrated specification parallel composition
often requires synchronisation on the intersection of the alphabets of both parts.
We therefore formulate the monotonicity of parallel composition with respect to
non-atomic refinement as follows.

Theorem 4. Let FP ,FQ be failure sets over the abstract alphabet α, FP ′ ,FQ′

over the concrete alphabet γ and let A ⊆ γ be a synchronisation set which
is the intersection of the alphabets of P ′ and Q ′. Furthermore, let COp1 ∈
A iff COp2 ∈ A hold for all pairs of concrete operations COp1,COp2. Then
the following holds:

FP fna FP ′ and FQ fna FQ′ implies FP ||A↑ FQ fna FP ′ ||A FQ′ .

Due to lack of space the proof is not given here.

5 Adding IO Transformers

We now turn our attention to generalising the results in Sections 2 to 4 to deal
with the transformations necessary in the presence of input and output. The
structure of what follows is identical to that above: we use a running example to
motivate the definition of a non-atomic coupled downward simulation with IO
transformations, the definition of non-atomic coupled refinement between failure
sets and the proof of soundness of the former with respect to the latter via a
transition system definition.

5.1 State-Based Definition

We begin by generalising the translate/multiply example. Now the values to
translate and multiply by are given as inputs, so the abstract operations become

Non-atomic Refinement in Z and CSP 35

Translate
ΔAState
val? : Z× Z

x ′
A = xA + first val?

y ′
A = yA + snd val?

u ′
A = uA; v ′

A = vA
(first val? < 0 < snd val?)∨

(snd val? < 0 < first val?)

Multiply
ΔAState
m? : Z

u ′
A = uA ×m?; v ′

A = vA ×m?
x ′
A = xA; y ′

A = yA

To make the example more interesting Translate does not accept any input but
just those where the two values in the pair val? have different signs. As before, in
the concrete system we split Translate into TransX and TransY , and Multiply
into MultU and MultY . The variable n is used to asure the different signs of
xC ? and yC ?.

CState
xC , yC , uc , vC : Z

b, c : B

m,n : Z

CInit
CState ′

x ′
C = y ′

C = 0; u ′
C = v ′

C = 1
b′ ∧ c′

TransX
ΔCState
xC ? : Z

c ∧ ¬c′

x ′
C = xC + xC ?; y ′

C = yC ;
u ′
C = uC ; v ′

C = vC ; b′ = b
m ′ = m ∧ (n ′ iff xC ? < 0)

TransY
ΔCState
yC ? : Z

¬c ∧ c′

y ′
C = yC + yC ?; x ′

C = xC ;
u ′
C = uC ; v ′

C = vC ; b′ = b
m ′ = m ∧ (n iff yC ? > 0)

MultU
ΔCState
m? : Z

b ∧ ¬b′

u ′
C = uC ×m?; vC = v ′

C ;
x ′
C = xC ; y ′

C = yC ; c′ = c
m ′ = m?; n ′ = n

MultV
ΔCState

¬b ∧ b′

v ′
C = vC ×m

uC = u ′
C ; x ′

C = xC ; y ′
C = yC ; c′ = c

n ′ = n

As discussed in [8] Definition 1 now needs to be augmented with IO transformers
in order to verify a non-atomic downward simulation. IO transformers are a
mechanism to alter the input and output in an IO refinement. IO refinement [6,
2, 22] generalises the standard simulation rules, which require identities between
the concrete and abstract operations’ inputs and outputs. In order to allow the
types of inputs and outputs to change, IO refinement replaces these identities

36 J. Derrick and H. Wehrheim

with arbitrary relations IT and OT between the input and output elements
respectively. IT and OT can be seen as retrieve relations between the inputs
and outputs, thus allowing these to change under a refinement in a similar way
to changing the state space.

IT and OT are written as schemas and called input and output transform-
ers. An input transformer for a schema is an operation whose outputs exactly
match the schema’s inputs, and whose signature is made up of input and out-
put components only; similarly for output transformers. These are applied to
the abstract and concrete operations using piping (�). In addition, Definition
8 uses an overlining operator, which extends componentwise to signatures and
schemas: x? = x !, x ! = x?. Thus IT denotes the schema where all inputs become
outputs with the same basename, and all outputs inputs.

To use IO transformers in a non-atomic setting we use mappings from an
abstract input to a sequence of concrete inputs representing the inputs needed
in the decomposition. The first part of the definition of non-atomic downward
simulation with IO transformation given next differs from the previous definition
in the following aspects:

– The sequence of concrete operations COp1
o
9 COp2 now has to be matched

by an abstract operation AOp with inputs and outputs of COp1
o
9 COp2

transformed according to IT and OT ,
– the preconditions of AOp and COp1 are also compared via transforming the

inputs,
– the third condition requiring the possibility of completing a started refine-

ment now has to take into account that a completion might only be possible
for some inputs of COp2. In the definition this is captured by hiding the
input of COp2 (assumed to be Inp2) in the precondition of COp2.

Definition 8. Non-atomic downward simulation with IO transformations A spec-
ification C is a non-atomic IO downward simulation of the specification A if
there is a retrieve relation R such that every abstract operation AOp is recast
into a sequence of concrete operations COp1

o
9 COp2, and for every COp1

o
9 COp2

there is an input transformer IT which is total on the abstract inputs, for ev-
ery AOp there is a total injective output transformer OT, and, in addition to
initialisation, the following hold.

∀AState; CState; CState ′ •
R ∧ (COp1

o
9 COp2)⇒ ∃AState ′ • R′ ∧ (IT � AOp � OT)

∀AState; CState • R ⇒ (pre(IT � AOp)⇐⇒ preCOp1)
∀AState; CState; CState ′ • R ∧ COp1 ⇒ ((preCOp2) \ Inp2)′

(The necessity of these conditions on IT and OT are discussed in [2]. In addition,
OT being injective ensure that the abstraction operator ↑ on refusals is well-
defined, in particular, a single abstract output cannot be mapped to two or
more concrete outputs.)

Non-atomic Refinement in Z and CSP 37

Now, using the same retrieve relation R as before, we use input transformers
to verify the refinement (the necessary output transformers are all the identity).
For Multiply , an identity input transformer is sufficient, whilst for Translate
we use

IT
val? : Z× Z; xC !, yC ! : Z

(xC !, yC !) = val?

Definition 8 can be applied, checking, for example,

∀AState; CState; CState ′ •
R ∧ (TransX o

9 TransY)⇒ ∃AState ′ • R′ ∧ (IT � Translate)

The purpose of the input transformer is clear in this example: IT takes in the
inputs xC ? and yC ? of TransX and TransY and turns them into an output val !
to be used as input for Translate. The necessity of hiding the inputs of COp2 in
the precondition is also clear in the example: after TransX operation TransY is
only enabled for some inputs, namely either those below or above zero depending
on the input to TransX .

We now need to generalise Definition 2 (the second part with coupled simula-
tions) to incorporate IO transformers in an analogous fashion. This is described
in [8], and as noted requires only a small change in the definition. Essentially
there are two differences: the first concerns the relations RS which now have to
record the inputs and outputs of the operations in S (and thus this affects S2).
The second is a change in the formulation of condition S3: the input and output
transformers have to be applied when completing a sequence and matching it
with the abstract operation AOp.

Definition 9. Non-atomic coupled downward simulation with IO transforma-
tionA specification C is a non-atomic coupled downward simulation of the spec-
ification A if there is a retrieve relation R and there are input and output trans-
formers IT and OT showing that C is a non-atomic downward simulation of A,
and there is a family of simulation relations RS such that the following hold.

C R〈 〉 = R

S1 ∀AState,CState,CState ′ • RS∧COp1⇒ ∃AState ′ • ΞAState∧(RS�〈COp1〉)′

S2 ∀AState,CState • RS ∧ COp1 ∈ S ⇒ (preCOp2) \ Inp2

S3 ∀AState,CState,CState ′ • RS ∧ COp2 ⇒
COp1 ∈ S ∧ ∃AState ′ • (IT >> AOp >> OT) ∧ (RS\〈COp1〉)′

Now RS records the effects of part of the concrete operation. With inputs in the
concrete operation this necessitates the input being part of the coupled simu-
lation. We can see this in our running example, where the coupled simulations
are now:

38 J. Derrick and H. Wehrheim

R〈TransX 〉

AState; CState
xC ? : Z

xA = xC − xC ?
yA = yC ; uA = uC ; vA = vC
¬c ∧ b
n iff xC ? < 0

R〈MultU 〉

AState; CState
m? : Z

uA ×m? = uC
c ∧ ¬b
xC = xA; yC = yA; vC = vA
m = m?

R〈TransX ,MultU 〉

AState; CState
xC ?,m? : Z

xA = xC − xC ?; uA ×m? = uC ; yC = yA; vC = vA
¬c ∧ ¬b; m = m?; n iff xC ? < 0

Then, to check S2, we would need to check, for example, that

R〈TransX ,MultU 〉 ∧ TransX ∈ 〈TransX ,MultU 〉 ⇒ (preTransY) \ (yC ?)

and upon calculation we find that (preTransY) \ (yC ?) = [CState | ¬c] which
is in fact implied by R〈TransX ,MultU 〉. Similarly, for S3, we need to check

R〈TransX ,MultU 〉 ∧ TransY ⇒
TransX ∈ 〈TransX ,MultU 〉 ∧ ∃AState ′ • (IT >> Translate) ∧ (R〈MultU 〉)′

thus we calculate

R〈TransX ,MultU 〉 ∧ TransY
AState; ΔCState
xC ?, yC ?,m? : Z

xA = xC − xC ?
uA ×m? = uC
¬c ∧ ¬b ∧ c′

yC = yA; vC = vA; y ′
C = yC + yC ?

x ′
C = xC ; u ′

C = uC
b′ = b; m = m?
n iff (yC ? > 0); n iff (xC ? < 0)

(IT >>Translate)∧ (R〈MultU 〉)′

ΔAState; CState ′

xC ?, yC ?,m? : Z

x ′
A = x ′

C = xA + xC ?
y ′
A = y ′

C = yA + yC ?
u ′
A ×m? = u ′

C ; u ′
A = uA

v ′
A = vA = v ′

C
(xC ? < 0 < yC ?)∨

(yC ? < 0 < xC ?)
c′ ∧ ¬b′

m ′ = m?

Applying ∃AState ′ to the right schema we see that the implication required by
S3 holds.

5.2 Transition Systems and Failures Definition

With this definition in place we then need to generalise the definition of non-
atomic refinement on failure sets and transition systems. We start with the latter.

Non-atomic Refinement in Z and CSP 39

We thus amend Definition 7 to include IO transformers. To do so we must first
adapt Definition 5 (semantics of Z specifications). The purpose of Definition 5
was to motivate our definition of traces and failures of a specification in order
to prove the soundness of non-atomic refinement. In a specification without
input or output this is straightforward, but is less so when we have, specifically,
non-deterministic outputs. Therefore we first generalise Definition 5, which is
straightforward, we then discuss how the failures (and traces) can be derived.
The transition system definition is straightforward since a state change between
q and q ′ due to an operation Op with input i and output o is modelled as a
transition q −Op.i.o−−−−→ q ′. Thus we change the set the transition system is labelled
over, and to do so we assume for simplicity that all operations have input of
type Input and output of type Output . The update to Definition 5 is thus.

Definition 10. Let S = (State, Init , {Op}i∈I) be a Z specification. The opera-
tional semantics of S , T (S), is given by a transition system (Q , In,−→) labelled
over {Opi .in.out | i ∈ I , in ∈ Input , out ∈ Output} such that Q = State, In =
Init and q −Opi .in.out−−−−−−→ q ′ iff a state change between q and q ′ occurs due to Opi
with input in and output out.

Note: the wording a state change between q and q ′ occurs due to Opi with input
in and output out can, if necessary, be formalised in terms of changes to the
state alone by embedding input and output into that state. Such an approach is
detailed in [25, 7], however, it is not necessary to use that level of formality here.

The traces of the system will simply be the traces arising from the transitions.
The refusals are slightly more complicated. A consequence of including outputs
in the events is that the traditional Z precondition, which excludes outputs, does
not tell us whether a particular event is possible – only whether an event with
some output value is possible for a particular input and before-state.

The obvious case is easy: for a given input i and state q , if these lie outside
the precondition of an operation Op, then Op.i .o will be refused for all possible
outputs o. However, if an operation is applied in a state and input inside its pre-
condition, there can also be refusals if the operation contains non-deterministic
choice of outputs. In particular, since the environment cannot influence the out-
put, there are refusals of “possible” output values due to another output value
being chosen. Thus the process can refuse all but one of the possible outputs.
So Op.i .o will be in a refusal set E if there is another possible output o2 (�= o)
which is not in E . Hence the refusals (in a particular state q) are characterised
by:

Op.i .o ∈ E ⇒¬∃ q ′ • q
Op.i.o−→ q ′ ∨

(∃ q ′′ • q
Op.i.o−→ q ′′ ∧ (∃ o2 �= o; q ′ •Op.i.o2−→ q ′ ∧Op.i .o2 �∈ E))

And this characterisation defines the failures of a specification. For a further
discussion of this issue see [21].

At the level of transition systems, IO transformers are best viewed as sets
of bindings, and we write ((i1, i2), i) ∈ IT whenever IT as a schema transforms

40 J. Derrick and H. Wehrheim

an abstract input i into i1 and i2 for consumption by the concrete operations.
Similarly for the output transformers.

Definition 11. A transition system TC = (QC , InC ,−→C) is a non-atomic cou-
pled downward simulation of a transition system TA = (QA, InA,−→A) (denoted
TA tna TC) if there is a relation R ⊆ QA ×QC satisfying the following

1. ∀ q0 ∈ InC • ∃ q ′
0 ∈ InA • (q ′

0, q0) ∈ R,
2. ∀(q1, q2) ∈ R • ∀ q ′

2 ∈ QC • ∀ i1, i2, , o1, o2 • q2 −COp1.i1.o1COp2.i2.o2−−−−−−−−−−−−−−→ q ′
2 ⇒

∃ q ′
1 ∈ QA • ∃ i , o • q1 −AOp.i.o−−−−−→ q ′

1 and (q ′
1, q

′
2) ∈ R ∧ ((i1, i2), i) ∈ IT ,

((o1, o2), o) ∈ OT,
3. ∀(q1, q2) ∈ R • ∀ i1, i2, i •

(∃ o1 • q2 −COp1.i1.o1−−−−−−−→)⇐⇒ (∃ o, i2 • q1 −AOp.i.o−−−−−→ ∧((i1, i2), i) ∈ IT)
4. ∀ q1 ∈ ranR • ∀ q ′

1 ∈ QC • ∀ i1, o1 • q1 −COp1.i1.o1−−−−−−−→ q ′
1 ⇒ ∃ i2, o2 •

q ′
1 −COp2.i2.o2−−−−−−−→,

and there is a family of relations PT ⊆ QA×QC , T ∈ γ∗, such that, in addition,
we have:

C P 〈 〉 = R,
S1 ∀(q1, q2) ∈ PT • ∀ q ′

2 ∈ QC • ∀ i1, o1 •
q2 −COp1.i1.o1−−−−−−−→ q ′

2 ⇒ ∃ q ′
1 • q1 = q ′

1 ∧ (q ′
1, q

′
2) ∈ PT�〈COp1.i1.o1〉,

S2 ∀(q1, q2) ∈ PT • ∀ i1, o1 • COp1.i1.o1 ∈ T ⇒ ∃ i2, o2 • q2 −COp2.i2.o2−−−−−−−→,
S3 ∀(q1, q2) ∈ PT • ∀ q ′

2 ∈ QC • ∀ i2, o2 • q2 −COp2.i2.o2−−−−−−−→ q ′
2 =⇒

∃ i1, o1 • ∃ q ′
1 ∈ QA • ∃ i , o • COp1.i1.o1 ∈ T ∧ q1 −AOp.i.o−−−−−→ q ′

1 ∧
(q ′

1, q
′
2) ∈ PT\〈COp1.i1.o1〉 ∧ ((i1, i2), i) ∈ IT ∧ ((o1, o2), o) ∈ OT.

Notice that in this definition, relations PT are between states only, whereas
in the schema calculus formulation, the coupled simulations RS contain input
and output in their signature. This apparent difference is resolved by noting
the values used for input and output are recorded in T , this prevents the need

for complicated technicalities in defining PT�〈COp1〉 in terms of PT . We now
state Theorem 2 in the context of operations containing input and output (proof
omitted due to lack of space).

Theorem 5. Let A,C be Z specifications. Then

A na C ⇔ T (A) tna T (C) .

We now generalise the definition of non-atomic failures refinement to incorporate
i/o and their transformations in order to prove Theorem 3 in the context of i/o.
(The theorem is given for one operation, the quantifiers over i being used for
quantification over input.) We assume here that the input transformer IT is total
on the abstract inputs, and the inverse of IT is a partial, surjective function,
and OT is an injective function.

Definition 12. A set of failures FC is a non-atomic coupled refinement of a
set of failures FA (denoted FA fna FC) if the following hold:

Non-atomic Refinement in Z and CSP 41

1. ∀(tr ,X) ∈ FC • tr ∈ Comp(TC)⇒ (tr ↑,X ↑) ∈ FA,
2. ∀(tr ,X) ∈ FC • ∀ i1, o1 • ∀ tr1, tr2 • tr = tr1 � 〈COp1.i1.o1〉� tr2 ∧ ∀ i2, o2 •

COp2.i2.o2 �∈ ran tr2 ⇒ ∃ i2, o2 • COp2.i2.o2 �∈ X ,
3. ∀ i2, o2 • tr � 〈COp2.i2.o2〉 ∈ TC ⇒ ∃ tr1, tr2 • ∃ i1, o1 • tr = tr1 �
〈COp1.i1.o1〉� tr2 ∧ COp2.i2.o2 �∈ ran tr2.

Where the abstraction operators are defined by (again the definition is given for
single decomposition to aid readability) the following.

tr ↑= (tr � {COp2.i2.o2})[COp2.i2.o2 �→ AOp.i .o iff
∃ l , k • l ≤ k ∧ tr [k] = COp2.i2.o2 ∧ ∃ i1, o1 • ((i1, i2), i) ∈ IT
∧((o1, o2), o) ∈ OT ∧ tr [l] = COp1.i1.o1∧
∀ p • l ≤ p ≤ k ,∀ i , o • tr [l] �= COp1.i .o]

X ↑= (X \ {COp2.i2.o2})[COp1.i1.o1 �→ AOp.i .o iff
∃ i , i2 • ((i1, i2), i) ∈ IT ∧ ∃ o, o2 • ((o1, o2), o) ∈ OT]

and the definition of completed traces remains as before. Given these definitions
the analogue of Theorem 3 holds.

Theorem 6. Let TA,TC be transition systems.

TA tna TC ⇒ F(TA) fna F(TC) .

The proof follows that of Theorem 3 but is - due to lack of space - omitted here.
Our running example illustrates some of the components defined above. For
example, the coupled simulation R〈TransX ,MultU 〉 defines coupled simulations on
the transition system with, e.g., ((0, 0, 1, 1), (−3, 0, 7, 1)) ∈ P 〈TransX .−3,MultU .7〉.
S3 can be illustrated on the transition system by noting that

∀ q ′
2 • (−3, 0, 7, 1) −TransY .i2−−−−−−→ q ′

2 =⇒
TransX .− 3 ∈ T ∧ ∃ q ′

1 • q1 −Translate.(−3,i2)−−−−−−−−−−−→ q ′
1 ∧ (q ′

1, q
′
2) ∈ P 〈MultU .7〉

We can also calculate some of the failures. For example, (〈TransX .−3,MultU .7,
TransY .4,MultV 〉, {TransY .2,MultV }) ∈ FC and we note that

〈TransX .− 3,MultU .7,TransY .4,MultV 〉↑= 〈Translate.(−3, 4),Multiply .7〉
{TransY .2,MultV }↑= ∅

and find as expected that (〈Translate.(−3, 4),Multiply .7〉, ∅) ∈ FA.
Finally, Theorem 4 without change carries over to the case of input/output

transformers since the proof is independent of the particular alphabet of events
used (thus it makes no difference whether the events carry parameters or not).

6 Conclusions

In this paper we have related notions of non-atomic refinement in a state-based
setting with that in a behavioural setting. In doing so, we took the definition

42 J. Derrick and H. Wehrheim

of coupled simulation as defined in [8] and proved it was sound with respect to
a definition of non-atomic failures refinement defined in Section 3. This proof
of soundness was subsequently extended to the most general case of input and
output and their transformations.

Of course there have been numerous attempts to define non-atomic refine-
ment (viz. action refinement) in a process algebraic setting. The general dif-
ference between process algebraic definitions and our work is that in process
algebras action refinement is an operator of the language (like choice or parallel
composition) whereas here we define a relation between specifications. Instead
of constructing the refinement out of an abstract process we only check whether
two processes are in a refinement relationship.

While a lot of approaches in process algebras do not allow overlapping of
refinements of sequential abstract actions (e.g. [1, 24]) there are also proposals
for non-strict action refinement [19, 13]. Out of these the work closest to us is [19]
where the possible overlaps are determined by apriori given action dependencies:
independent actions are allowed to overlap in refinements. In our setting action
dependencies could be derived from the operation schemas: two operations are
independent if the set of variables they change are disjoint. Similarly to [19]
such operations are allowed to commute in the refinement; this is - however -
not defined via dependencies but via the existence of a coupled simulation and
the requirement of finding a matching operation in the abstract specification.

Work relating state-based and behavioural notions of refinement are also
not new. Work in this vein goes back to [15, 14, 26]. More recent work includes
[21, 3, 7, 4]. The latter looks at some of the issues explicit in integrating formal
specification languages. The standard result [7] which we extend in this paper is
the soundness of downward simulation with respect to failures-divergences refine-
ment. The full result is that data refinement (as given in, e.g., [7]) is sound and
complete with respect to failures-divergences refinement under a correspondence
between data types and processes which relates the two in an obvious fashion
(e.g., relating operations to events). This gives two obvious directions that our
work could be extended in. The first is to incorporate internal events into our
discussion, and thus treat divergence and CSP in its entirety. The second is to
define non-atomic coupled upward simulations, and demonstrate its soundness
and, with downwards, its joint completeness. These are left as future work.

References

1. L. Aceto. Action Refinement in Process Algebras. CUP, London, 1992.
2. E. A. Boiten and J. Derrick. IO-refinement in Z. In A. Evans, D. J. Duke, and

T. Clark, editors, 3rd BCS-FACS Northern Formal Methods Workshop. Springer-
Verlag, September 1998. http://www.ewic.org.uk/.

3. C. Bolton and J. Davies. A Singleton Failures Semantics for Communicating Se-
quential Processes. Formal Aspects of Computing, 2002. Under consideration.

4. C. Bolton and J. Davies. Refinement in Object-Z and CSP. In M. Butler, L. Pe-
tre, and K. Sere, editors, Integrated Formal Methods (IFM 2002), volume 2335 of
Lecture Notes in Computer Science, pages 225–244. Springer-Verlag, 2002.

Non-atomic Refinement in Z and CSP 43

5. J. Derrick and E. Boiten. Non-atomic refinement in Z. In J. Woodcock and J. Wing,
editors, FM’99, World Congress on Formal Methods, number 1709 in LNCS, pages
1477–1496. Springer, 1999.

6. J. Derrick and E. A. Boiten. Refinement in Z and Object-Z. Springer-Verlag, 2001.
7. J. Derrick and E.A. Boiten. Relational concurrent refinement. Formal Aspects of

Computing, 15(2-3):182–214, November 2003.
8. J. Derrick and H. Wehrheim. Using coupled simulations in non-atomic refinement.

In ZB 2003: Formal Specification and Development in Z and B, number 2651 in
LNCS, pages 127–147. Springer, 2003.

9. C. Fischer. CSP-OZ - a combination of CSP and Object-Z. In H. Bowman and
J. Derrick, editors, Second IFIP International conference on Formal Methods for
Open Object-based Distributed Systems, pages 423–438. Chapman & Hall, July
1997.

10. C. Fischer. How to combine Z with a process algebra. In ZUM’98: The Z Formal
Specification Notation, volume 1493 of Lecture Notes in Computer Science, pages
5–23. Springer-Verlag, September 1998.

11. A. Galloway and W. Stoddart. An operational semantics for ZCCS. In M. G.
Hinchey and Shaoying Liu, editors, First International Conference on Formal En-
gineering Methods (ICFEM’97), pages 272–282, Hiroshima, Japan, November 1997.
IEEE Computer Society Press.

12. Jifeng He. Process simulation and refinement. Formal Aspects of Computing,
1:229–241, 1989.

13. Wil Janssen, Mannes Poel, and Job Zwiers. Actions systems and action refinement
in the development of parallel systems. In J. C. M. Baeten and J. F. Groote, editors,
Concur ’91, volume 527 of LNCS, pages 298–316. Springer, 1991.

14. He Jifeng. Process refinement. In J. McDermid, editor, The Theory and Practice
of Refinement. Butterworths, 1989.

15. M. B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9–18, 1988.

16. B.P. Mahony and J.S. Dong. Blending Object-Z and timed CSP: An introduction
to TCOZ. In K. Futatsugi, R. Kemmerer, and K. Torii, editors, 20th International
Conference on Software Engineering (ICSE’98). IEEE Press, 1998.

17. J. Parrow and P. Sjödin. Multiway Synchronisation Verified with Coupled Simu-
lation. In R. Cleaveland, editor, CONCUR ’92, Concurrency Theory, number 630
in LNCS, pages 518–533. Springer, 1992.

18. A. Rensink. Action Contraction. In C. Palamidessi, editor, CONCUR 2000 -
Concurrency Theory, number 1877 in LNCS, pages 290–304. Springer, 2000.

19. Arend Rensink and Heike Wehrheim. Dependency-based action refinement. In
P. Ruzicka, editor, MFCS’97 Mathematical Foundations of Computer Science,
number 1295 in LNCS. Springer, 1997.

20. A. W. Roscoe. The Theory and Practice of Concurrency. 1998.
21. G. Smith and J. Derrick. Specification, refinement and verification of concurrent

systems - an integration of Object-Z and CSP. Formal Methods in Systems Design,
18:249–284, May 2001.

22. S. Stepney, D. Cooper, and J. C. P. Woodcock. More powerful data refinement in
Z. In J. P. Bowen, A. Fett, and M. G. Hinchey, editors, ZUM’98: The Z Formal
Specification Notation, volume 1493 of Lecture Notes in Computer Science, pages
284–307. Springer-Verlag, September 1998.

23. H. Treharne and S. Schneider. Using a process algebra to control B operations. In
K. Araki, A. Galloway, and K. Taguchi, editors, International Conference on Inte-
grated Formal Methods 1999 (IFM’99), pages 437–456, York, July 1999. Springer.

44 J. Derrick and H. Wehrheim

24. R. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and
refinement of actions. In A. Kreczmar and G. Mirkowska, editors, Mathemati-
cal Foundations of Computer Science 1989, volume 379 of LNCS, pages 237–248.
Springer, 1989.

25. J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice Hall, 1996.

26. J. C. P. Woodcock and C. C. Morgan. Refinement of state-based concurrent sys-
tems. In D. Bjorner, C. A. R. Hoare, and H. Langmaack, editors, VDM’90: VDM
and Z!- Formal Methods in Software Development, volume 428 of Lecture Notes in
Computer Science. Springer-Verlag, 1990.

Process Refinement in B

Steve Dunne and Stacey Conroy

School of Computing, University of Teesside,
Middlesbrough, TS1 3BA, UK

{s.e.dunne, s.conroy}@tees.ac.uk

Abstract. We describe various necessary and sufficient conditions with
which to augment B’s existing refinement proof obligations for forward
and backward refinement in order to capture within the B Method a
variety of CSP process refinement relations, including most significantly
that of failures-divergences which provides the standard denotational
semantics of CSP processes.

1 Introduction

In recent years there has been increasing interest in combining state-based for-
malisms with process algebras. This is exemplified inside the B community par-
ticularly by the work of Schneider and Treharne et al [36, 31, 37, 32] integrating
B [1] with CSP [20, 27]. Over the same period researchers in the theoretical un-
derpinnings of refinement like Bolton and Davies [6, 5] and Derrick and Boiten
[11, 12, 13], have been exploring the semantic relationship between data refine-
ment in a state-based formalism such as Z [35, 40] and the various notions of
process refinement in a process algebra formalism such as CSP.

However, Z has certain disadvantages in comparison to B as a state-based
formalism in this sort of work. The main one is that traditionally when using
Z to specify an abstract data type the operations are described simply by oper-
ation schemas, where such a schema is essentially just an alphabetised before-
after relation. This means an a priori decision has to be made, between the
so-called “blocking” and “non-blocking” (i.e. aborting) interpretations, about
how to interpret the invoking of such an operation outside its domain. In B we
can formulate operations with both guards and preconditions so we face no such
decision about interpretations. Indeed since guards and preconditions can coex-
ist in the same operation, B operations are capable of simultaneously bearing
both interpretations.

One of the factors inhibiting an investigation of B refinement versus process
refinement till recently was a recognition that B’s refinement theory was incom-
plete since it was based only on forward simulation, but this obstacle has now
been overcome by [16]. In this paper we capitalise on [16] to derive necessary
and sufficient conditions for modelling in B a variety of process refinement rela-
tions, but most significantly, perhaps, the standard refinement relation for CSP
of failures-divergences. In Section 2 we review the semantic connections variously

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 45–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 S. Dunne and S. Conroy

established over the last 18 years or so between state-based and process-algebraic
descriptions of system behaviours. In Section 3 we summarise CSP refinement
concepts. In Section 4 we discuss the interpretation of abstract machines in B
as abstract systems and thence as CSP processes, and in Section 5 we present a
complete theory of data refinement for B. In Section 6 we at last reach our key
results establishing the various particular extra pairs of refinement conditions
by which in B we can model the different varieties of CSP process refinement
described in Section 3.

We should note that all three anonymous reviewers of the draft version of this
paper justifiably criticised it for providing only informal proofs of all its main
propositions. We confess we have not found it possible to develop formal proofs
within the timescale for preparing the final camera-ready version, and that this
deficiency therefore remains in it. Even an informal proof can have some utility,
though, providing the argument it makes is in some degree convincing. We hope
the reader will entertain our informal proofs in such a spirit, as at least providing
some measure of justification of the likely validity of our propositions.

2 Processes Versus Abstract Data Types

A duality has long been recognised between the algebraic description of the
behaviour of a concurrent process in a formalism such as CSP, and its alterna-
tive state-based description, for example as a labelled transition system (LTS)
[38], action system [4], abstract data type (ADT) [11, 30] or Object-Z class [33].
Among the first explicit state-based characterisations of a behavioural process
to achieve prominence were those of Josephs [23] describing how a non-divergent
CSP process could be represented as an LTS, and of He [18, 19] who developed a
similar state-based relational process model which did accommodate divergence.
The motivation in both cases was to provide a state-based process model in re-
spect of which it would be possible to adapt He et al’s ADT refinement proof
methods of forward and backward simulation [22] to the failures-divergences
refinement of processes.

Soon afterwards Morgan [25] showed how to interpret an action system as a
CSP process by describing precisely how to derive its failures and divergences
from its wp semantics. What is particularly striking about Morgan’s approach
is the way the phenomenon of divergence is embraced so uniformly by it; the wp
semantics handles divergence at no extra cost, so to speak. This is in marked
contrast to the approaches for example in [11] and [30] whereby divergence is
accommodated within the relational semantics of an ADT only by introducing
an artificial ‘bottom’ element ⊥ into its state space, which compromises the
homogeneity of that space and thus considerably complicates the model.

Woodcock and Morgan [41] used the action-system representation of pro-
cesses in [25] to formulate wp-based sound and jointly complete proof obliga-
tions for failures-divergences refinement by exploiting the same proof methods
from [22] as Josephs and He each had done. But while they are certainly theo-
retically significant [41]’s proof obligations have limited utility for practical sys-

Process Refinement in B 47

tem development, since they are formulated as higher-order conditions involving
quantification over all postconditions and thus in most cases intractable.

Until quite recently the accepted but mistaken wisdom among many re-
searchers, as seen for example in [7, 11, 17, 34], was that Josephs’ results in [23]
imply that, for blocking1 ADTs at least, a complete notion of ADT refinement
based on both forward (downward simulation) and backward (upward simula-
tion) refinement equates to failures refinement.

The misapprehension was finally exposed by Bolton and Davies [5, 6] and
subsequently acknowledged by other recanters [12, 13, 14]. The error arose from
a mistranslation into the context of ADTs of one of Josephs’ LTS upward simu-
lation conditions which was mistakenly taken to be required only respectively of
each corresponding concrete/abstract operation pair, whereas Josephs’ condition
in question is actually a single global one simultaneously involving all abstract
and concrete operations.

3 Process Refinement in CSP

CSP processes have a standard denotational semantics based on failures and
divergences.2

A trace of a process P is a finite sequence of events of its alphabet in which
after its inception it is observed to engage. The set of all traces of P is de-
noted traces(P). In particular, for any process P the empty trace 〈〉 belongs to
traces(P).

We consider that a process P evolves after its inception as it engages in
successive events. A refusal set of P at any stage of its evolution is a set of
events in all of which it is observed at that stage to decline to engage. Refusal
sets are subset-closed in the sense that in any situation where X is a refusal set
of P then any Y where Y ⊆ X is also a refusal set of P . In particular, a process
can always refuse an empty set of events, so {} is always a refusal set of P .

A failure of P is a pair (tr ,X), where tr is a trace of and X a refusal set
of P , such that P is observed to engage after its inception in the events of tr
and then decline to engage in any event in X . The set of failures of P , denoted
failures(P), is therefore a relation between traces and refusal sets. The domain
of this relation is traces(P). In particular, for any tr where tr ∈ traces(P) we
have that (tr , {}) ∈ failures(P).

A divergence of P is a trace of P after engaging in which P may descend
into irretrievably pathological behaviour, so that it may engage in or decline any
event of its alphabet, or even livelock by engaging in an indefinite sequence of
internal actions and so fail to reach any further stable observable state at all.
The set of divergences of P is denoted divergences(P).

1 That is, ones whose partial operations are interpreted as being disenabled, or blocked,
outside the domains of their characterising relations.

2 If unbounded nondeterminism is admitted then infinite traces are also required to
differentiate certain processes, but we ignore such distinctions in this paper.

48 S. Dunne and S. Conroy

Traces Refinement. The coarsest notion of refinement in CSP is traces refine-
ment T . A process P is traces-refined by process Q if every trace of Q is also
a trace of P :

P T Q ⇔ traces(Q) ⊆ traces(P)

Failures Refinement. Traces refinement is adequate for distinguishing be-
tween deterministic processes, but for distinguishing between nondeterministic
ones, even in the absence of divergence, we need the finer notion of failures re-
finement F . A process P is failures-refined by process Q if every failure of Q
is also a failure of P :

P F Q ⇔ failures(Q) ⊆ failures(P)

Failures-Divergences Refinement. If we admit divergent processes we must
also take into account the divergences of each process when distinguishing be-
tween them, giving failures-divergences refinement FD . A process P is failures-
divergences-refined by process Q if every failure of Q is also a failure of P , and
every divergence of Q is also a divergence of P :

P FD Q ⇔ failures(Q) ⊆ failures(P) ∧ divergences(Q) ⊆ divergences(P)

Milner [24] points out that the failures model [and hence by extension to di-
vergent processes, the failures-divergences model too] “. . . has a special place in
concurrency theory; it is, precisely, the weakest congruence which respects dead-
lock.” Clearly, traces, failures and failures-divergences refinement make succes-
sively finer distinctions between processes.

Traces-Divergences Refinement. We can define other refinement relations
intermediate between those above. For example, [30] features traces-divergences
refinement TD , whereby a process P is traces-divergences-refined by process
Q if every trace of Q is also a trace of P , and every divergence of Q is also a
divergence of P :

P TD Q ⇔ traces(Q) ⊆ traces(P) ∧ divergences(Q) ⊆ divergences(P)

Clearly, TD is strictly intermediate between T and FD , although it is in-
comparable with F .

Singleton-Failures Refinement. Bolton and Davies [5] introduce the notion
of the singleton failures of a process. A singleton failure is a failure (tr ,X) such
that the refusal set X is either empty or a singleton. The singleton failures of
a process P , which we denote singletonfailures(P), are therefore a subset of its
failures. They define singleton-failures refinement SF as follows: a process P
is singleton-failures-refined by process Q if every singleton failure of Q is also a
singleton failure of P :

Process Refinement in B 49

P SF Q ⇔ singletonfailures(Q) ⊆ singletonfailures(P)

Clearly, SF is strictly intermediate between T and F .

Completed-Traces Refinement. We may be particularly interested in know-
ing which traces of a process P may lead to deadlock. We can identify such
traces, called the complete traces of P , by examining P ’s failure relation for fail-
ures of the form (tr , Σ) where Σ is the entire alphabet of P . Any trace tr which
appears in such a failure is in this sense a complete trace. We denote the set of
complete traces of P by completetraces(P). Then completed-traces refinement
CT is defined as follows: a process P is completed-traces-refined by process Q
if every trace of Q is also a trace of P , and every complete trace of Q is also a
complete trace of P :

P CT Q ⇔ traces(Q) ⊆ traces(P) ∧
completetraces(Q) ⊆ completetraces(P)

Clearly,CT likeSF is also strictly intermediate betweenT andF , although
it isn’t comparable with SF .

Failuretraces Refinement. Even in the absence of divergence we can still
define other notions of refinement strictly finer than failures refinement. Failure-
traces refinement [38] compares processes on the basis of observations of their
behaviour which involve testing for refusals before every event the process en-
gages in, as well as after the final event in the course of the observation. It
essentially captures the refusals testing semantics of processes [26]. Interestingly,
this rather than failures semantics underlies the semantics of timed CSP [29],
in the sense that if time is disregarded the latter reduces to refusals-testing
semantics.

We define a failuretrace is as a pair (X0, ftr) where X0 is a refusal set and
ftr is a finite sequence of pairs of the form (a,X) where a is an event and X is
a refusal set. A failuretrace can therefore be pictured as a pseudo-sequence of
the form 〈〈X0, a1,X1, a2,X2, a3,X3, . . . , an ,Xn 〉〉 where the Xi are refusal sets
and the ai are events. It represents an observation of behaviour of a process in
which immediately after its inception the process has refused the events X0, then
engaged in a1, then refused X1, then engaged in a2, then refused X2, and so on.
We denote the set of failuretraces of a process P by failuretraces(P). We say a
process P is failuretraces-refined by Q , written P FT Q , if the failuretraces of
Q are a subset of those of P . That is,

P FT Q ⇔ failuretraces(Q) ⊆ failuretraces(P)

Every ordinary failure (〈a1, a2, a3, . . . , an〉,X) of a process is represented in its
failuretraces by the failuretrace 〈〈{}, a1, {}, a2, {}, a3, {}, . . . , an ,X 〉〉 . Hence fail-
uretraces refinement implies failures refinement.

Failuretraces-Divergences Refinement. We can extend failuretraces refine-
ment in the obvious way to encompass divergence, by defining failuretraces-
divergences refinement FTD so that

50 S. Dunne and S. Conroy

P FTD Q ⇔ failuretraces(Q) ⊆ failuretraces(P) ∧
divergences(Q) ⊆ divergences(P)

In Fig. 1 we summarise the relativities between these various notions of pro-
cess refinement.

is stronger
than

is stronger
than

is stronger
than

is stronger
than

is stronger
than

is stronger
than

is stronger
than

is stronger
than

is stronger
than

is stronger
than

Failuretraces−Divergences

Failuretraces

Failures−Divergences

Failures

Traces−Divergences

Completed Traces Singleton Failures

Traces

Fig. 1. A lattice of process refinements

4 Event B

If an abstract machine is to be implementable in conventional B all its operations
need to be feasible, but Abrial [2] and Butler and Waldén [10] show that abstract
machines with infeasible (i.e. non-trivially guarded) operations can nevertheless
be useful in modelling the behaviour of distributed systems. Abrial coined the
term abstract system for such a machine, redesignating its operations as events.

Process Refinement in B 51

The theory of Event B, as this event-driven interpretation of B machines as ab-
stract systems has come to be known, has been subsequently further developed,
supported and exploited in [8, 3, 39, 9].

In effect a B abstract system is a species of action system. In Abrial’s original
formulation of an abstract system the operation preconditions of an ordinary B
machine are entirely replaced by event guards, so the system cannot behave
abortively because there are no preconditions to be contravened. However, there
is no reason in principle why guards and preconditions cannot coexist in an
event of an abstract system, as indeed they do in other formulations of action
systems, and we will therefore allow this. For us then, an abstract system is just
an abstract machine whose operations may be infeasible, which is not intended
to be implemented in conventional B terms but rather whose purpose is to model
event-driven process behaviour, the operations of the machine being identified
with the events of the process being modelled. Moreover, since we interpret an
abstract machine as an abstract system, which is itself just a species of action
system, we can by virtue of [25] also interpret it as a CSP process. In particular,
the abortive behaviour of an abstract machine provoked by invoking any of its
operations outside its termination precondition would manifest as divergence in
the corresponding CSP process.

Let S be the generalised substitution which constitutes the body of an oper-
ation e of such an abstract machine. Then the event e is only enabled when S is
feasible, and will provoke divergence if it occurs outside S ’s realm of guaranteed
termination. That is, the guard of the corresponding event e will be fis(S) and
its realm of non-divergence characterised by trm(S)3.

4.1 How to Interpret a B Abstract Machine as a CSP Process

Here we adapt the formulation of traces, divergences and failures of an action
system given in [25] in terms of our B concepts of trm and fis of operations. This
enables us to describe exactly how to deduce the traces, divergences and failures
of a B abstract machine.

Traces of an Abstract Machine. A sequence 〈e1, e2 . . . en〉 of operations of
an abstract machine M with initialisation init is a trace of M if the sequential
composition of M ’s initialisation with this sequence of operations is feasible: that
is, precisely if

fis(init ; e1 ; e2 ; . . . ; en) holds.

Divergences of an Abstract Machine. A divergence of an abstract machine
M is a sequence 〈e1, e2 . . . en〉 of operations of M such that the sequential com-
position of M ’s initialisation with this sequence of operations may not terminate:
that is, precisely if

3 Recall if [S]Q denotes the weakest precondition for S to establish the postcondition
Q , then, as defined in [1, 15], fis(S) =df ¬ [S]false and trm(S) =df [S]true.

52 S. Dunne and S. Conroy

¬ trm(init ; e1 ; e2 ; . . . en) holds.

Note that since in B the initialisation init of an abstract machine must always
be a drastic wp predicate transformer, in that [init]Q must be either identically
true or false for each postcondition Q , our definitions of trace and divergence
of a machine M are absolute, not contingent on its state. In particular, as long
as its initialisation init is feasible, the empty sequence 〈〉 will be a trace of any
machine M . And should the initialisation init of a machine M not be guaranteed
to terminate, then M would have the empty trace as one of its divergences and
thus correspond to the immediately divergent process div. Also, note that if
M is an B abstract machine whose initialisation and operations are all always
guaranteed to terminate, then M will correspond to a CSP process with no
divergences.

Refusal Sets of an Abstract Machine. A set { f1, f2 . . . fm } of operations of
an abstract machine M will be a refusal set of any state of M where none of
these operations are feasible: that is, { f1, f2 . . . fm } is a refusal set of any state
of M where

¬ fis(f1 [] f2 [] . . . [] fm) holds.

In particular the empty set of operations will be a refusal set of any state of
any machine, since an empty choice of operations is equivalent to magic and
¬ fis(magic) always holds because magic is nowhere feasible.

Failures of an Abstract Machine. For any sequence 〈e1, e2 . . . en〉 and set
{ f1, f2 . . . fm } of operations of an abstract machine M with initialisation init , the
pair (〈e1, e2 . . . en〉 , { f1, f2 . . . fm }) is a failure of M if 〈e1, e2 . . . en〉 is a trace of
M which might lead to a state where { f1, f2 . . . fm } is a refusal set. Recall that
for a substitution S and postcondition Q , the conjugate weakest precondition
¬ [S]¬ Q defines those states from where S might establish Q , so the above pair
is a failure of M if

¬ [init ; e1 ; e2 ; . . . ; en] fis(f1 [] f2 [] . . . [] fm) holds.

4.2 Operation Inputs and Outputs

Morgan [25] does not discuss actions with inputs and/or outputs, but Derrick
and Boiten [13] and Schneider [30] show that these can accommodated in the
CSP interpretation of an ADT by regarding an operation as a two-way channel
for passing input and output values in opposite directions. Thus an operation
of a B machine whose signature is y ←− op(x) is associated with a set Op of
events, where Tx and Ty are the respective types of x and y , such that

Op =df {op.x .y | x ∈ Tx ∧ y ∈ Ty}

Process Refinement in B 53

5 Data Refinement in B

The refinement theory underpinning the B method, as developed by Abrial [1]
and mechanised in both currently available B support environments, is based on
the refinement proof method of forward simulation, one of the two refinement
proof methods originally proposed by He, Hoare and Sanders [22]. There the
methods were applied only to ADTs all of whose operations are modelled as
total relations, but later He and Hoare [21] proved the same methods were sound
and jointly complete in the more general context of ADTs whose operations are
modelled as possibly partial relations. These correspond to B abstract systems
with nontrivially guarded events.

Crucially, Abrial provided a first-order wp predicate-transformer formulation
of the forward simulation proof obligations, which made their generation and
discharge for the first time amenable to the sort of mechanisation which lies at
the heart of the B method. Yet on its own this forward simulation refinement
theory is incomplete since, as Rouzaud [28] points out, there exist certain se-
mantically valid refinements which cannot be proved correct in terms alone of
its rules.

To illustrate this we borrow the following example from [16], which models
the spinning of a roulette wheel in a casino. The first machine in Fig. 2 represents
a forward-thinking roulette wheel which always decides nondeterministically but
in advance what the outcome of its next spin will be. The second represents a
more impulsive roulette wheel which nondeterministically decides the outcome
of each spin only as it occurs.

It should be intuitively clear that these machines would be indistinguishable
to any importing implementation, and so should represent mutual refinements of
each other. Yet using B’s ordinary refinement rules we can only prove refinement
between them in one direction: the thinking wheel can certainly be proved by
them to refine the impulsive wheel , but not vice versa.

MACHINE thinking wheel
VARIABLES ii
INVARIANT ii ∈ 0..36
INITIALISATION ii :∈ 0..36
OPERATIONS

rr ←− spin =̂ BEGIN rr := ii || ii :∈ 0..36 END
END

MACHINE impulsive wheel
OPERATIONS

rr ←− spin =̂ rr :∈ 0..36
END

Fig. 2. A forward-thinking and an impulsive roulette wheel

54 S. Dunne and S. Conroy

Table 1. Strongest postcondition semantics of generalised substitutions

S R [S]

skip R

x := E ∃ x ′ . R(x ′/x) ∧ x = E(x ′/x)

P |S (∀ s . R ⇒ P) ⇒ R [S] where s is frame(S)

P =⇒ S (P ∧ R) [S]

S [] T R [S] ∨ R [T]

@z .S ∃ z . R [S]

S ; T R [S][T]

This imcompleteness in B’s ordinary refinement theory was addressed by one
of the current authors in [16] by providing a corresponding first-order predicate-
transformer formulation of backward simulation proof obligations for B, thus
endowing B for the first time with two tractable and jointly complete refinement
theories which together are sufficient for proving any valid refinement.

These backward simulation proof obligations are formulated in terms of
strongest postcondition (sp) rather than the more familiar wp predicate trans-
former. We recap the characterisation of sp originally given in [16] : for a substitu-
tion S we adopt the postfix notation R[S] to signify the strongest postcondition
established by S from the precondition R. Thus R[S] characterises precisely the
set of after-states reachable after execution of S from any before-state satisfy-
ing R. Table 1 gives the sp characterisation of all the basic constructs of the
Generalised Substitution Language (GSL).

Precedence. Our convention is that the precedence of each of our wp and sp
predicate transformers is greater than that of any ordinary logical connective,
even ¬ . Hence, for example, [S]Q ∧ R means ([S]Q) ∧ R and ¬ R [S]
means ¬ (R [S]) .

5.1 Forward Refinement

Fig. 3 shows an abstract machine M and its supposed forward refinement MF ,
together with the necessary proof obligations (POs), as per [1], which must be
discharged to establish the correctness of this refinement.4 In these POs Cn

′

denotes the substitution Cn modified to refer to fresh variable yn
′ in place of

yn . Those marked ∗ have to be proved in respect of each operation of M , these
being indexed by n.

4 For brevity we omit any reference to the properties and constraints of our machine
M and its refinement MF . The refinement POs we present here would therefore need
adapting to accommodate these static aspects before being useable in practice.

Process Refinement in B 55

MACHINE M REFINEMENT MF

VARIABLES a (Fwd)REFINES M

INVARIANT I VARIABLES c

INITIALISATION AI INVARIANT J

OPERATIONS INITIALISATION CI

yn ←− opn(xn) =̂ An OPERATIONS

END yn ←− opn(xn) =̂ Cn

END

(Fwd.init) ∀ a, c . [CI]¬ [AI]¬ J

(Fwd.trm)∗ ∀ a, c, xn . I ∧ J ∧ trm(An) ⇒ trm(Cn)

(Fwd.corr)∗ ∀ a, c, xn , yn , y ′
n . I ∧ J ∧ trm(An) ⇒ [Cn

′]¬ [An]¬ (J ∧ yn
′ = yn)

Fig. 3. Abstract machine M and its forward refinement MF , plus POs

Note that a refinement such as MF is not in itself a concrete machine, because
in B we never actually write the concrete machine N which simulates the given
abstract machine M . Instead MF is what Abrial [1–ch. 11] calls the differential
which can be combined syntactically with M to yield N . Given that the invariant
of M is I and that of MF is J then the invariant of the implied concrete machine
N is ∃ a . I ∧ J . We say that the concrete machine N is deducible from our
refinement MF .

5.2 Backward Refinement

Fig. 4 shows the same abstract machine M again but this time with its supposed
backward refinement MB . Again the necessary proof obligations, as derived in
[16], which must be discharged to establish the correctness of this backward
refinement, are also shown5. Those marked ∗ have to be proved in respect of
each operation of M , as indexed by n. As with the forward refinement MF , the
backward refinement MB is only a differential, but the actual concrete machine
N it represents is deducible from it.

5.3 A General Refinement Relation for B Abstract Machines

We know from [22, 21] that forward and backward refinement jointly provide a
complete refinement theory for ADTs, in the sense that a “concrete” ADT C
simulates an “abstract” ADT A if and only if there exists an intermediate ADT
B such that B backward-refines A and is itself forward-refined by C . We can
therefore define a general refinement relation between abstract machines M

5 In fact, the proof obligation Bwd.init1 appearing here in Fig. 4 was mistakenly
omitted in [16].

56 S. Dunne and S. Conroy

and N such that M N if and only if M is backward-refined by some backward
refinement MB , which is in turn forward-refined by some forward refinement MF
from which N is deducible. This is exactly the sense in which He et al [21, 22]
show their two proof methods are jointly complete with respect to one ADT
arbitrarily simulating another. Thus captures precisely our intuitive notion of
one abstract machine simulating another, which is that the result of executing
any finite sequence of operations on the simulating machine is compatible with
what might have happened had that same sequence of operations been executed
on the simulated machine instead. This exemplifies the principle of substitutivity:
a user who is restricted to running finite sequences of operations on his machine
wouldn’t be able to detect if his machine has been substituted by another which
simulates it in this way. Forward and backward refinement are themselves two
special cases of this general refinement, in each of which one the two intermediate
refinements is a trivial identification.

MACHINE M REFINEMENT MB

VARIABLES a (Bwd)REFINES M

INVARIANT I VARIABLES c

INITIALISATION AI INVARIANT J

OPERATIONS INITIALISATION CI

yn ←− opn(xn) =̂ An OPERATIONS

END yn ←− opn(xn) =̂ Cn

END

(Bwd.init1) ∀ c . [CI] (∃ a . I ∧ J)

(Bwd.init2) ∀ a, c . I ∧ J ⇒ ¬ (¬ (true [AI])[CI])

(Bwd.trm)∗ ∀ c . (∀ a . I ∧ J ⇒ trm(An)) ⇒ trm(Cn)

(Bwd.corr)∗ ∀ a, c, xn , yn , y ′
n . I ∧ J ∧ yn

′ = yn ⇒ ¬ (¬ ((I ∧ J)[An])[Cn
′])

Fig. 4. Abstract machine M and its backward refinement MB , plus POs

Of course, what a user might detect is dependent on just what he can observe.
In the most basic case, we might imagine our user is just a passive observer of
the sequences of events his abstract system engages in. In particular, he cannot
actively probe it at any stage to determine which events it might at that stage
notionally be willing to engage in. For such an observer an abstract system
which never engages in any event is an effective substitute for any other, since
our observer will thereby never observe it engaging in any event which would
lead him to conclude it isn’t that other system.

Process Refinement in B 57

6 Data Refinement as Process Refinement

In Section 4.1 we showed how any B abstract system can be interpreted as a CSP
process. The question therefore naturally arises: does a data refinement between
abstract systems correspond to any recognisable refinement between processes?
Also, can B’s forward and backward proof methods be augmented with further
proof obligations to provide finer distinctions between abstract systems which
mirror the finer distinctions which can be made between CSP processes by the
various process refinement relations described in Section 3. In the following sub-
sections we address these important questions.

6.1 Traces and Traces-Divergences Refinement

The following proposition establishes that the general B refinement relation be-
tween abstract machines we defined in Section 5.3 equates to traces-divergences
refinement between processes.

Proposition 1. Let PM and PN be the respective CSP process interpretations
of the B abstract systems M and N as defined in Section 4.1. Then

M N ⇔ PM TD PN

Proof: Since embodies arbitrary simulation, any sequence of operations ex-
ecutable on N must also be executable on M with similar results. Thus any
trace of PN is also a trace of PM . Moreover, any abortive behaviour exhib-
ited by N during the execution of such a sequence would have to be mir-
rored by similar abortive behaviour of M . Thus any divergence of PN is also a
divergence of PM . �

On Schneider’s Result for Non-blocking ADTs. Schneider [30] shows that
ADT refinement for “non-blocking” ADTs –that is, ADTs whose partial opera-
tions abort rather than block when invoked outside the domains of their charac-
terising operations– equates with traces-divergences refinement. Our Proposition
1 extends Schneider’s result to cover the wider category of ADTs represented
by B abstract systems, whose operations can accommodate coexisting blocking
guards and termination preconditions. It therefore renders Schneider’s restriction
to non-blocking ADTs unnecessary.

On Bolton and Davies’ Result for Blocking ADTs. An immediate corol-
lary of Proposition 1 is that for non-aborting abstract machines6 M and N ,
interpreted respectively as non-divergent CSP processes PM and PN , we have
that

M N ⇔ PM T PN

6 That is, ones whose initialisation and operations are always guaranteed to terminate.

58 S. Dunne and S. Conroy

This seems prima facie to contradict Bolton and Davies’ [5, 6] conclusion that
ADT refinement under the “blocking” (i.e. non-aborting) interpretation of ADTs
equates with singleton-failures rather than traces refinement. However, to model
their “blocking” interpretation of an ADT with partial operations Bolton and
Davies totalise such partial operations so that invoking a blocked operation leads
to an irretrievable “undefined” state which is incorporated in their formulation
of their forward and backward refinement proof obligations. Thus their refine-
ment proof obligations implicitly contain information about such blocked states
denied to an ordinary passive observer, who can never detect that an operation
is blocked because he is restricted to observing successful operation invocations.
Our refinement proof obligations in Figs 3 and 4, in contrast, encapsulate only
the observations of which such an observer is capable.

Traces Refinement. For processes that do exhibit divergence, pure traces (as
opposed to traces-divergences) refinement is not usually considered a useful rela-
tion between them. Nevertheless, we are still entitled to ask what notion of data
refinement between two B abstract systems M and N would equate to such pure
traces refinement between their corresponding CSP processes PM and PN . It is
in fact the weaker form of refinement between B abstract systems which would
ensue from discarding the proof obligations Fwd.trm and Bwd.trm in Figs 3 and
4. These particular obligations address the aborting behaviour of the abstract
and concrete operations of a refinement, and such behaviour corresponds to di-
vergence in the CSP process interpretations of the abstract systems concerned.

6.2 Completed-Traces and Singleton-Failures Refinement

In this subsection we confine our attention to non-aborting B abstract machines
and refinements. For such forward refinements the forward refinement termina-
tion proof obligation Fwd.trm in Fig. 3 is of course superfluous, and likewise the
backward refinement termination proof obligation Bwd.trm in Fig. 4 for such
backward refinements.

Proposition 2. If the forward and backward refinement POs in Figs 3 and 4 are
respectively augmented with the following pair of conditions, where quantifica-
tion over n signifies quantification over all the operations of abstract machine M ,

(Fwd.CT) ∀ a, c . I ∧ J ∧ (∀n, xn . ¬ fis(Cn)) ⇒ ∀n, xn . ¬ fis(An)

(Bwd.CT) ∀ c . (∀n, xn . ¬ fis(Cn)) ⇒ ∃ a . I ∧ J ∧ ∀n, xn . ¬ fis(An)

then the resulting strengthened refinement relation restricted to non-aborting B
abstract machines equates to completed-traces refinement.

Proof: The forward condition Fwd.CT guarantees that in any concrete state
where all the concrete operations are blocked, then in any valid abstract state
related to that concrete state by the abstraction relation J all the abstract oper-
ations will be blocked too. This is what we require to ensure that any completed
trace of a forward refinement of M is also a completed trace of M .

Process Refinement in B 59

Meanwhile the backward condition Bwd.CT guarantees that for any concrete
state where all the concrete operations are blocked, there exists at least one valid
abstract state related to that concrete state by the abstraction relation J where
all the abstract operations will be blocked. This is what we require to ensure
that any completed trace of a backward refinement of M is also a completed
trace of M . �

In the following proposition, as often in the succeeding ones, the conditions we
present are qualified by ∗. As in Figs 3 and 4, this signifies that the condition in
question must be proved “for each n”: that is, for each of the abstract machine’s
operations.

Proposition 3. If the forward and backward refinement POs in Figs 3 and 4
are respectively augmented with the following pair of conditions

(Fwd.SF)∗ ∀ a, c, xn . I ∧ J ∧ ¬ fis(Cn) ⇒ ¬ fis(An)

(Bwd.SF)∗ ∀ a, c, xn . ¬ fis(Cn) ⇒ ∃ a . I ∧ J ∧ ¬ fis(An)

then the resulting strengthened refinement relation restricted to non-aborting B
abstract machines equates to singleton-failures refinement.

Proof: The forward condition Fwd.SF guarantees that in any concrete state
where a concrete operation is blocked, then in any valid abstract state related to
that concrete state by the abstraction relation J the corresponding abstract op-
eration will be blocked too. This is what we require to ensure that any singleton
failure of a forward refinement of M is also a singleton failure of M .

On the other hand the backward condition Bwd.SF guarantees that for any
concrete state where a concrete operation is blocked, there exists at least one
valid abstract state related to that concrete state by the abstraction relation
J where the corresponding abstract operation will be blocked. This is what we
require to ensure that any singleton failure of a backward refinement of M is
also a singleton failure of M . �

6.3 Failures Refinement

The task of formulating an appropriate pair of rules with which to augment the
basic B forward and backward refinement rules to provide a refinement relation
equivalent to failures-divergences refinement of processes, is complicated by the
presence of operation outputs. This is because outputs are demonic in the sense
that the environment of the machine has no influence over the choice of output
value. Moreover, when an operation op outputs the value p it is engaging in the
event op.p while simultaneously refusing all similar events op.y where y is of
appropriate type and y �= p. We call such refusals output-simultaneous ones.

To help us in characterising such output-simultaneous refusals we first iden-
tify the following characteristic predicate of an operation with inputs and out-
puts. For an operation op defined by y ←− op(x) =̂ S then the predicate

60 S. Dunne and S. Conroy

¬ [S]y �= p characterises those before-states and input values x for which in-
voking op could result in output of the value p. We are now in a position to
formulate our main results.

Proposition 4. If the forward and backward refinement POs in Figs 3 and 4
are respectively augmented with the following pair of conditions

(Fwd.FD)∗ ∀ a, c, xn . I ∧ J ∧ ¬ fis(Cn) ⇒ ¬ fis(An)

(Bwd.FD) ∀ c . ∃ a . I ∧ J ∧ ∀n, xn , yn . fis(An) ⇒
fis(Cn) ∧ ∀ p . ¬ [Cn]yn �= p ⇒ ¬ [An]yn �= p

then the resulting strengthened refinement relation on abstract machines equates
to failures-divergences refinement.

Proof: The forward condition Fwd.FD guarantees that in any concrete state
where a concrete operation is blocked, then in any valid abstract state related to
that concrete state by the abstraction relation J the corresponding abstract op-
eration will be blocked too. Furthermore, the basic forward operation-correctness
condition Fwd.corr (see Fig. 3) ensures that in any concrete state where a con-
crete operation can execute to yield output y , then in any valid abstract state
related to that concrete state by the abstraction relation J the corresponding ab-
stract operation can execute to yield the same output, so all output-simultaneous
refusals of the refinement are matched by similar output-simultaneous refusals
of the abstract machine. Thus Fwd.FD is sufficient as it stands to ensure that
any failure of a forward refinement MF of M is also a failure of M .

In contrast we have to take output-simultaneous refusals explicitly into ac-
count when formulating Bwd.FD. In fact Bwd.FD guarantees that for every
concrete state there is at least one abstract state where each abstract oper-
ation with input is blocked unless the equivalent concrete operation and in-
put is unblocked and furthermore every output that may arise from executing
the concrete operation is also possible from executing the abstract operation.
This ensures that any failure of a backward refinement MF of M is also a
failure of M . �

6.4 Failuretraces-Divergences Refinement

The B proof obligations for failuretraces-divergences refinement are obtained
from those we saw in the last subsection for failures-divergences by a strength-
ening the latter’s backward-refinement proof obligation. This is done by simply
changing its existential quantification over the abstract state a into a universal
quantification. The result is embodied in our next and final proposition.

Proposition 5. If the forward and backward refinement POs in Figs 3 and 4
are respectively augmented with the following pair of conditions

(Fwd.FTD)∗ ∀ a, c, xn . I ∧ J ∧ ¬ fis(Cn) ⇒ ¬ fis(An)

Process Refinement in B 61

(Bwd.FTD)∗ ∀ a, c, xn , yn . I ∧ J ∧ ¬ fis(Cn) ⇒
¬ fis(An) ∧ ∀ p . ¬ [Cn]yn �= p ⇒ ¬ [An]yn �= p

then the resulting strengthened refinement relation on abstract machines equates
to failuretraces-divergences refinement.

Proof: The only difference between these conditions and the previous ones for
failures-divergences refinement is in the Bwd conditions. The ∃ a which occurred
in Bwd.FD has effectively been replaced by ∀ a here in Bwd.FTD. This en-
sures that at every stage, rather than merely at the end of the overall observa-
tion, every refusal of the concrete system will also be a refusal of the abstract
system. �

7 Conclusion

We have seen that by augmenting the basic forward and backward refinement
proof obligations of B with another suitable pair of conditions a variety of dif-
ferent process refinements can be achieved. What is interesting is that in most
cases it is the backward refinement conditions which determine the particular
variety of process refinement expressed by the the overall conditions. For exam-
ple the conditions Fwd.SF, Fwd.FD and Fwd.FTD are identical, but Bwd.SF,
Bwd.FD and Bwd.FTD are all distinct. The varieties of process refinement
we have explored for B are therefore much more critically dependent on the
precise backward refinement conditions deployed than they are on the forward
ones.

It is important to stress that the various extra pairs of proof obligations we
have presented in Section 6 to augment B’s basic refinement proof obligations
in order to mirror the various finer process refinement relations of Section 3,
are all presented in a first-order form. That is to say, none of them involve
quantification over arbitrary postconditions or preconditions. This means they
could easily be generated machanically by B’s support tools in a concrete form
which is amenable to fully mechanised or tool-supported interactive proof.

Acknowledgements

We are grateful for the comments of the three anonymous reviewers on the draft
version of this paper.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J.-R. Abrial. Extending B without changing it (for developing distributed systems).
In H. Habrias, editor, Proceedings of the First B Conference, pages 169–190. IRIN,
Nantes, 1996.

62 S. Dunne and S. Conroy

3. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert,
editor, B’98: Recent Advances in the Development and Use of the B Method; Pro-
ceedings of the 2nd International B Conference, number 1393 in Lecture Notes in
Computer Science, pages 83–128. Springer-Verlag, 1998.

4. R.J.R. Back and R. Kurki-Suonio. Decentralisation of process nets with centralised
control. In 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 131–142, 1983.

5. C. Bolton and J. Davies. A comparison of refinement orderings and their associated
simulation rules. In John Derrick, Eerke Boiten, Jim Woodcock, and Joakim von
Wright, editors, REFINE’ 02 Proceedings, Electronic Notes in Theoretical Com-
puter Science, 70. Elsevier, 2002. http://www.elsevier.nl/locate/entcs.

6. C. Bolton and J. Davies. Refinement in Object-Z and CSP. In M.Butler, K.Sere,
and L.Petre, editors, Integrated Formal Methods, IFM 2002 Proceedings, number
2335 in Lecture Notes in Computer Science, pages 225–244. Springer, 2002.

7. C. Bolton, J. Davies, and J.C.P. Woodcock. On the refinement and simulation
of data types and processes. In K. Araki, A. Galloway, and K. Tagushi, editors,
IFM’99, 1st International Conference on Integrated Formal Methods, pages 273–
292. Springer, 1999.

8. M. Butler. An approach to the design of distributed systems with B AMN. In
Jonathan P. Bowen, Michael Hinchey, and David Till, editors, ZUM ’97: The Z
Formal Specification Notation; 10th International Conference of Z Users, number
1212 in Lecture Notes in Computer Science, pages 223–241. Springer, 1997.

9. M. Butler. csp2B: a practial approach to combining CSP and B. In J.M. Wing,
J. Woodcock, and J. Davies, editors, FM’99 - Formal Methods, number 1708 in
Lecture Notes in Computer Science, pages 490–508. Springer-Verlag, 1999.

10. M. Butler and M. Waldén. Distributed system development in B. In H. Habrias,
editor, Proceedings of the First B Conference, pages 155–168. IRIN, Nantes, 1996.

11. J. Derrick and E. Boiten. Refinement in Z and Object-Z. Springer, 2001.
12. J. Derrick and E. Boiten. Unifying concurrent and relational refinement. In John

Derrick, Eerke Boiten, Jim Woodcock, and Joakim von Wright, editors, REFINE’
02 Proceedings, number 70 in Electronic Notes in Theoretical Computer Science.
Elsevier, 2002. http://www.elsevier.nl/locate/entcs.

13. J. Derrick and E. Boiten. Relational concurrent refinement. Formal Aspects of
Computing, 15:182–214, 2003.

14. J. Derrick and G. Smith. Structural refinement of systems specified in Object-Z
and CSP. Formal Aspects of Computing, 15:1–27, 2003.

15. S.E. Dunne. A theory of generalised substitutions. In D. Bert, J.P. Bowen, M.C.
Henson, and K. Robinson, editors, ZB2002: Formal Specification and Development
in Z and B, number 2272 in Lecture Notes in Computer Science, pages 270–290.
Springer, 2002.

16. S.E. Dunne. Introducing backward refinement into B. In Didier Bert, Jonathan P.
Bowen, Steve King, and Marina Walden, editors, ZB2003: Formal Specification
and Development in Z and B, number 2651 in Lecture Notes in Computer Science,
pages 178–196. Springer, 2003.

17. C. Fischer. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, University of Oldenburg, 2000.

18. He Jifeng. Process refinement. In Refinement Workshop, University of York, 1988.
19. He Jifeng. Process refinement. In J. McDermid, editor, The Theory and Practice

of Refinement. Butterworths, 1989.
20. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Process Refinement in B 63

21. He Jifeng and C.A.R. Hoare. Prespecification and data refinement. In Data Refine-
ment in a Categorical Setting, Technical Monograph PRG-90. Oxford University
Computing Laboratory, 1990.

22. He Jifeng, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In B. Robinet
and R.Wilhelm, editors, Proceedings ESOP’86, number 213 in Lecture Notes in
Computer Science, pages 187–196. Springer-Verlag, 1986.

23. M. B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9–18, 1988.

24. A.J.R.G. Milner. Foreword. In A.W. Roscoe, editor, A Classical Mind: essays in
honour of C.A.R. Hoare. Prentice-Hall, 1994.

25. C.C. Morgan. Of wp and CSP. In W.H.J. Feijen, A.J.M. van Gasteren, D. Gries,
and J. Misra, editors, Beauty is our business: a birthday salute to Edsger W. Di-
jkstra, pages 319–326. Springer, 1990.

26. I.C.C. Phillips. Refusals testing. Theoretical Computer Science, 50:241–284, 1987.
27. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
28. Y. Rouzaud. Interpreting the B-Method in the Refinement Calculus. In J.M.

Wing, J. Woodcock, and J. Davies, editors, FM’99 - Formal Methods, number
1708 in Lecture Notes in Computer Science, pages 411–430. Springer-Verlag, 1999.

29. S. Schneider. Concurrent and Real-time Systems: the CSP approach. Wiley, 1999.
30. S. Schneider. Non-blocking data refinement and traces-divergences semantics.

Technical report CS-04-09, Department of Computing. University of Surrey, 2004.
31. S. Schneider and H. Treharne. Communicating B machines. In Didier Bert,

Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, ZB2002: For-
mal Specification and Development in Z and B, number 2272 in Lecture Notes in
Computer Science, pages 416–435. Springer, 2002.

32. S. Schneider and H. Treharne. Verifying controlled components. In Eerke Boiten,
John Derrick, and Graeme Smith, editors, Integrated Formal Methods, IFM 2004
Proceedings, number 2999 in Lecture Notes in Computer Science, pages 87–107.
Springer, 2004.

33. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

34. G. Smith and J. Derrick. Specification, refinement and verification of concurrent
systems - an integration of Object-Z and CSP. Formal Methods in System Design,
18:249–284, 2001.

35. J.M. Spivey. The Z Notation: a Reference Manual (2nd edn). Prentice Hall, 1992.
36. H. Treharne and S. Schneider. How to drive a B machine. In Jonathan P. Bowen,

Steve Dunne, Andy Galloway, and Steve King, editors, ZB2000: Formal Specifi-
cation and Development in B and Z, number 1878 in Lecture Notes in Computer
Science, pages 188–208. Springer, 2000.

37. H. Treharne, S. Schneider, and M. Bramble. Composing specifications using com-
munication. In Didier Bert, Jonathan P. Bowen, Steve King, and Marina Walden,
editors, ZB2003: Formal Specification and Development in Z and B, number 2651
in Lecture Notes in Computer Science, pages 58–78. Springer-Verlag, 2003.

38. R.J. van Glabbeek. The linear time - branching time spectrum I: the semantics
of concrete sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra. Elsevier, 2001.

39. M. Waldén. Layering distributed algorithms within the B method. In D. Bert,
editor, B’98: Recent Advances in the Development and Use of the B Method; Pro-
ceedings of the 2nd International B Conference, number 1393 in Lecture Notes in
Computer Science, pages 243–260. Springer-Verlag, 1998.

64 S. Dunne and S. Conroy

40. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice
Hall, 1996.

41. J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurrent systems.
In Dines Bjørner, C. A. R. Hoare, and Hans Langmaack, editors, VDM ’90, VDM
and Z - Formal Methods in Software Development, Third International Symposium
of VDM Europe, number 428 in Lecture Notes in Computer Science, pages 340–351.
Springer, 1990.

CZT: A Framework for Z Tools

Petra Malik and Mark Utting

The University of Waikato, Hamilton, New Zealand
{petra, marku}@cs.waikato.ac.nz

Abstract. The Community Z Tools (CZT) project is an open-source
Java framework for building formal methods tools for Z and Z dialects.
It also includes a set of tools for parsing, typechecking, transforming and
printing standard Z specifications in LATEX, Unicode or XML formats.
This paper gives an overview of the CZT framework, including an intro-
duction to its visitor design pattern that makes it possible to write new
Z transformation tools in just a few lines of Java code. The paper also
discusses several problems and challenges that arose when attempting to
build tools based on the ISO Standard for Z.

1 Introduction

The Z specification language was adopted as an ISO standard in 2002 [1]. It
can be used to precisely specify the behaviour of systems, and analyse it via
proof, animation, test generation etc. However, one of the biggest barriers to the
widespread use of the Z standard is the issue of tool support.

There are several industry-quality Z tools available that offer parsing and
typechecking facilities (FuZZ1, ZTC2) and some that also offer proof facilities
(Z/EVES3, CadiZ4, ProofPower5). However, most of them do not support the
ISO Standard for Z (CadiZ is the only one that supports almost all of the ISO
Standard for Z). Furthermore, they use different versions of Z6 or require different
LATEX macros, and there is little integration between the tools.

Other Z tools have been constructed as academic experiments or student
projects, but these are typically not robust enough or complete enough for
widespread use. Many good ideas and tools that were developed to prototype
stage are no longer maintained or available now, because the project has finished
or people have moved on.

1 See http://spivey.oriel.ox.ac.uk/mike/fuzz.
2 See http://se.cs.depaul.edu/fm/ztc.html.
3 See http://www.ora.on.ca/z-eves.
4 See http://www-users.cs.york.ac.uk/~ian/cadiz.
5 See http://www.lemma-one.com/ProofPower/index.
6 A quote from the ProofPower web page illustrates the challenge: “The [ProofPower]

ASCII mark-up is similar in spirit to the e-mail mark-up of the ISO Standard, but not
in the details. There is no automatic way of transferring specifications between the
ProofPower dialect of Z and other Z support tools at the moment. Now the standard
has been finalised we hope that there will be more convergence.”

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 65–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

66 P. Malik and M. Utting

Fig. 1. Overview of the CZT architecture

The Community Z Tools (CZT) project was proposed by Andrew Martin in
20017, with the goal of providing an open Internet-based community project that
survives individuals, research projects, companies, etc. In 2003, the authors cre-
ated the CZT project on Sourceforge8, the world’s largest open-source software
development web-site.

Meanwhile Java core libraries for the ISO Standard for Z and some Z di-
alects have been designed and implemented. Alpha versions of several tools
(parsers, printers, typechecker and a variety of transformers to and from dif-
ferent Z markups and other languages) are now available. People from all over
the world have joined the project, and are either improving existing software or
building new tools on top.

Figure 1 gives an overview of the CZT software, and provides an idea how it
can be used. The XML Schema in the top left-hand corner of the diagram, which
is introduced in Sect. 2, defines an XML file format for Z specifications. It can be
used as an interchange format between different sessions and between external
Z tools. In addition, the XML Schema has been used to generate Java interfaces
and classes for annotated syntax trees (AST) for Z, as described in Sect. 3. These
classes provide a convenient, markup-independent way to access the syntactic
objects of a Z specification. Most of the tools provided either create, modify, or
traverse an AST. All the tools in Fig. 1 that take an AST as input use our CZT
visitor design pattern described in Sect. 4 to traverse the AST.

7 See http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT.
8 See http://czt.sourceforge.net.

CZT: A Framework for Z Tools 67

The CZT parser can transform Z specifications in various formats into an
AST representation. Once available as an AST, a wealth of options for further
processing are possible. Using the XML file format, it can be passed on to other
tools. Alternatively, the specification can be typechecked, animated, or trans-
lated into a variety of formats such as, for instance, B, HTML, JML, or another
markup language. Section 5 gives an overview of the CZT tools available.

In Sect. 6, the paper discusses some problems that arose while designing and
implementing CZT. Finally, Sect. 7 contains some concluding remarks.

2 ZML—XML Markup for Z

The heart of CZT is an XML Schema that describes the XML markup for Z
specifications (ZML). It is an interchange format that can be used to exchange
parsed and even typechecked specifications between sessions and tools. It was
first described in [2] and has been enhanced since then. To allow for evolution of
the ZML format, version numbers have been introduced. Each ZML specification
should specify which version of the ZML format it is using. The original proposal
has version number 1.0, which is also the default when no version number is given.
At the time of writing, the current version number is 1.3. A list of changes can
be found at the web-site http://czt.sourceforge.net/zml.

ZML was designed in a way to capture sufficient information to rebuild the
constructs from which it was originally parsed and, at the same time, to minimise
the number of cases a tool needs to deal with. This has been achieved by adding
a type hierarchy—parts of it are shown in Fig. 2—to reflect commonalities, and
by using common XML tags for similar constructs. Attributes are then used to
distinguish between the similar constructs.

NumStroke

InStroke

OutStroke

NextStroke

NegExpr

PowerExpr

ApplExpr

SchExpr2

ProdExpr

TupleExpr

ExistsExpr

ProjExpr

PipeExpr

ForallExpr

AxPara

QntPredPred2MemPredFactExprPred

FalsePred

TruePred

AndPred

IffPred

ImpliesPred

OrPred

ExistsPred

ForallPred

Expr

TermA Stroke

Pred

Expr1 Expr2 Expr2N NumExpr QntExpr

Term

FreePara

OptempPara

ConjPara

Para

RefExpr

Fig. 2. Part of the inheritance hierarchy

68 P. Malik and M. Utting

<AxPara Box="SchBox">
<SchText>

<ConstDecl>
<DeclName><Word>BirthdayBook</Word></DeclName>
<SchExpr>...</SchExpr>

</ConstDecl>
</SchText>

</AxPara>

Fig. 3. ZML snippet

A ZML snippet for the Z schema given by the following LATEX markup

\begin{schema}{BirthdayBook}...\end{schema}

can be seen in Fig. 3. As described in the ISO Standard for Z, a schema definition
is semantically equivalent to an axiomatic description associating the name of the
schema with the schema text. In ZML, the AxPara is used to represent axiomatic
descriptions, generic axiomatic descriptions, schema definitions, generic schema
definitions, horizontal definitions, generic horizontal definitions, and generic op-
erator definitions. The attribute Box distinguishes between the different types of
paragraphs and ensures that the original construct can be restored. SchBox is
short for schema box and indicates that we are dealing with a schema definition.

The XML Schema definition for AxPara is given in Fig. 4. The AxPara element
defines the XML tag AxPara. The attribute substitutionGroup is used to define
the inheritance hierarchy (see Fig. 2). AxPara is in the substitution group of
Para, that is, it is a special paragraph. The complex type AxPara is used to
define the children and attributes of the element AxPara. The AxPara element
contains, in addition to the elements defined in Para, a possibly empty list of
generic parameters (DeclName) followed by a schema text (SchText).

3 AST—Annotated Syntax Tree

The annotated syntax tree (AST) provides a tree view of a parsed Z specifi-
cation using Java interfaces and classes. This allows easy access to syntactical
objects like, for instance, paragraphs, predicates, and expressions, from within
Java programs. Currently, CZT contains AST interfaces and classes for Z [1],
Object Z [3], and TCOZ [4]. Support for other extensions is conceivable.

The AST interfaces reflect the XML markup defined in ZML very closely. In
fact, the AST interfaces and classes were automatically generated from the XML
Schema describing ZML using our code generator GnAST (GeNerator for AST).
For each element defined in the XML Schema, a corresponding interface and
implementing class is generated. A user of the AST should always use references
to the interfaces instead of references to concrete classes. This protects the user
from changes to the underlying implementation and allows the use of different
implementations of the AST interfaces.

CZT: A Framework for Z Tools 69

<xs:element name="AxPara" type="Z:AxPara" substitutionGroup="Z:Para">
<xs:annotation>

<xs:documentation>
A (generic) axiomatic paragraph, (generic) schema definition,
or (generic) horizontal definition.

</xs:documentation>
</xs:annotation>

</xs:element>

<xs:complexType name="AxPara">
<xs:complexContent>

<xs:extension base="Z:Para">
<xs:sequence>

<xs:element ref="Z:DeclName"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="Z:SchText"/>
</xs:sequence>
<xs:attribute name="Box" type="Z:Box"

use="optional" default="AxBox"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Fig. 4. XML Schema definition for AxPara

The abstract factory pattern [5] is used to provide a way to create AST ob-
jects without any knowledge of their concrete classes. For example, a Z tool that
creates a new AxPara object should never call the constructor of an AxPara im-
plementation, instead it should use factory.createAxPara(), where factory
is an interface that has methods for creating each kind of AST node. Different
implementations of this interface can then be used to create instances of different
concrete AST classes. By passing the tool an alternative factory object, one can
control which implementations of the AST interfaces it will create. The CZT
software provides a standard factory that creates instances of the implementa-
tion classes supplied within CZT. A user is free to use their own classes that
implement the AST interfaces by providing an alternative factory.

The inheritance hierarchy of AST interfaces and classes—parts of it are shown
in Fig. 2—is the same as the element inheritance hierarchy defined in the XML
Schema. The leaves of this tree represent concrete classes, which can be instan-
tiated via the factory mentioned above, while the inner nodes represent abstract
classes, which cannot be directly instantiated.

For each child and attribute defined for a ZML element, the corresponding
Java interface provides getter and setter methods. For example, the Java inter-
face AxPara given in Fig. 5 is automatically generated from the AxPara element
definition given in Fig. 4, which is taken from the XML Schema that describes
ZML. The AxPara element is defined to extend Para and to contain, in addi-
tion to the elements defined in Para, a possibly empty list of declaring names
(DeclName) followed by a schema text (SchText). There is also an attribute
called Box.

Accordingly, the AxPara interface extends Para and contains, in addition
to the methods defined in the interface Para, the following getter methods:
getDeclName returning a list, getSchText returning a schema text (SchText),

70 P. Malik and M. Utting

/**
* A (generic) axiomatic paragraph, (generic) schema definition,
* or (generic) horizontal definition.
*
* @author GnAST code generator
*/

public interface AxPara extends Para
{

/** Returns a list of declaring names (formal parameters). */
ListTerm getDeclName();

/** Returns the schema text. */
SchText getSchText();

/** Sets the schema text. */
void setSchText(SchText schText);

/** Returns the Box attribute. */
Box getBox();

/** Sets the Box attribute. */
void setBox(Box box);

}

Fig. 5. AST interface for AxPara

and getBox returning a Box, which is an enumeration used to indicate whether
this was parsed from a schema text, axiomatic definition, or horizontal definition.
In addition to getter methods, setter methods are provided. Note that there is no
setter method for DeclName since the getter returns a list, and the List interface
can be used to add and remove elements.

The getter and setter methods defined by the AST interfaces provide a conve-
nient way to access and manipulate individual AST objects. However, it is often
necessary to manipulate a whole AST in a certain way. The following section
shows how complete trees can be handled with just a few lines of code.

4 The CZT Visitor Design Pattern

The visitor design pattern [5] provides a way to separate the structure of a set
of objects from the operations performed on these objects. This allows a new
operation to be defined without modifying the AST classes. To define a new
operation, all you need to do is to implement a new visitor class. An example of
a visitor class is given in Fig. 6. It traverses an AST and prints the word-parts
of all declaring names (DeclName).

A variety of variants [6] of the visitor design pattern have been proposed, all
having different advantages and disadvantages. The visitor design described in
this section is the result of a lot of experimentation and redesign. We discussed
many variants and implemented three or four different designs before we found
a design that met all our requirements.

The standard visitor pattern described in [5] is based on a double dispatch
mechanism. The set of objects on which new operations are to be defined must

CZT: A Framework for Z Tools 71

import net.sourceforge.czt.base.ast.Term;
import net.sourceforge.czt.base.visitor.TermVisitor;
import net.sourceforge.czt.base.visitor.VisitorUtils;
import net.sourceforge.czt.z.ast.DeclName;
import net.sourceforge.czt.z.visitor.DeclNameVisitor;

public class DeclNamePrintVisitor
implements TermVisitor, DeclNameVisitor

{
public Object visitTerm(Term term)
{

VisitorUtils.visitTerm(this, term);
return null;

}

public Object visitDeclName(DeclName declName)
{

System.out.println(declName.getWord());
return null;

}
}

Fig. 6. A simple visitor

support this pattern by providing an accept(Visitor v) method. The Visitor
is an interface that defines visit methods for each class of object that is to be
visited (like visitDeclName in Fig. 6). The accept method of an object calls
back the correct visit method for its class. This allows different implementa-
tions of the Visitor interface to perform different operations on the objects.

The disadvantage of this approach is that it is difficult to add new AST
classes, because each new AST class implies that a new method needs to be added
to the Visitor interface, which in turn requires modifications to all its existing
implementations. Within CZT, we want to support extensions like Object Z,
TCOZ, etc, and therefore need to be able to easily extend the AST classes.
Another disadvantage is that each visitor class needs to implement a fixed set of
methods, one for each AST class—and there are a large number of AST classes
defined in CZT. While it is possible to provide default Visitor implementations,
then use inheritance to override just the desired methods, the lack of multiple
inheritance in Java often makes this a clumsy or undesirable solution.

The CZT visitor incorporates the advantages of the acyclic visitor [7] pattern
and the default visitor [8] pattern, as well as some new twists. The acyclic visi-
tor pattern allows new AST classes to be added without changing the existing
visitor classes. This is done by defining a visitor interface for each object and
using a dynamic cast in the AST accept methods. The default visitor pattern
adds another level of inheritance to the visitor pattern, making it possible to
implement default behaviour by taking advantage of the AST inheritance re-
lationships. That is, the visitor classes of the default visitor pattern define a
visitAAA method for each abstract AST class AAA, in addition to the usual
visitCCC methods for each concrete AST class CCC . Visitors can then define
default behaviour within these extra (abstract) visit methods. If not overrid-
den, a concrete visitCCC method typically just calls the visitAAA method
which corresponds to its closest superclass.

72 P. Malik and M. Utting

public interface AxParaVisitor extends Visitor
{
/** Visits an AxPara. */
Object visitAxPara(AxPara axPara);

}

Fig. 7. The AxParaVisitor interface

public class AxParaImpl extends ParaImpl implements AxPara
{

...

/** Accepts a visitor. */
public Object accept(Visitor visitor)
{

if (visitor instanceof AxParaVisitor) {
AxParaVisitor axParaVisitor = (AxParaVisitor) visitor;
return axParaVisitor.visitAxPara(this);

}
return super.accept(v);

}
...

}

Fig. 8. The accept method of AxPara

Now we describe the CZT visitor pattern. In CZT, a visitor interface is defined
for every AST class, including abstract superclasses. As an example, the visitor
interface for AxPara is given in Fig. 7. If a visitor implements this interface, then
any AxPara AST nodes that it visits will call the visitor’s visitAxPara method.
However, if the visitor does not implement the AxParaVisitor interface, then
the AxPara AST nodes will search up though their superclasses and call the
first visitAAA method that the visitor implements (for example, visitPara
or visitTermA or visitTerm). Figure 8 illustrates how the accept method for
AxPara implements this semantics. With this approach, the AST classes them-
selves take care of calling the closest (with respect to the inheritance hierarchy)
visit method implemented by the visitor.

public interface Term
{

/** Accepts a visitor. */
Object accept(Visitor visitor);

/** Returns an array of all the children of this term. */
Object[] getChildren();

/** Creates a new object of the implementing class
* with the objects in args as its children. */
Term create(Object[] args);

}

Fig. 9. The Term interface

CZT: A Framework for Z Tools 73

import net.sourceforge.czt.base.ast.Term;
import net.sourceforge.czt.base.visitor.TermVisitor;
import net.sourceforge.czt.z.ast.DeclName;
import net.sourceforge.czt.z.util.Factory;
import net.sourceforge.czt.z.visitor.DeclNameVisitor;

/** A visitor that copies a given AST (except for annotations)
* into one where all strokes are removed from each DeclName.
*/

public class StrokeKiller
implements TermVisitor, DeclNameVisitor

{
private Factory factory_ = new Factory();

public StrokeKiller()
{
}

public StrokeKiller(Factory factory)
{

factory_ = factory;
}

public Object visitTerm(Term term)
{

Object[] args = term.getChildren();
for (int i = 0; i < args.length; i++) {

if (args[i] instanceof Term) {
args[i] = ((Term) args[i]).accept(this);

}
}
return term.create(args);

}

public Object visitDeclName(DeclName declName)
{

return factory_.createDeclName(declName.getWord(), null);
}

}

Fig. 10. Another simple visitor

The Term interface given in Fig. 9 is the base of all AST objects and must
therefore be implemented by every AST class. The two additional methods de-
fined in the Term interface provide a convenient way to handle AST classes
generically within visitors. The getChildren method provides a generic alter-
native to the getter methods by returning all children of a term as an array.
This allows us to write a single visitTerm method that recurses through the
entire AST tree (see visitTerm in Fig. 10). This default visitTerm method is
so common that it is supplied in the VisitorUtils library class, which has been
used to implement the visitTerm method in Fig. 6.

Similarly, the create method is a convenient way for default visit meth-
ods to change the contents of a tree node, while retaining its original type. The
create method is similar to a clone, but allows new children to be provided.
These children are typically returned by the visit calls to the original children.

74 P. Malik and M. Utting

Figure 10 shows a visitor that copies an AST into one where all decorations, i.e.
strokes, are removed from DeclName elements.9

The visitor needs to traverse the tree to find all DeclName objects. This
traversal is handled in the visitTerm method, which is called for all AST classes
except DeclName. It makes sure that all children are visited. Furthermore, the
results of visiting the children are used to create a new object of the same
type containing the new children. When a DeclName accepts this visitor, the
visitDeclName method is called. In this case, a new DeclName is created with
the same name as the one that is visited, but no decorations are added.

This visitor demonstrates the use of the getChildren and create methods,
as well as the use of a factory to create new DeclName objects. Note that this
visitor has no reference to concrete implementations of the AST interfaces; only
references to AST interfaces are used. The visitor uses the standard factory
provided within CZT if no factory is given. It can also be configured to use
alternative factory implementations.

Visitors are extensively used throughout CZT. Virtually all of the tools that
access or manipulate an AST, like the typechecker, printers, etc., are visitors or
use visitors to achieve their functionality. The advantage of the CZT visitors is
that the amount of code that needs to be written is directly proportional to the
AST nodes that need to be transformed or accessed—recursion through all the
other AST nodes is done by the default visitTerm method. This makes it easy
to write visitors that transform Z in some new way. It is simple to combine such
a visitor with the existing Z parsers and printers in CZT, to quickly obtain a
new Z tool.

5 CZT Tools

The CZT software also includes a set of tools as shown on the diagram in Fig. 1.
At the time of writing, the scanners, parsers, printers and typechecker are quite
robust and well-tested.10

Figure 11 gives an overview of the different parser components. The com-
ponents responsible for parsing specifications in Unicode are given on the right
side. As described in the ISO Standard for Z and in [9], scanning and parsing
is performed in several steps. The first step is the scanning phase carried out
by the Unicode Scanner. In fact, the scanner itself consists of several compo-
nents: the Context-Free Scanner, the Keyword Scanner, the Smart Scanner,
and the Operator Scanner.

The Context-Free Scanner is an implementation of the context-free lexis
described in the ISO Standard for Z [1–§7.2]. JFlex11, a Java scanner generator,

9 Note that annotations are not copied. If we wanted to retain annotations as well, the
TermAVisitor interface could be implemented in a way that also copies annotations.

10 The typechecker is the newest addition and has checked only about 2000 lines of Z
so far.

11 See http://www.jflex.de.

CZT: A Framework for Z Tools 75

to
LATEX

Unicode

CZT
Reader

Unicode
Scanner

CZT
Parser

Unicode Parser

LATEX Parser

LATEX Converter

Fig. 11. The parser architecture

is used to generate this class. The context-free lexis is followed by the context-
sensitive lexis implemented by the Keyword and Operator Scanner. The Smart
Scanner resolves one of the context-sensitive ambiguities in the Z grammar
that is discussed in the ISO Standard for Z [1–§8.4, Note 4]. For example, in
{x , y , z ...}, if the x , y , z is followed by ‘:’, then it is part of a declaration (a set
comprehension) and declares new names. Otherwise it is a set extension, and
x , y , z must already have been declared somewhere else. The Smart Scanner
performs lookahead to resolve this ambiguity.

The scanning phase is followed by the parsing phase. The CZT Parser is
a look-ahead LR parser (LALR parser) generated by the Cup12 Java parser
generator. See Sect. 6 for a description of some problems that we encountered
while writing this parser.

In order to parse a specification in LATEX markup, it is first converted into
Unicode using the LATEX markup to Unicode Converter shown on the left side,
and subsequently parsed by the Unicode Parser described above. One require-
ment on the parser is that it retains the original line and column positions from
the file that is parsed. This location information is added to the AST nodes as
LocAnn annotations, so that tools can later provide error messages that contain
accurate location information pointing to the original specification document. It
is difficult to preserve this location information when a specification in LATEX
markup is converted into Unicode before it is parsed since we want to preserve
the location within the LATEX document, not within the temporary Unicode
document.

Our solution to this problem is to design the LATEX markup to Unicode
converter so that it returns a token stream (with line and column number in-
formation) rather than just a sequence of Unicode characters. Then a special
reader, called CZT Reader, accepts these tokens and passes the Unicode charac-
ters into the Unicode Parser. In addition to the usual methods provided by the
Java class Reader, the CZT Reader class provides special methods to access line
and column number information. Those methods are then used by the Unicode

12 See http://www.cs.princeton.edu/~appel/modern/java/CUP.

76 P. Malik and M. Utting

Scanner to obtain location information for the tokens. This is an elegant way of
retaining the original LATEX line and column positions, even though the LATEX
input briefly becomes Unicode as described in the ISO Standard for Z. This solu-
tion is far simpler than writing a completely separate set of scanners specifically
for LATEX input.

In addition to a parser for Z, an Object Z parser is provided, and a TCOZ
parser is under development. The Object Z parser and scanner extend the Z
parser and scanner by some more tokens and grammar rules. Unfortunately, it is
quite difficult to reuse code from an automatically generated scanner or parser,
and Cup does not provide means to do so. To avoid duplicated code, XML
templates are used that contain the different parser and scanner variants. From
this, the different input files for JFlex and Cup are generated. This maximises
the commonality between the parsers and minimises versioning and maintenance
problems.

A parsed Z specification can be typechecked using the CZT Typechecker. The
type inference rules are defined in the ISO Standard for Z [1–§13] and explained
in [10]. The CZT Typechecker is implemented as an AST visitor. It visits every
term in the tree to determine its type (if any) and detects typing errors. If there
are no typing errors in an expression, a TypeAnn annotation is added to the
term, recording the expression’s type. If there are type errors, a TypeErrorAnn
annotation is added to the term. Each TypeErrorAnn records the position of the
typing error in the original specification document using LocAnn annotations,
and contains an error message describing the problem.

The typechecker also maintains a list of references to all TypeErrorAnn in-
stances for easy printing of error messages. As defined in the ISO Standard for
Z [1–§10.2], the typechecker also adds an annotation containing the signature
of a paragraph (the empty signature for paragraphs that contain no global dec-
larations), as well as a SectTypeEnvAnn annotation, which records the global
declarations and their types visible in this section (including declarations for
parent sections).

The Unfolder tool (which unfolds schema calculus operators and some other
Z constructs) and the Transformer tool (which transforms ASTs by applying
user-defined rewrite rules) are still under development. The zml2html, z2jml
and ZLive animator tools are preliminary prototypes only. The z2b tool han-
dles the Birthday Book example [11], but does not yet translate all Z con-
structs. The aim behind developing this Z-to-B translator is to give Z users
access to the excellent refinement tools available in the B world (such as the
B-Toolkit13, Atelier-B14 and the forthcoming Rodin tools15) and also to the
BZ-TT automatic test generation tools [12] for B, which are being released com-
mercially.16

13 See http://www.b-core.com.
14 See http://www.atelierb.societe.com/index_uk.html.
15 See http://rodin-b-sharp.sourceforge.net.
16 See http://www.leirios.com.

CZT: A Framework for Z Tools 77

6 Challenges and Problems

This section describes some of the difficulties that we have encountered in trying
to build a ‘strongly conforming’ Z tool as defined in the ISO Standard for Z [1–
§5.2.5] (one that accepts all correct Z specifications, and rejects all incorrect
specifications). We describe the solutions that we have adopted, and make some
suggestions for how the ISO Standard for Z could be changed in the future to
avoid some of the difficulties.

6.1 Grammar Complexities

The grammar in the ISO Standard for Z is intentionally ambiguous, and needs
significant modification before it can be used as the basis for a parser. For ex-
ample, there is ambiguity between schemas as expressions (sets of bindings)
and predicates [1–§8.4]. Fortunately, Ian Toyn showed us some elegant strategies
for obtaining an LALR(1) grammar17 by merging expressions and predicates,
thus parsing a larger set of inputs than desired. We use Java runtime typing
(instanceof) to ‘fix up’ the types of the AST after parsing. That is, inputs that
are definitely predicates are parsed into Pred objects, inputs that are definitely
expressions are parsed into Expr objects, and ambiguous inputs, which could be
interpreted as either expressions or predicates, are also initially parsed as Expr
objects, because expressions are a subset of predicates in the ISO Standard for Z.
If one of these ambiguous Expr objects is later placed into the AST in a context
which requires it to be a predicate, it is then converted into a Pred object by
wrapping it in an ExprPred object.18 Conversely, if we have an AST context that
requires an expression, but we find that the parsed subexpression is actually an
instance of Pred, we throw an exception to report a syntax error.

6.2 Multiple Passes

The Z standard allows Z sections, operator definitions and LATEX markup defini-
tions to appear in almost any order. For example, operators can be used before
they are defined. This means that, in general, it is necessary to make several
passes over the input. In this subsection, we describe what passes are necessary
and which ones we have currently implemented.

Firstly, the Z standard states that a Z specification is comprised of a sequence
of Z sections, but suggests that tools should not require sections to appear in
order. That is, tools should allow a section to appear prior to one of its parent
sections. The Z standard does not define any relationship between files and
section or specifications. In CZT, we allow a specification to be split over several
files, and allow each file to contain one or more sections. The parent dependencies

17 The 1 means one token of lookahead. But note that this is after the smart scanner
has done unbounded lookahead to resolve the syntactic ambiguities described in
[1–§8.3, Note 4].

18 The CZT AST hierarchy currently separates expressions and predicates, as shown
in Fig. 2, for clarity of programming and to obtain stronger typechecking in Java.

78 P. Malik and M. Utting

between sections means that it may be necessary to reorder sections within a
file, as well as handle dependencies between files. The Z standard does not allow
circular dependencies between sections. The CZT tools do not allow circular
dependencies between files either.

Secondly, the scope of an operator template includes the whole section in
which it appears. That is, a user defined operator can be used before its def-
inition, making it impossible to parse a specification without reordering the
paragraphs so that operator definitions are parsed before all other paragraphs.
Thirdly, the same scope problem arises with LATEX markup directives; a user
defined LATEX command might be used before its rendering information is given
via a markup directive.

Thus in the general case, it seems necessary to make five character-level passes
over the input file of a LATEX Z specification (while retaining the line and column
positions of the original source file!):

1. to reorder the sections into parent-before-child order,
2. to collect the LATEX markup directives within each section,
3. to convert the LATEX input into Unicode characters,
4. to parse the operator template definitions,
5. to parse the Unicode and build the AST.

To simplify this, the CZT tools currently assume that sections are already in the
correct order within each file and that LATEX markup directives and operator
templates appear before they are used. This is the case in most specifications.
It even seems desirable for human readability that operators are defined before
they are used. These restrictions mean that pass 1 is unnecessary and allows the
CZT tools to perform all the remaining passes within a single pipeline, which is
simple and efficient. However, we intend to provide alternative modes and tools
that will perform the reordering and additional passes when the user desires.

6.3 Operator Templates

Z provides a way to define new operators using so called operator templates. For
example, the operator template

generic 30 leftassoc (a b)

defines a ternary operator with name “ a b ”, with precedence 30, and
associativity left. The ISO Standard for Z [1–§8.3] allows the same word to appear
in several different operator templates, but with quite complex restrictions on
which kinds of reuse are ‘acceptable’. For instance, the operator template

generic 30 leftassoc (a c)

reuses the word “a” acceptably, but

generic 40 leftassoc (a c)

CZT: A Framework for Z Tools 79

would be in conflict because both templates use the word “a” and have different
precedence.

Each operator template also defines an association between operator words
and so-called operator tokens [1–§7.4.4]. The context-sensitive lexis makes sure
that operator names are lexed as the corresponding operator tokens. This implies
that the association between word and token must be a function.

Thus, a Z tool needs to check for each Z section that its templates

– that share the same word have the same precedence,
– that share the same precedence have the same associativity, and
– that share the same word associate it with the same operator token.

When a section inherits multiple parent sections, the tool must detect any
inconsistencies between the parents. Although these rules are complex, they seem
necessary to prevent users defining ambiguous sets of operators. The CZT parser
maintains the following data structures for each Z section to check these rules:19

[OpName,OpWord ,OpToken,OpTemplate]
Assoc ::= leftAssoc | rightAssoc

OpTable
operators : OpName �→ OpTemplate
operatorWords : OpWord �→ OpToken
operatorPrecedence : OpWord �→ N

associativity : N �→ Assoc

The ISO Standard for Z does not answer some questions about user-defined
operator precedences. For example, it does not specify what range of precedence
numbers is allowed, which presumably means that any non-negative integer is
allowed. This means that all ‘strongly conforming’ Z tools must accept an op-
erator template definition whose precedence numeral is one million digits long.
This seems unnecessarily complex. To improve interoperability between Z tools,
and to make it easier to build strongly conforming tools, we recommend that
future versions of the ISO Standard for Z specify a fixed range of operator prece-
dences, such as 0 . . 1000 (the CZT tools currently allow any integer in the range
0 . . 231 − 1).

Allowing user-defined operators with thousands of precedence levels makes
parsing more difficult, as noted in the ISO Standard for Z. A fixed LL(k) or
LALR(k) grammar is not sufficient, instead we parse all user-defined operators at
the same precedence level, then add a post-processing phase that rotates adjacent
levels of the AST to respect the user-defined precedences. The transformation

19 This little Z specification has been checked with the CZT parser and typechecker.
Our first try gave a syntax error on the ‘leftassoc’ word because it is a reserved
word in standard Z! After we renamed it to ‘leftAssoc’ (similarly for ‘rightAssoc’),
it parsed and typechecked correctly.

80 P. Malik and M. Utting

rules for this post-processing are described in the ISO Standard for Z [1–§8.3,
Note 3]. For example:

(e1 infix1 e2) infix2 e3 =⇒ e1 infix1 (e2 infix2 e3)

It was not initially clear to us whether these rules apply only to binary infix
operators (like “ + ”), or to all infix operators (for example, a user could
define the ternary operator “ ♣ ♠ ”). It turns out that the latter is the
case. Similarly, the prefix and postfix operators mentioned in these rules may
be operators with more than one argument, like the postfix relational image
operator “ (| |)”.

Overall, operator templates are one of the most complex aspects of the ISO
Standard for Z (they account for over 50% of the Z grammar!), but give Z users
enormous flexibility in defining new mathematical notation.

6.4 Newlines and White Space

There are some unclear issues related to which Unicode characters should be
used for line breaks, paragraph breaks etc. These have been addressed in a
“Draft Technical Corrigendum 1” [13] to the ISO Standard for Z. This says
that the NLCHAR mentioned throughout the ISO Standard for Z is in fact the
Unicode character U+2028 (Line Separator). However, in practice, Unicode files
are likely to continue using the platform-specific line terminator characters (LF
for Linux, CRLF for Windows etc.) and the algorithm for translating these into Z
characters is left somewhat vague, stating only that it should follow the Unicode
standard.20 In CZT, we currently treat all line termination sequences (LF, CR,
CRLF) as equivalent to the Unicode Line Separator (U+2028) which is NLCHAR
in the ISO Standard for Z.

Even after one has decided which Unicode characters correspond to newlines,
the handling of newlines is very complex. It is described in the ISO Standard for
Z [1–§7.5] where newline categories for tokens are defined. The newline category
of a newline depends on the newline categories of the closest tokens. However,
it also depends on the context where it appears. Quoting from the ISO Stan-
dard for Z: “All newlines are soft outside of a DeclPart or a Predicate ”. But
newlines are supposed to be handled in the scanning phase where nothing is
known about grammatical objects like DeclPart or Predicate. Furthermore, it
is not clear to us what “outside” actually means. Is a newline after the formal
parameters of a schema definition (which is just before the DeclPart) outside
the DeclPart or not? According to the newline categories rule, a newline be-
tween formal parameters and declaration would be hard and therefore result in a
parse error. Since it makes sense to allow newlines at this position, we conclude
that it is outside the DeclPart and therefore soft. To handle this case, we had
to modify the grammar of the parser to allow newlines there.

20 See http://www.unicode.org/reports/tr13/tr13-9.html for an overview of the
issue.

CZT: A Framework for Z Tools 81

The handling of white space is very complex and fragile, particularly when
translating to and from LATEX markup. White space is meaningful in Unicode
(“x’” is different from “x ’”—and see [1–§8.4, Example 1] for a lovely exam-
ple!), but not in the LATEX markup, where explicit spacing commands must be
used instead. The LATEX input “f a” meant to be an application of function f
to a is interpreted as the single word “fa”, which usually results in interesting
type errors. It must be written as “f~a” or using any other spacing command.
A more tricky example is the following: the LATEX inputs “[a_1, b_1]” and
“[a_1 , b_1]” are both wrong. They result in parse errors since “a_1,” is
treated as one word (note the comma at the end). The reason for this is that the
corresponding Unicode representation of “a_1” ends with a “word glue” char-
acter that glues the following comma on the word. It must therefore be written
as “[a_1~, b_1]”. To ease the problem, the CZT parser makes use of the nice
idea from FuZZ to print a warning whenever it finds a suspicious word like, for
instance, one that contains spaces or newlines in its LATEX markup.

6.5 Retaining LATEX Markup Directives

LATEX markup directives contain rendering information and specify the con-
version of user defined LATEX commands to the corresponding sequences of Z
characters [1–§A.2.3]. A typical directive is, for example,

%%Zchar \Delta U+0394

stating that the LATEX command “\Delta” is rendered as the Unicode charac-
ter with code point U+0394. When converting LATEX markup to Unicode, this
information is used but not retained in the resulting Unicode markup. This is
problematic since the scope of a markup directive is the section in which it ap-
pears and any sections of which it is an ancestor. This implies that the parents
of a section written in LATEX markup should also be given in LATEX markup.

ZML is intended to retain as much of the layout of the original specification
as possible. If a specification is given in LATEX markup, we want to retain the
LATEX markup directives in ZML. This also makes it possible for a LATEX Z
section to have a ZML section as a parent. So we extended ZML by a new kind
of paragraph, LatexMarkupPara, which contains LATEX markup directives. These
paragraphs are added directly to the AST by the LATEX to Unicode converter
(the parser does not see them, since they do not appear in the Unicode markup).

6.6 Unicode to LATEX Conversion

The translation from Unicode to LATEX markup turned out to be more difficult
than we expected. The ISO Standard for Z describes scanning and parsing of Z
specifications on the basis of Unicode markup. In Annex A, LATEX and e-mail
markup are introduced and its conversion to Unicode is described. However, no
algorithm for the translation of Unicode to LATEX or e-mail markup is given.

Initially we thought that a simple character or token translater would be
sufficient for translating specifications in Unicode into LATEX markup. However,

82 P. Malik and M. Utting

the task turned out to be quite difficult and a kind of parser is required to do this
task. The reason for this is that the Unicode character ‘|’ (U+007C), must be
translated into different LATEX tokens depending on the context where it appears.
In top-level paragraphs like axiomatic definitions and vertical schema definitions
it must be translated into “\where” see [1–§A.2.7], but within predicates and
expressions (including horizontal schema definitions) it is left as the character
‘|’. In future versions of the ISO Standard for Z, it might be nice to use separate
Unicode characters to represent these rather different separators. For example,
‘|-’ (U+251C Box Drawings Light Vertical and Right) would look nicer as the
separator within top-level paragraphs than ‘|’.

CZT provides a LATEX printer for parsed specifications. Thus, in order to
convert Unicode to LATEX markup, a specification must be parsed before it can
be printed as LATEX markup. This means that only syntactically correct specifi-
cations can be converted. CZT also provides a token converter from Unicode to
LATEX markup that does not require parsing, but is affected by the ‘|’ problem
described above. The current workaround is to translate the Unicode charac-
ter ‘|’ (U+007C) to “\where” when ‘|’ is on a line on its own, otherwise it is
translated to ‘|’. Thus, the converter works only for specifications that obey this
formatting rule.

6.7 Summary

Overall, we conclude that, partly for historical reasons, Z is a very complex
language to scan and parse. It took us about 1 person-year to implement the
scanners and parsers (Tim Miller developed most of the current Z and Object-Z
parsers), with many iterations of finding increasingly complex syntax examples
that required redesign of our architecture. If it was not for the fact that both
authors of this paper are perfectionists and enjoy the challenge of getting every
last case to work (elegantly), we probably would not have finished. In spite of
these difficulties and the above comments, we note that the ISO Standard for Z
does an excellent job of describing most of the complexities. Some very important
implementation considerations are just briefly mentioned in notes and examples,
but it is obvious that a great deal of care was taken in getting these right.

7 Conclusions and Future Work

The CZT Java framework and XML format have been developed in order to
improve tool support for the Z specification language, particularly for the ISO
Standard for Z. It allows developers to easily develop new Z tools and to integrate
existing tools via the XML interchange format. The CZT software is available
from the Sourceforge web-site http://czt.sourceforge.net under an open
source license.

Currently, we are developing a rewrite rule mechanism for user-defined AST
transformations and for unfolding schema operators. We are also working on a

CZT: A Framework for Z Tools 83

central section manager subsystem, which will manage all the Z objects, the
dependencies between them and the commands that transform them.

In the future, we would like people to develop many more translators from
the CZT AST (standard Z) into older dialects of Z to give access to the existing Z
provers, and into Alloy21 for performing simple animations and counter-example
generation.

We would also like to integrate the CZT tools with an integrated development
environment, to provide a full WYSIWYG editing and analysis environment for
Z. We have developed an experimental plug-in for JEdit22 that does this, but a
better long-term alternative may be the Eclipse environment,23 or the ZEUS24

system, which is an extension of Adobe Framemaker.

Acknowledgements

Thanks to Andrew Martin for proposing the CZT project, and to the dozen or
more people who have contributed expertise and code over the last two years25,
particularly Jin Song Dong and his students at National University of Singapore,
who have been working on the TCOZ extensions. Thanks to Ian Toyn for his
XML DTD for Z, and for answering numerous questions about the ISO Standard
for Z. Especial thanks to Tim Miller, who has implemented most of the Z and
Object Z parser and typechecker.

References

1. ISO/IEC 13568: Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics. First edn. ISO/IEC (2002)

2. Utting, M., Toyn, I., Sun, J., Martin, A., Dong, J.S., Daley, N., Currie, D.: ZML:
XML support for standard Z. In: ZB 2003: Formal Specification and Development
in Z and B: Third International Conference of B and Z Users, Turku, Finland,
June 4-6, 2003. Proceedings, Springer-Verlag Heidelberg (2003) 437–456

3. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers (2000)

4. Mahony, B., Dong, J.S.: Timed communicating Object Z. IEEE Transactions on
Software Engineering 26 (2000) 150–177

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, USA (1995)

6. Mai, Y., de Champlain, M.: A pattern language to visitors. In: The 8th Annual
Conference of Pattern Languages of Programs (PLoP 2001), Monticello, Illinois,
USA. (2001)

21 See http://alloy.mit.edu.
22 See http://www.jedit.org.
23 See http://www.eclipse.org.
24 See http://www.cs.virginia.edu/~zed/zeus.
25 See http://czt.sourceforge.net/people.html.

84 P. Malik and M. Utting

7. Martin, A.C.: Acyclic visitor. In Martin, R.C., Riehle, D., Buschmann, F., eds.:
Pattern Languages of Program Design 3, Addison-Wesley Longman Publishing
Co., Inc. (1997)

8. Nordberg III, M.E.: Default and extrinsic visitor. In Martin, R.C., Riehle, D.,
Buschmann, F., eds.: Pattern Languages of Program Design 3, Addison-Wesley
Longman Publishing Co., Inc. (1997)

9. Toyn, I., Stepney, S.: Characters + mark-up = Z lexis. In: ZB 2002: Formal
Specification and Development in Z and B: 2nd International Conference of B
and Z Users, Grenoble, France, January 23-25, 2002. Proceedings. Volume 2272 of
LNCS., Springer-Verlag Heidelberg (2002) 100–119

10. Toyn, I., Valentine, S.H., Stepney, S., King, S.: Typechecking Z. In Bowen, J.P.,
Dunne, S., Galloway, A., King, S., eds.: ZB 2000: First International Conference of
B and Z Users, York, UK, August 2000. Volume 1878 of LNCS., Springer (2000)
264–285

11. Spivey, J.M.: The Z Notation: A Reference Manual. Second edn. International
Series in Computer Science. Prentice-Hall International (UK) Ltd (1992)

12. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B.
In Eriksson, L.H., Lindsay, P., eds.: Formal Methods Europe, FME 2002. Volume
2391 of LNCS., Springer-Verlag (2002) 21–40

13. Toyn, I.: Information technology – Z formal specification notation – Syntax, type
system and semantics. DRAFT TECHNICAL CORRIGENDUM 1, Corrections to
use of Unicode. Available from http://www-users.cs.york.ac.uk/~ian/zstan/
IS.html (2004) This draft has yet to be submitted for official ballot.

Model Checking Z Specifications Using SAL

Graeme Smith and Luke Wildman

School of Information Technology and Electrical Engineering,
The University of Queensland 4072, Australia

{smith, luke}@itee.uq.edu.au

Abstract. The Symbolic Analysis Laboratory (SAL) is a suite of tools
for analysis of state transition systems. Tools supported include a simula-
tor and four temporal logic model checkers. The common input language
to these tools was originally developed with translation from other lan-
guages, both programming and specification languages, in mind. It is,
therefore, a rich language supporting a range of type definitions and ex-
pressions. In this paper, we investigate the translation of Z specifications
into the SAL language as a means of providing model checking support
for Z. This is facilitated by a library of SAL definitions encoding the Z
mathematical toolkit.

Keywords: Z, model checking, SAL, tool support.

1 Introduction

The Symbolic Analysis Laboratory (SAL) [1] is aimed at allowing different ver-
ification tools, such as various types of model checkers and theorem provers, to
be combined. The input language shared by the tools was originally proposed as
a target for translation of a variety of specification and programming languages
and provides a broad range of features to support them. In this paper, we de-
scribe the translation of Z [18] to SAL for the purpose of taking advantage of the
variety of verification tools that SAL supports, as well as those it will support
in the future.

Currently SAL provides a suite of four model checkers and a simulator. The
SAL simulator is a customisable environment for manipulating state transition
systems and their traces, and it is a significant advance on Z animators such as
Possum [9]. The model checkers are also customisable. There are two symbolic
model checkers for checking linear time temporal logic (LTL) and branching
time temporal logic (CTL) properties [5]. There are also two bounded LTL model
checkers, one of which supports infinite types in the model’s state space. Bounded
model checking involves a state space search to a given depth, rather than of
the entire state space. This is a way of finding counter-examples in large models
(proving a property, however, still involves a complete state space search). SAL
also supports a technique called k-induction [14] which allows the bounded model
checkers to be called iteratively to search further into the state space when a
counter-example is not yet found.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 85–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

86 G. Smith and L. Wildman

Applying temporal logic model checking to Z allows us to check both invari-
ant and behavioural properties of specified systems. The latter include liveness
properties (e.g., eventually some state is reached, or some property remains true
until some state is reached) which are valid under the assumption that oper-
ations continue to occur. Using CTL one can also check properties about the
possibility of certain behaviours (e.g., it is possible, but not guaranteed, that
some state can be reached).

Applying temporal logic model checking to Z, however, involves significant
challenges. Z is a very expressive language supporting a range of datatypes and
complex predicates which are difficult to compile into a representation suitable
for model checking. Such challenges have meant that Z specifications have had to
be rewritten in another notation in order to model check them. A Z specification
writer may not, however, want to give up the expressiveness of Z (which aids
in understandability, separation of concerns, etc.) for a less expressive model-
checkable language.

SAL helps to solve this dilemma. Its compilation routines, based on the ICS
decision procedure library [6], enable expressive mathematics to be used. In
addition, the module mechanism of SAL is quite similar to the concept of a
Z state transition system. In this paper, we explore the similarities between Z
and SAL by defining a translation which enables (most) Z specifications to be
accepted by the model checkers.

We model Z operations in SAL as having a blocking semantics, i.e., where
operations are unable to occur outside their calculated preconditions. Under a
blocking semantics, most temporal logic properties on states written in LTL are
preserved by refinement, and all are preserved under simple restrictions on the
refinement retrieve relation [3]. Similar results can be shown to hold for CTL.

This does not preclude model checking Z specifications with the conventional
non-blocking semantics, i.e., where operations may occur outside their precon-
ditions resulting in arbitrary state changes. All non-trivial temporal properties
that hold for such specifications include an assumption that operations are not
applied outside their preconditions. Hence, if properties are formulated correctly,
what happens outside the precondition of operations (both in the specification
and any refinement) is not important. As discussed by Smith and Winter [17],
to prove arbitrary temporal properties of such specifications, operations must be
totalised , i.e., have a true precondition.

Our translation scheme is straightforward, preserving Z-style predicates where
primed and unprimed variables may be mixed freely, and following the Z ap-
proach of modelling relations, functions, sequences and bags as sets of tuples.
The translation scheme has not yet been implemented; although we believe this
is possible. Also, we have not yet fully considered optimising the encoding for
efficient analysis. The paper presents a “proof of concept” (that Z can be model
checked); issues such as optimising model checking efficiency and automation of
the translation are areas of future work.

The paper is structured as follows. In Section 2, we give an overview of the
SAL language. In Section 3, we show how minimal Z specifications, those not

Model Checking Z Specifications Using SAL 87

involving the use of datatypes from the Z mathematical toolkit nor advanced
use of schemas, can be translated into SAL. In Section 4, we describe how the
datatypes of the Z mathematical toolkit may be encoded as a library of SAL
definitions and, hence, how our translation scheme may be extended. We then
look at uses of schemas as predicates and types, and the schema calculus in
Section 5. In Section 6, we close with a discussion of related work, an evaluation
of the results of our translation, and our plans for further development.

2 The SAL Language

The common input language to the SAL tools was originally developed with
translation from other languages, both programming and specification languages,
in mind. It is a rich language supporting a range of type definitions and ex-
pressions. The former include basic types such as integers and naturals, tu-
ple (or Cartesian product) types, total functions, enumerated types, recursive
datatypes, array and record types, and subtypes of any other type defined in
terms of set comprehensions. Expressions in the language may involve lambda
abstractions and set comprehensions. Predicates (i.e., Boolean-valued expres-
sions) may involve universal and existential quantification.

A complete syntax of the type and expression sublanguages of SAL can be
found in the SAL language manual [2]. Syntax relevant to the work in this paper
will be introduced as it is required. Below we describe the main structuring
mechanisms of the SAL language: contexts and modules.

2.1 Contexts

A SAL context groups together a number of definitions and properties. The
definitions include types, constants and modules for describing state transition
systems. The properties, expressed in LTL or CTL, refer to modules and are
intended to be checked by the model checking tools. Contexts may have both
type and value parameters. Type parameters are treated as uninterpreted types,
and value parameters as uninterpreted constants. For example, a context with
type parameters X and Y and value parameter N of type natural number is
defined as follows.

mycontext{X ,Y : TYPE ; N : NATURAL} : CONTEXT =
BEGIN

. . .
END

where the . . . represents the elided definitions and properties.
Contexts may refer to definitions in other contexts. In this way a SAL spec-

ification can be structured across several contexts, and contexts can be used to
create libraries of commonly used definitions. The context above, for example,
may be instantiated within another context. We could instantiate it with the
type NATURAL for X and Y and the value 3 for N as follows.

88 G. Smith and L. Wildman

mc : CONTEXT = mycontext{NATURAL,NATURAL; 3}

Then, given a definition def in mycontext , we can refer to def by mc!def .
Alternatively, we could have referred to def without the declaration of mc

via mycontext{NATURAL,NATURAL; 3}!def .

2.2 Modules

Modules appear in contexts and are used to describe state transition systems. A
module comprises the declaration of a set of variables representing the state of
the module, and optional sections describing state invariants, module initialisa-
tion and possible transitions. An example of a module can be found at the end
of Section 3.

The variables may be input variables, output variables, global variables or
local variables. Input variables are not under the control of the module and are
nondeterministically assigned a value in their type before each transition. All
other variables are controlled by the module. Global variables may be controlled
by more than one module within the same context.

There are also means of composing modules. These, however, are not dis-
cussed in this paper.

3 Basic Translation Approach

In this section, we show how minimal Z specifications can be encoded in the
SAL language. By minimal, we mean specifications which do not make use of
datatypes from the Z mathematical toolkit nor the advanced use of schemas
(including the use of schemas as predicates and types, and the operators of the
schema calculus). The encoding of the former will be detailed in Section 4 and
the latter in Section 5.

Our translation scheme between Z and SAL requires the Z specification to
be syntactically correct and type correct. To simplify the translation, we also
assume some simple syntactic simplifications are made first. Specifically, schema
references in the declaration part of schemas and quantified expressions are ex-
panded, and predicates involving the quantifier ∃1 are rewritten in terms of the
quantifiers ∃ and ∀. Also, set comprehensions of the form {d | p • e} are con-
verted to the simpler {d | p} form. For example, {n : N | n < 10 • 2 ∗ n} is
converted to {m : N | ∃n : N • n < 10 ∧ m = 2 ∗ n}. Similarly, μ-expressions of
the form (μ d | p • e) are converted to the simpler (μ d | p) form.

3.1 Types and Constants

SAL supports the basic types NATURAL of natural numbers, and INTEGER
of integers1. These types however can only be used with one of the four model

1 It also supports the types REAL of real numbers, and BOOLEAN of Boolean values
which are useful for certain extensions of Z.

Model Checking Z Specifications Using SAL 89

checkers (the infinite-bounded model checker). In general, the model checkers
work only with finite types. Therefore, subranges of NATURAL and INTEGER
need to be used. For example, we could define the type NAT as the natural
numbers between 0 and 100 as follows.

NAT : TYPE = [0..100]

The actual subrange required to perform effective checks will depend on the
particular specification. Setting of the maximum value for the natural numbers
(and minimum value for the integers) is therefore a task for the user. It requires a
detailed understanding of the specification, or the use of abstraction techniques,
and is not discussed further in this paper.

Given sets are used in Z when we want to abstract away from the actual
values of a type. For example, the type NAME representing people’s names can
be specified as

[NAME]

In SAL, we need to give values for all types. Hence, such a type is represented
by an enumerated type as follows

NAME : TYPE = {NAME1,NAME2,NAME3};

The cardinality and elements of this type are again the responsibility of the user.
He or she needs to ensure that enough values are available to perform effective
checks (either via his or her understanding of the specification, or the use of
abstraction techniques).

Free types in Z enable the definition of types whose values are either constants
or constructors. The latter construct values of the free type from other values.
For example, the type of a process identifier may be null when no identifier has
been allocated, and a natural number, otherwise.

PID ::= null | id〈〈N〉〉
SAL supports a similar type definition facility. The above is represented in SAL
as

PID : TYPE = DATATYPE
null ,
id(nat : NAT)

END ;

The label nat above is necessary and provides access to the number allocated to
a process, i.e., if p is a non-null process identifier then nat(p) returns the number.
Hence, an expression in Z which returns the number allocated to a process, i.e.,
id∼(p), is translated as nat(p).

90 G. Smith and L. Wildman

In Z, the values used in a constructor may also be of the free type being
defined. This allows recursive type definitions. Although this is also supported
by SAL, it results in infinite types and hence disallows the use of most of the
model checking tools.

Abbreviation definitions can be used to introduce types via expressions. For
example, the type of all prime numbers could be specified as follows.

Primes == {n : N | ∀m : N • n mod m = 0⇒ m = n ∨ m = 1}
This is represented in SAL as a subtype of the type NAT defined above.

Primes : TYPE = {n : NAT | FORALL (m : NAT) :
n MOD m = 0 => m = n OR m = 1};

Note the close mapping between the Z and SAL predicates. Of the primitive
constructs used in Z predicates and expressions only μ (used for selecting a
unique value satisfying a predicate) and P (used for denoting an arbitrary subset
of a set) are not directly supported in SAL. We will delay the discussion of P

until Section 4. With μ-expressions, assuming our specification is correct Z, the
predicate of the expression will guarantee a unique value. Hence, there is no need
for SAL to check this. A predicate x = (μn : N | n ∗ 1 = 3) can be represented
in SAL by x ∗ 1 = 3. When the predicate is not a simple equality, for example,
(μn : N | n ∗ 1 = 3) < y then we introduce an existentially quantified variable
to denote the unique value defined by the μ-expression. That is, the above is
represented in SAL by EXISTS (n : NAT) : n ∗ 1 = 3 AND n < y .

Abbreviation definitions can also be used to define constants. For example,
a constant max could be specified as

max == 100

This is represented in SAL as

max : NAT = 100

Axiomatic definitions are also used in Z to define constants. For example,

n : N

p : N× N

n < 10
first(p) = n

In SAL, we declare them using set comprehensions in order to capture the pred-
icate of the axiomatic definition.

n : {n : NAT | n < 10};
p : {p : [NAT ,NAT] | p.1 = n};

Z generic constants can also be translated by making the generic type a param-
eter of the SAL context in which the constant is declared. Since we may require
more than one instantiation of a generic constant, it should be declared in its
own context and its definition imported and instantiated as required.

Model Checking Z Specifications Using SAL 91

3.2 Schemas

The main use of schemas in Z is in the definition of state transition systems.
Typically, a specification has a single state schema, an initial state schema and a
number of operation schemas. Such a specification can be represented by a SAL
module.

The variables of the state schema become local variables of the module, and
inputs and outputs of the operations become input and output variables of the
module respectively. The output variables need to be renamed since ! is not
allowed as part of a variable name in SAL. We choose to translate an output x !
in Z to an output variable x in SAL.

The key to representing the schema predicates is a powerful guarded command
facility supported by SAL for defining the initialisation and transition sections
of a module. Guarded commands are of the form

Guard −−> Assignment ;
...

Assignment

A guard is an arbitrary predicate which may refer to values of primed (post-
state) variables. The assignments they guard may be nondeterministic, i.e., each
variable is assigned a value from a set of potential values. For example, a variable
x can be assigned a value from the set of natural numbers less than 10 as follows.

x ′ IN {n : NAT | n < 10}

Any variables which are not assigned a value remain unchanged.
To support such guarded commands, SAL checks the guard after the as-

signments are made and, if it is false, undoes the assignments and makes new
assignments when possible. The guarded command is enabled only when a set
of assignments satisfying the guard can be found.

A Z predicate referring to a variable x : N

x ′ = 3 ∗ x

can hence be represented in SAL as the guarded command

x ′ = 3 ∗ x −−> x ′ IN {x : NAT | TRUE}

Note that the guard can be any predicate and hence if the above predicate were
instead

x = 3 ∗ x ′

it could be represented in SAL as

x = 3 ∗ x ′ −−> x ′ IN {x : NAT | TRUE}

92 G. Smith and L. Wildman

This approach allows the flexibility required to directly translate Z predicates
into SAL. Some care must be taken with quantified variables, however, as dis-
cussed after the example below.

Guarded commands may be used in the initialisation and transition sections
of a SAL module. The initialisation section of a SAL module may comprise a
single guarded command. The transition section may comprise a choice between
several guarded commands separated by the syntax []. These guarded commands
may be labelled to aid the understanding of counter-examples generated by the
SAL model checkers. Normally, a counter-example is given as a sequence of
states; labels in the counter-example indicate which branch of the transition
fired between consecutive states.

Guarded commands may not be used in a state invariant section of a SAL
module. This is not a problem, however, given the syntactic simplifications we
have assumed. Specifically, uses of schema inclusion are expanded before the
translation to SAL. Hence, in the Z specification which we translate to SAL,
the state schema’s predicate will be included in the initial state schema, and in
both unprimed and primed form in each operation schema. Hence, it will be true
initially and after each operation as required.

In the translation from Z to SAL, the initial state schema’s predicate becomes
the guard of the initialisation section of the module. The operations’ predicates
become the guards of the transition section. In each guarded command rep-
resenting initialisation or an operation, all state variables are assigned values
non-deterministically from their types. For operations with outputs, the corre-
sponding output variables are additionally assigned values nondeterministically
from their types. For such operations, we need to refer to the output variable in
primed form in SAL.

Finally, SAL’s model checkers may produce unsound results when a module
being checked can deadlock. It is therefore necessary to ensure that the transi-
tion relation is total. This can be ensured by a final guarded command in the
transition section of the form

ELSE −−>

This guard will evaluate to true only when all other guards evaluate to false.
There are no assignments, so the state will remain unchanged.

As an example, consider the following Z specification.

State
x : N

x < 10

Init
State

x = 0

Increment
ΔState
x ! : N

x ′ = x + 1
x ! = x ′

Choose
ΔState
x? : N

∃ x : N • x < x? ∧ x ′ = x

Model Checking Z Specifications Using SAL 93

Its SAL translation is

state : MODULE =
BEGIN

INPUT x? : NAT
LOCAL x : NAT
OUTPUT x : NAT
INITIALIZATION [x = 0 AND x < 10

−−> x IN {n : NAT | TRUE}]
TRANSITION [Increment : x ′ = x + 1 AND x ′ = x ′ AND

x < 10 AND x ′ < 10
−−> x ′ IN {n : NAT | TRUE};

x ′ IN {n : NAT | TRUE}
[] Choose : (EXISTS (x0 : NAT) :

x0 < x? AND x ′ = x0) AND
x < 10 AND x ′ < 10
−−> x ′ IN {n : NAT | TRUE}

[] ELSE −−>]
END

Note that the quantified variable in the transition corresponding to Choose is
renamed to a fresh variable x0. This is because SAL regards the prime symbol as
an operator on a state variable rather than a decoration on a name. If we left the
quantified variable as x , it would not be possible to refer to x ′ in its scope since x
would no longer refer to the state variable, but instead to the quantified variable.
For similar reasons, it is not possible to translate a predicate ∀ x ′ : NAT • . . .
directly; x ′ is not a name but an expression involving the prime operator. We
translate this predicate to ∀ x1 : NAT • . . . where x1 is a fresh variable.

4 Z Mathematical Toolkit

The Z mathematical toolkit [18] is a library of definitions of types and operators
used commonly in Z. It includes operators for sets and natural numbers, and
types and operators for relations, functions, sequences and bags. The encoding
of these definitions in SAL are, for the most part, relatively straightforward.
Complications arise for those definitions given for Z in terms of the μ operator
since this is not supported by SAL. The affected definitions are those for function
application and set size, #. Complications also arise from our use of a finite
subrange of natural numbers. The affected definitions are those for sequence
concatenation and bag union.

4.1 Sets

As mentioned in Section 3, SAL does not support an operator equivalent to the
P operator of Z. However, the standard SAL installation comes with a context

94 G. Smith and L. Wildman

set which defines a type which is an arbitrary subset of another type given as a
type parameter. A part of this context is shown below.

set{T : TYPE ; } : CONTEXT =
BEGIN

Set : TYPE = [T −> BOOLEAN];
...

END

The type Set defined in set maps all elements in the parameter type T to a
Boolean value (the notation [X −> Y] denotes a total function). The variables
which are mapped to TRUE are regarded as being in the set whereas those
mapped to FALSE are not. This is also the representation underlying SAL’s set
comprehensions. Hence, it is legal, for example, to write predicates of the form
s = {x : X | . . .} when s is declared to be of type set{X ; }!Set .

Given this representation of sets, the basic set operators are defined in context
set . For example, set membership is defined as

contains?(s : Set , e : T) : BOOLEAN = s(e);

which is a short-hand for writing

contains? : [[Set ,T] −> BOOLEAN] = LAMBDA (s : Set , e : T) : s(e);

Similarly, set union is defined as

union(s1 : Set , s2 : Set) : Set = LAMBDA (e : T) : s1(e) OR s2(e);

We have extended set with additional set operators that are used in Z. For
example, we defined subset, ⊆, as2

subset?(s1 : Set , s2 : Set) : BOOLEAN =
FORALL (e : T) : contains?(s1, e) => contains?(s2, e);

The other set operators can be defined similarly except for the size operator, #,
which is defined using the μ operator in Spivey [18] as follows.

#S = (μn : N | (∃ f : 1 . . n � S • ran f = S))

In SAL, we encode it as a function which takes a set and a natural number as
arguments and returns TRUE when the number is the size of the set.

size?(s : Set ,n : NATURAL) : BOOLEAN =
(EXISTS (f : [[1..n] −> T]) :

(FORALL (x1, x2 : [1..n]) : f (x1) = f (x2) => x1 = x2) AND
(FORALL (y : T) : s(y) <=> (EXISTS (x : [1..n]) : f (x) = y)));

2 We have adopted the convention used in the set context that functions which return
a Boolean value have names ending in ‘?’.

Model Checking Z Specifications Using SAL 95

The first conjunct ensures that the total function f is an injection, and the
second that its range is equal to the set s.

A Z predicate of the form n = #s could, therefore, be translated to size?(s,n).
However, in the general case where we do not have a simple equality, an exis-
tentially quantified variable needs to be introduced. For example, #s < 5 is
translated to EXISTS (n : NAT) : size?(s,n) AND n < 5.

4.2 Relations

Relations are modelled, as they are in Z, as sets of tuples. This allows set op-
erators to be used directly on relations. We define a context relation which has
two type parameters X and Y corresponding to the domain and range types
respectively.

relation{X ,Y : TYPE ; } : CONTEXT =
BEGIN

xset : CONTEXT = set{X ; };
yset : CONTEXT = set{Y ; };
tset : CONTEXT = set{[X ,Y]; };

dom(r : tset !Set) : xset !Set =
{x : X | EXISTS (t : [X ,Y]) : tset !contains?(r , t) AND t .1 = x};

ran(r : tset !Set) : yset !Set =
{y : Y | EXISTS (t : [X ,Y]) : tset !contains?(r , t) AND t .2 = y};

image(r : tset !Set , xs : xset !Set) : yset !Set =
{y : Y | EXISTS (t : [X ,Y]) : tset !contains?(r , t) AND

xset !contains?(xs, t .1) AND t .2 = y};
...

END

This context instantiates the set context three times: with type X , type Y and
the tuple type [X ,Y]. Hence, it can refer to operators on sets of these types. This
is needed in the definitions of the operators for domain (dom), range (ran) and
relational image (image) shown. Other operators, for example, relational com-
position, domain and range restriction and subtraction, and relational inverse,
can be defined similarly.

4.3 Functions

Although total functions are supported as a primitive in SAL, partial functions
are not. To encode partial functions, we have simply followed the approach of Z,
i.e., partial functions are appropriately restricted relations. This approach has
the advantage that relational operators defined in the relation context can be
used directly on partial functions, as can set operators defined in the context set .

Aside. An alternative approach would be to encode partial functions as SAL
total functions. This would require introducing an ‘undefined’ element to all par-

96 G. Smith and L. Wildman

tial function range types (which could be done using the SAL datatype facility),
and additional definitions of the set and relational operators. These definitions
would be complicated by the fact that their argument and result types could be
a combination of sets and SAL total functions. Investigating the comparative
efficiency of such an approach is an area of future work.

function{X ,Y : TYPE ; } : CONTEXT =
BEGIN

tset : CONTEXT = set{[X ,Y]; };
rel : CONTEXT = relation{X ,Y ; };

pfun : TYPE = {f : tset !Set |
FORALL (x : X , y1, y2 : Y) :

tset !contains?(f , (x , y1)) AND
tset !contains?(f , (x , y2)) =>

y1 = y2};
tfun : TYPE = {f : pfun | rel !dom(f) = {x : X | TRUE}};

...
END

The context function introduces a type pfun of partial functions. A type for
total functions tfun is also shown. Similar types can be given for the other kinds
of functions (injections, surjections and bijections) in Z. The functional override
operator can be defined as in Spivey [18].

Function application is defined using the μ operator in Spivey [18] as follows.

f (x) = (μ y : Y | (x , y) ∈ f)

In SAL, we encode it (within context function) as a function which takes a
(partial) function f and a domain value x and range value y of f as arguments
and returns TRUE when f (x) = y .

apply?(f : tset !Set , x : X , y : Y) : BOOLEAN = tset !contains?(f , (x , y));

Its use is similar to that of the size? function defined for sets. A Z predicate of
the form y = f (x) could be translated to apply?(f , x , y). However, in the general
case where we do not have a simple equality, an existentially quantified variable
needs to be introduced. For example, f (x) < 5 is translated to EXISTS (y :
NAT) : apply?(f , x , y) AND y < 5.

Note that apply? takes a tuple set, rather than a partial function, as its
first argument. This is for reasons of efficiency. Since we assume that the Z
specification is correct Z, function application will only be used on variables
which are functions. Therefore, it is not necessary for SAL to check the type
of such a variable, i.e., check that it is a partial function, each time function
application occurs.

Model Checking Z Specifications Using SAL 97

4.4 Sequences and Bags

Sequences and bags are specified, as in Z, as appropriately restricted partial
functions. In this section, we will focus on sequences; bags can be defined in
SAL in a similar manner.

As well as a parameter X for the range type, the context sequence requires
a variable parameter N of type NATURAL to represent the maximum number
of elements in a sequence. When instantiating the context sequence, we set this
number to be equal to the maximum natural number (selected by the user as
described in Section 3.1). It is used to ensure the type seq of sequences is finite;
specifically, sequences can have at most N elements.

sequence{X : TYPE ; N : NATURAL} : CONTEXT =
BEGIN

nat : TYPE = [0..N];
nat1 : TYPE = [1..N];
nset : CONTEXT = set{nat1; };
tset : CONTEXT = set{[nat1,X]; };
rel : CONTEXT = relation{nat1,X ; };
fun : CONTEXT = function{nat1,X ; };

seq : TYPE = {s : fun!pfun | EXISTS (n : nat) :
rel !dom(s) = {x : nat1 | x <= n}};

cat(s1 : tset !Set , s2 : tset !Set) : tset !Set =
LET s : tset !Set =

{t : [nat1,X] | EXISTS (n : nat) :
rel !dom(s1) = {x : nat1 | x <= n} AND
(EXISTS (t2 : [nat1,X]) :

tset !contains?(s2, t2) AND
(t2.1 + n < N => t .1 = t2.1 + n) AND
(t2.1 + n >= N => t .1 = N) AND
t .2 = t2.2)}

IN tset !union(s1, s);
...

END

The context defines two types nat and nat1 which represent the natural numbers
and strictly positive natural numbers, respectively, up to N . The latter set is used
for the domain of the sequence type seq . The predicate in the set comprehension
defining this type ensures that the actual domain of any sequence is a contiguous
set of numbers up to a maximum value less than or equal to N .

The definition of concatenation is shown above. Again we have used tuple
sets as the types of the arguments for reasons of efficiency. The definition uses
a LET . . . IN clause to introduce a set s which corresponds to the second
argument of the operator (s2 above) with each of its domain values increased by

98 G. Smith and L. Wildman

the length of the first argument (s1 above), except when the new value would
exceed N , in which case the domain value is set to N 3.

The result of concatenation is the union of s1 and s. Note that this tuple set
will not be a sequence when the combined length of s1 and s2 exceeds N . In
this case, there will be more than one tuple with N as its domain value.

In the translation of a Z specification, however, the result of sequence con-
catenation will be restricted to also be a sequence, i.e., of type seq . Hence, trying
to concatenate a pair of sequences which together have more than N elements
will not be possible; the result would not be of type seq . That is, the guard in
SAL will not be able to be satisfied by any assignment of values and the branch
of the transition in which the concatenation occurs will not fire. This ensures
that the domain of a sequence does not extend beyond our subrange of natural
numbers.

Other sequence operators such as head, tail, front and last are readily defined
as in Spivey [18].

4.5 Extending the Basic Translation Approach

To translate Z specifications using the Z mathematical toolkit, we simply import
the definitions required from the appropriate contexts defined above. When a
state variable is declared to be a relation, function, sequence or bag, it is de-
clared to be a tuple set in the corresponding SAL. For example, a Z declaration
s : seqT is translated to s : set{[[1..N],T]; }!Set , where N is the maximum
natural number. To ensure that s is indeed a sequence, we also make sure its
assignment initially and after each operation is restricted to sequences. That is,
the assignments are of the form s IN {s : sequence{T ; N }!seq | TRUE}.

This approach is more efficient than declaring the SAL variable to be of the
more complex type. When the latter is done, the tools spend a significantly
larger amount of time converting the specified state transition system into the
internal Binary Decision Diagram (BDD) representation on which analysis is
performed.

5 Schemas Revisited

Z allows the use of schemas to define other schemas via their use as predicates
and types and via the operators of the schema calculus. Most of this is peculiar
to Z, and hence it is not directly supportable in SAL. Our translation scheme is
extended to support these uses of schemas as follows.

A schema occurring as a predicate is translated to the SAL translation of
its predicate. A schema occurring as a type is translated to a subtype of a SAL
record type whose indices correspond to the names of the schema’s variables.
For example, given the following Z schema

3 The addition operator is defined on the integer type and may return any value of
this type, despite its arguments belonging to particular subranges of integers.

Model Checking Z Specifications Using SAL 99

S
x , y : N

x � y

the predicate S is translated to x <= y . The variable declaration a : S is trans-
lated to the more general declaration a : [# x : NAT , y : NAT #] and the value
of a restricted by assignments (occurring in the initialisation and transitions of
its module) of the form a IN {s : [# x : NAT , y : NAT #] | s.x <= s.y}. The
notation [# . . .#] denotes a SAL record type.

The Z notation θS constructs a schema binding of schema type S with values
taken from common-named variables in the current scope. It can be translated
to the SAL record literal (# x := x , y := y #), i.e., the record whose x index
maps to the value of x in the current scope, and whose y index maps to the
value of y in the current scope.

All expressions involving the operators of the schema calculus can be flattened
to a single equivalent schema [18]. Our approach is to perform this flattening as
part of the translation process. For example, given S above and

T
y , z : N

z = y

we flatten the schema expression S ⇒ T to

S ⇒ T
x , y , z : N

x � y ⇒ y = z

and translate this resulting schema as before. Some schema calculus operators,
for example the precondition operator, pre, involve quantification over state
variables. The flattening process needs to be defined such that fresh variables
are used instead of the state variables as described at the end of Section 3.

6 Discussion

Although Z has been encoded in a number of theorem provers including PVS [19],
Isabelle/HOL [12] and EVES [15], there have been no full encodings in a model
checking tool. The Alloy approach of Jackson [10] brings “Z-style specification
the kind of automation offered by model checkers.” However, the Alloy language,
although quite elegant and expressive in its own right, is significantly different
to Z. Furthermore, the Alloy analyser is not a temporal logic model checker
and is predominantly used for checking system invariants. We see it as being
complementary to our approach.

100 G. Smith and L. Wildman

The closest work to ours is that of encoding the Z extensions, CSP-OZ, CSP-
Z and Object-Z, in the CSP model checker, FDR [7, 13, 11]. The input language
to FDR is quite expressive allowing a straightforward translation of many Z
predicates. Although FDR lacks direct support for some constructs supported
by SAL, such as quantification, it includes direct support for others, such as
sequences and sequence concatenation, which SAL does not.

The main difference between the two approaches is the way the model check-
ers are used. FDR is not a temporal logic model checker. Rather, it checks that
a refinement relation holds between two models. Therefore, to check a property
holds for a given model M , we need to state the property itself as a model: one
that is refined by M . This can be difficult for a novice user. Also, since FDR was
developed for a process algebra, rather than a state-based notation, encoding Z
in it is arguably more difficult; to date, there is no full encoding of Z in FDR.

As with the FDR approaches, our approach has certain limitations. Firstly,
all types must be finite (unless the infinite bounded model checker is used). This
rules out the use of the types N and Z, given sets and recursive type definitions
in Z specifications. Furthermore, even finite types need to be small. As well
as causing the state-explosion problem, large types can result in the conversion
process from the input language to the analysable BDD representation becoming
a bottleneck.

As an indication of the time required for model checking, the table be-
low presents some figures for an Alternating Bit Protocol (ABP) specification
adapted from the Object-Z specification in Duke and Rose [4]. The translated
SAL specification has 7 state variables, including 2 which are sequences (1 of
these is a sequence of tuples), and 8 operations. The property proved was an
LTL encoding of the obvious one for this protocol: when there is no indefinite
loss of messages on the message channel, all transmitted messages will eventually
be received. The property was checked on a PC with a 3GHz Intel Pentium 4
processor and 512MB of RAM.

Max. natural Verification time Total time
number (N) (seconds) (seconds)

4 0.18 8.39
8 3.43 22.72
12 27.48 151.31

For N greater than 12, the model checker did not return after 30 minutes due
to the limits of the available memory being reached and the need for extensive
swapping. This is due to the large BDD representation to cater for the sequences,
especially the sequence of tuples. Although any of the above values of N are
sufficient to check the property for this case study, other case studies of similar
complexity may require larger values for N .

There are a number of ways to improve on these results. Firstly, our encoding
of Z in SAL is only one possible encoding. Some improvement in the above re-
sults could be made by a more efficient encoding. We have already discovered it

Model Checking Z Specifications Using SAL 101

is more efficient to declare variables by their base types (sets of tuples for func-
tions, sequences and bags) and constrain them when assignments are made. In
the ABP case study, this resulted in a five-fold decrease in total model checking
time.

Secondly, the model checking tools support many optimisation features (in-
cluding control of BDD variable ordering) which we have not utilised. Thirdly,
they also support a variable abstraction facility which can be used to effec-
tively ignore variables not influencing a property we wish to prove. In ad-
dition to this, future versions of SAL are expected to support predicate
abstraction [8].

Our future work will investigate all of the above options, as well as developing
our own abstraction techniques. The latter will be based on recent work on data
abstraction [20] and predicate abstraction [17] in the Z context.

Regarding other future work, an obvious next step is to automate our trans-
lation scheme and pretty print the SAL output to make it more familiar to Z
users. These tasks should not prove too onerous given that both Z and SAL
have XML representations, and the SAL tools have explicit support for pretty
printing. Our approach could also be adapted to variants of Z. We are particu-
larly interested in additionally developing support for Object-Z[16]. As well as
abstraction, decomposition of specifications based on the modular structure of
Object-Z may be beneficial for this work [21].

7 Conclusion

We have presented an approach for translating between Z specifications and the
input language to the SAL tool suite. This makes it possible to simulate and
model check Z specifications. The latter includes both LTL and CTL model
checking including bounded LTL model checking with infinite types. Our ap-
proach enables the conventional use of arbitrary predicates to describe opera-
tions in Z, and also supports the flexible “everything is a set” construction of
the Z mathematical toolkit. Our future work will focus on automating the trans-
lation process and extending the limits on the size and complexity of types in Z
specifications that can be supported by the approach.

Acknowledgements

Thanks to Leonardo de Moura and John Rushby for their help with our use of
SAL. Thanks to John Derrick and Kirsten Winter for discussions on aspects of
this work, and to the anonymous referees for their comments which helped to
improve the paper. Luke Wildman was supported by an Australian Research
Council Discovery grant, DP0343877: Practical Tools and Techniques for the
Testing of Concurrent Software Components.

102 G. Smith and L. Wildman

References

1. L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari.
SAL 2. In R. Alur and D. Peled, editors, International Conference on Computer
Aided Verification (CAV 2004), volume 3114 of LNCS, pages 496–500. Springer-
Verlag, 2004.

2. L. de Moura, S. Owre, and N. Shankar. The SAL language manual. Technical
Report SRI-CSL-01-02 (Rev. 2), SRI International, 2003.

3. J. Derrick and G. Smith. Linear temporal logic and Z refinement. In C. Rattray,
S. Maharaj, and C. Shankland, editors, Algebraic Methodology and Software Tech-
nology (AMAST 2004), volume 3116 of LNCS, pages 117–131. Springer-Verlag,
2004.

4. R. Duke and G. Rose. Formal Object-Oriented Specification using Object-Z. Cor-
nerstones of Computing. MacMillan, 2000.

5. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 996–1072. Elsevier Science Pub-
lishers, 1990.

6. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and
solver. In G. Berry, H. Comon, and A. Finkel, editors, International Conference on
Computer Aided Verification (CAV 2001), volume 2102 of LNCS, pages 246–249.
Springer-Verlag, 2001.

7. C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR.
In K. Araki, A. Galloway, and K. Taguchi, editors, International Conference on
Integrated Formal Methods (IFM ’99), pages 315–334. Springer-Verlag, 1999.

8. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Inter-
national Conference on Computer Aided Verification (CAV ’97), volume 1254 of
LNCS, pages 72–83. Springer-Verlag, 1997.

9. D. Hazel, P. Strooper, and O. Traynor. Possum: An animator for the SUM speci-
fication language. In W. Wong and K. Leung, editors, Asia Pacific Software En-
gineering Conference (APSEC ’97), pages 42–51. IEEE Computer Society, 1997.

10. D. Jackson. Alloy: A lightweight modelling language. Technical Report 797, MIT
Laboratory for Computer Science, 2000.

11. G. Kassel and G. Smith. Model checking Object-Z classes: Some experiments with
FDR. In Asia-Pacific Software Engineering Conference (APSEC 2001), pages
445–452. IEEE Computer Society Press, 2001.

12. Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Is-
abelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Prov-
ing in Higher Order Logics (TPHOLs ’96), volume 1125 of LNCS, pages 283–298.
Springer-Verlag, 1996.

13. A. Mota and A. Sampaio. Model-checking CSP-Z: strategy, tool support and
industrial application. Science of Computer Programming, 40:59–96, 2001.

14. H. Rueß and L. de Moura. Bounded model checking and induction: From refutation
to verification. In W. Hunt and F. Somenzi, editors, International Conference on
Computer Aided Verification (CAV 2003), volume 2725 of LNCS, pages 14–26.
Springer-Verlag, 2003.

15. M. Saaltink. The Z-Eves system. In J. Bowen, M. Hinchey, and D. Till, editors,
International Conference of Z Users (ZUM ’97), volume 1212 of LNCS, pages
72–85. Springer-Verlag, 1997.

16. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

Model Checking Z Specifications Using SAL 103

17. G. Smith and K. Winter. Proving temporal properties of Z specifications using
abstraction. In D. Bert, J.P. Bowen, S. King, and M. Waldén, editors, International
Conference of Z and B Users (ZB 2003), volume 2651 of LNCS, pages 260–279.
Springer-Verlag, 2003.

18. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992. http://spivey.oriel.ox.ac.uk/∼mike/zrm/.

19. D. Stringer-Calvert, S. Stepney, and I. Wand. Using PVS to prove a Z refinement:
A case study. In J. Fitzgerald, C. Jones, and P. Lucas, editors, Formal Methods
Europe (FME ’97), volume 1313 of LNCS, pages 573–588. Springer-Verlag, 1997.

20. H. Wehrheim. Data abstraction for CSP-OZ. In J. Woodcock and J. Wing, editors,
World Congress on Formal Methods (FM ’99), volume 1709 of LNCS. Springer-
Verlag, 1999.

21. K. Winter and G. Smith. Compositional verification for Object-Z. In D. Bert,
J.P. Bowen, S. King, and M. Waldén, editors, International Conference of Z and
B Users (ZB 2003), volume 2651 of LNCS, pages 280–299. Springer-Verlag, 2003.

Proving Properties of Stateflow Models Using
ISO Standard Z and CADiZ

Ian Toyn and Andy Galloway

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK
{ian, andyg}@cs.york.ac.uk

Abstract. This paper focuses on the use of ISO Standard Z and CADiZ
in the formal validation of Stateflow models against requirements-oriented
assumptions. It documents some of what the Simulink/Stateflow Analyser
tool does in support of the Practical Formal Specification method. The
tool aims to automate the formal validations of the method, so that users
of Simulink/Stateflow can benefit from them. The Z exploits some nota-
tions that are particular to ISO Standard Z. The automation is aided by
quite terse tactics interpreted by CADiZ.

1 Introduction

This paper focuses on the use of ISO Standard Z and CADiZ in the formal val-
idation of Stateflow models against requirements-oriented assumptions. CADiZ
[1, 2] is a typechecker and theorem prover for ISO Standard Z [3] specifications.
Stateflow [4] is an editor and animator of statechart models [5], which works in
the context of Simulink in the Matlab development environment.

The formal validation is performed with the aim of answering the question
“Is this the intended model?”, not the more usual “Has this model been cor-
rectly implemented?”. An example of the latter is provided by the ClawZ tool
for Simulink models [6]. These formal validations are similar in that they both
have abstract and concrete specifications, with healthiness conditions generated
to ensure that the concrete is consistent with the abstract. They differ in that
the Simulink model is the abstract specification for ClawZ, whereas the State-
flow model is the concrete specification for the analysis presented in this paper.
Ensuring that a model is as intended before implementing it may reduce the
overall cost of software development.

The validation is done by the Simulink/Stateflow Analyser (SSA) tool [7],
based on the healthiness conditions specified by Galloway’s Practical Formal
Specification (PFS) method [8, 9, 10]. PFS combines statecharts with assump-
tions. Its statecharts are a subset of Stateflow statecharts; its assumptions make
explicit the requirements on each state. The SSA tool ensures that the Stateflow
model is in the PFS subset, translates relevant aspects of the model and as-
sumptions to Z, generates healthiness conditions as Z conjectures, and attempts

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 104–123, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 105

to prove those healthiness conditions automatically. This automation is impor-
tant in making the method usable without much mathematical expertise. SSA’s
validation of Simulink models [11] is outside the scope of this paper.

Tool support for the PFS method could have been based on other tech-
nologies. Matlab/Simulink/Stateflow was chosen instead of alternative model
construction tools because it is widely used by aerospace companies (who are
amongst our sponsors) and Simulink is readily customisable. CADiZ was chosen
as the theorem prover because of the authors’ familiarity with it. Z was chosen
because of the ISO Standard and CADiZ’s support for that.

This paper is structured around two perspectives: first that of the user of the
SSA tool, and second that of the underlying Z. Each perspective considers the
model, the assumptions, the healthiness conditions and the proofs. Explanations
of the PFS method and the SSA tool are given largely from the first perspective.
Comments on the use of ISO Standard Z and CADiZ, which are the main aim
of the paper, are given from the second perspective. Some measurements and
conclusions end the paper.

2 The User Perspective

The SSA tool uses the existing Stateflow statechart editor and associated di-
alogues for creation of the statechart and associated aspects of the model. It
offers a separate new dialogue for entering of assumptions and consideration of
healthiness conditions. The mathematical analysis is intended to be automatic
and hidden, but some indication of progress is needed to fill the time that takes.

2.1 Model

Fig. 1 shows a Stateflow statechart that will be used as an example throughout
this paper. It is from a simplified model of a jet engine starting process, derived
from that of a real helicopter engine. How the model relates to the real engine
is explained after a brief review of the PFS subset of Stateflow notation.

A statechart is a convenient model for a function whose output values de-
pend on previous values of its inputs. The input values determine transitions
between states. There are a finite number of states. The destination state of
each transition determines the output values.1

The states are the nodes of the chart, and are labelled with their names.
Some states are nested within other states: they are children of parent states.
Only one child of a parent can be active at any time.2 A state with no children
is called a basic state; a state with children is a non-basic state. At any time, a
configuration of states is active, all nested within one another. Most transitions

1 Stateflow can alternatively have transitions (and even source states) determine the
output values, but PFS cannot, so that is ignored in this paper.

2 All children of a Stateflow AND state are active concurrently, but AND states are
not supported by PFS.

106 I. Toyn and A. Galloway

D
is

cr
et

eO
ut

pu
ts

N
or

m
al

O
pe

ra
tio

n

In
iti

al
S

ta
te

S
ta

rt
S

w
itc

hO
ff

S
ta

rt
S

w
itc

hO
n

O
ffP

re
Id

le
O

nP
re

Id
le

E
ng

in
eR

un
ni

ng
Id

le
A

ch
ie

ve
d

E
ng

in
eS

to
pp

ed
P

re
F

ue
lP

rim
e

F
ue

lP
rim

e

Ig
ni

tio
nS

pe
ed

Ig
ni

tio
n

[N
G

 <
 1

0
&

 S
T

A
R

T
]

[D
E

LA
Y

2
&

 N
G

 <
 1

0]

[N
G

 <
 1

0
&

 ~
S

T
A

R
T

]

[1
0<

=
N

G
<

15
 &

 S
T

A
R

T
]

[N
G

 <
 1

0
&

 S
T

A
R

T
]

[1
0<

=
N

G
<

15
 &

 ~
S

T
A

R
T

]

[N
G

 <
 1

0
&

 ~
S

T
A

R
T

]

[N
G

 >
=

 1
5

&
 S

T
A

R
T

]

[N
G

 <
 1

0
&

 ~
S

T
A

R
T

]

[N
G

 >
=

 1
5

&
 ~

 S
T

A
R

T
]

[1
5

<
=

 N
G

 <
 5

9
&

 S
T

A
R

T
]

[1
5

<
=

 N
G

 <
 5

9
&

 ~
S

T
A

R
T

]

[N
G

 >
=

 5
9

&
 S

T
A

R
T

]

[1
0<

=
N

G
<

15
 &

 S
T

A
R

T
]

[1
0<

=
N

G
<

15
 &

 ~
S

T
A

R
T

]

[a
fte

r(
5,

tic
k)

 &
 S

T
A

R
T

 &
 1

0
<

=
 N

G
 <

 5
9]

[D
E

LA
Y

2
&

 N
G

 >
=

 1
0]

[1
0<

=
N

G
<

15
 &

 ~
S

T
A

R
T

]

[N
G

 >
=

 5
9

&
 S

T
A

R
T

]

[N
G

 >
=

 1
0

&
 S

T
A

R
T

]

[N
G

 >
=

 5
9

&
 ~

S
T

A
R

T
]

[1
0

<
=

 N
G

 <
 5

9
&

 ~
S

T
A

R
T

]

Fig. 1. Example statechart

(the directed lines) connect a source state to a destination state. The initial
configuration is determined by the transition without a source state.

The transitions are labelled with conditions expressed in terms of the inputs
to the model. A transition between states is triggered (taken) when its source

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 107

state is active and the values of the inputs make its condition true. A transition
whose source is a non-basic state abbreviates a set of similar transitions, each
from a child of that source state. The PFS method decrees, and the SSA tool
ensures, that no inputs can simultaneously trigger more than one transition from
the same source state.

The inputs to the example statechart are as follows:3 START represents
whether the pilot is requesting that the engine start; NG represents the compres-
sor’s rotational speed expressed as a percentage of its maximum; and DELAY 2
abstracts a period needed for initialisation. The outputs from the statechart are
as follows: STARTR disables mechanical assistance to rotate the compressor;
FUELON allows fuel into the manifold; and IJVIEU actuates the fuel ignition
system (the Ignitor Jet Valve and Ignitor Exciter Unit). Stateflow allows the
output values to be specified in the state labels. For clarity here, these specifi-
cations are elided from Fig. 1, instead being shown in the assumptions dialogue
below (Fig. 2), where there is more space.

The statechart starts in state InitialState. When DELAY 2 becomes True, the
compressor speed determines the relevant next state. Whenever the START in-
put is toggled, a transition is taken between StartSwitchOff and StartSwitchOn.
With START equal to True, the starting of the engine proceeds from mechan-
ical assistance (PreFuelPrime) through priming sufficient fuel (FuelPrime) and
igniting fuel (Ignition) to having achieved idle speed (IdleAchieved).

2.2 Assumptions

The PFS method encourages recording of the following information on each state
in a statechart.

Last Assumptions — for any state, constraints on what the last values of the
inputs should have been for the state to be active.

Initial Assumptions — for a non-basic state, constraints on what the values
of the inputs should have been for the state to have become active.

Next Assumptions — for any state, constraints on what the next values of
the inputs should be while in the state.

State Preservation Condition — for a basic state, constraints on what the
next values of the inputs should be while the state persists.

This information should all be known to the user of Stateflow. Moreover, it can
all be expressed using the language of Stateflow conditions, with which the user
is already familiar. This is not to say that it is easy: careful thought is needed to
position information in the appropriate places, and some practice is necessary
before the method becomes familiar.

3 This explanation is intended to illuminate the example; detailed understanding of
jet engines is not expected.

108 I. Toyn and A. Galloway

Fig. 2. Example state assumptions

As examples of assumptions, consider those on state InitialState in the ex-
ample model, as presented by the SSA tool in the dialogue shown in Fig. 2.
Statecharts rarely explicitly specify behaviour in all circumstances. Assump-
tions document intentionally implicit behaviour, e.g. the persistence of a state
when no transition is taken. The assumptions are expressed as Stateflow condi-
tions, which are simple propositions written using &, | and ~ for conjunction,
disjunction and negation respectively.

Fig. 2 also shows output definitions using a tabular form, the rows being
equalities that are conjoined together. Large formulae can be easier to read as
tables than as straight text. Tabular forms may be used for any assumption, a
variety of combinators for their fields being available.

In expressing assumptions, constants such as upper and lower bounds are of-
ten needed. Having names for such constants makes them easier to read and to
maintain. The lexicon is provided to associate the names and values of constants.
The engine starting model has a lexicon containing constants for the maximum
compressor speed achievable by mechanical assistance, NGmax1fromstarter , and
for the maximum compressor speed below which mechanical assistance will in-
crease the compressor speed, NGmax2fromstarter .

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 109

2.3 Healthiness Conditions

The assumptions provide a basis for validating that the Stateflow model does
what it is intended to do. Healthiness conditions can be formulated to check
that the model conforms to the assumptions, and that the assumptions are
mutually consistent. The necessary healthiness conditions are determined by
the PFS method. Failure to prove healthiness conditions reveals mistakes such
as inappropriate trigger conditions, missing transitions, and contradictory and
missing assumptions. (Several of the transitions in Fig. 1 were introduced as
results of attempts to validate earlier versions of the model.) The method ensures
that all the assumptions made by the model on its surrounding environment
become explicit assumptions of the root state. This is one of the beneficial results
of applying the PFS method. Validation of the assumptions on the environment
is not considered in this paper.

At the bottom of Fig. 2 is a button that pops-up a menu of relevant health-
iness conditions, as shown in Fig. 3. Choosing a named healthiness condition
from that menu changes the dialogue to show that particular healthiness condi-
tion. As an example, Fig. 4 shows the Exiting transitions complete healthiness
condition for state InitialState. All the healthiness conditions are formed by com-
bining assumptions. The dialogue shows the logical operators that combine the
assumptions, while still allowing the individual assumptions to be revised. The
implication (could be turnstile �?) operator is the only new notation needing to
be explained to the user.

Fig. 3. Healthiness conditions menu for state InitialState

Some understanding of what a healthiness condition checks is useful in de-
termining any mistake to be corrected. This is discussed from the Z perspective
below (Section 3).

2.4 Proofs

When presented with a healthiness condition, such as that in Fig. 4, the user
wants to determine whether it is valid (provable). By inspection of the health-
iness condition of Fig. 4, it can be seen that the state preservation condition
covers all circumstances in which neither transition can be taken, so this health-
iness condition is valid regardless of InitialState’s last and next assumptions. So
thinking about a healthiness condition as presented may be effective, but there
are so many healthiness conditions that a user quickly tires of resolving them
mentally.

110 I. Toyn and A. Galloway

Fig. 4. Example healthiness condition

Even if the user is able to decide the validity of a healthiness condition,
reassurance from an alternative proof may be desirable. (Also, certification au-
thorities might wish to see particular forms of proof.) Pressing the Prove it
button causes the SSA tool to search for a proof. Finding a proof may take SSA
some time, so some indication of progress is provided in the Matlab command
window, as shown in Fig. 5. If the model is unchanged since the last search for
a proof, all steps bar the last are skipped.

Fig. 5. Progress of analysis messages

Fig. 5 shows that SSA claims to have found a proof of this healthiness con-
dition. In cases where the SSA tool fails to find a proof, it proceeds to search

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 111

for a counterexample, then displays that if found. Such counterexamples can
illuminate mistakes. If no counterexample is found, Undecided is displayed.

Thus far, the only mathematics seen by the user is the many small assump-
tions written in the notation of Stateflow conditions, and the logical operators
that combine them to form healthiness conditions. If the user wishes to see de-
tails of any proof found automatically, or—in the Undecided case—wishes to
search for a proof interactively, the File menu offers the Try proof command to
invoke CADiZ. A user who is uncomfortable with large quantities of mathemat-
ics would pass that obligation on to another user. A key purpose of this paper
is to explain how the search for a proof is automated, so it is time to see large
quantities of mathematics...

3 The Z Perspective

Enough has to be formalised about the model and its assumptions to be able to
generate the healthiness conditions, but not everything. For example, the nesting
of states needs to be formalised, but not their co-ordinates in the diagram.

3.1 Model

The inputs and outputs of a Stateflow model are of types such as uint32 and
boolean. ISO Standard Z’s empty schema representation of Booleans is used, as
explained in [12]. The definition of boolean is expressed here in a way that is
easier for proof than the one given there. These definitions are common to the
formalisations of all Stateflow models, so appear in a separate ISO Standard Z
section.

section stateflow toolkit parents standard toolkit

uint32 == 0 . . 4294967295
boolean == P[]
True == [| true]
False == [| false]

The formalisation of a particular model is expressed in terms of this parent.

section engine starting model parents stateflow toolkit

The inputs and outputs of the engine starting model are its signature, as
formalised in the Sig Statechart schema. The usual Z convention of decorating
names with ? for an input and ! for an output is followed (though no use is
made of the schema composition and schema piping notations that depend on
this convention).

112 I. Toyn and A. Galloway

Sig Statechart
START? : boolean
DELAY 2? : boolean
NG? : 0 . . 100
STARTR! : boolean
FUELON ! : boolean
IJVIEU ! : boolean

The states of the model can be active only in certain configurations, as formalised
in the Config schema. If a child state is active, its parent state shall be active.
If a parent state is active, exactly one of its child states shall be active. These
constraints are given for the outermost states, the rest being elided for brevity.4

Config
DiscreteOutputs,NormalOperation, InitialState,StartSwitchOn,
StartSwitchOff ,OnPreIdle, IdleAchieved ,OffPreIdle,
EngineRunning ,PreFuelPrime,FuelPrime,
Ignition,EngineStopped , IgnitionSpeed : boolean

NormalOperation ⇒ DiscreteOutputs
InitialState ⇒ DiscreteOutputs
DiscreteOutputs ⇒

NormalOperation ∧ ¬ InitialState ∨
¬ NormalOperation ∧ InitialState

[More constraints elided...]

The empty schema representation of Booleans enables particularly terse and
readable forms for the constraints. The logical operations can be read as pred-
icate or schema operations, as the whole predicate part of the schema has the
same meaning regardless of this choice.

The transitions of a model have their sources, destinations and trigger for-
malised using binding extension expressions. As an example, here is the formal-
isation of the initial transition.

Trans Init ==
〈| sources == [Config | true],
destinations == [Config ′ | InitialState ′ ∧ DiscreteOutputs ′],
trigger == [Sig Statechart | true] |〉

Specifying the parent state DiscreteOutputs here is redundant, as it is already
implicit in the Config schema, but here may be more convenient for analysis. A
more traditional Z formalisation could be defined in terms of the binding.

4 The comment is not ISO Standard Z.

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 113

Trans Init Schema
ΔConfig
Sig Statechart

Trans Init .sources
Trans Init .destinations
Trans Init .trigger

Such a schema representation may be convenient for testing the feasibility of the
transition, perhaps using an existing test case generation tool. For an analysis
tool wishing to extract the sources, destinations and trigger information, having
the binding representation is more convenient than just an unfolded schema
representation.

These definitions formalise the transitions as they appear in the statechart
diagram; the expansion of transitions from non-basic sources is done later, as a
first step in healthiness condition generation. Basing as much as possible of the
analysis on the Z formalisation allows as much as possible to be reused when
switching to—or offering an alternative—statechart editor.

3.2 Assumptions

Assumptions can refer to constants, so the lexicon has to be formalised first. The
traditional Z formulation would be as follows.

Lexicon
NGmax1fromstarter : uint32
NGmax2fromstarter : uint32

NGmax1fromstarter = 40
NGmax2fromstarter = 50

In ISO Standard Z, this can be abbreviated using constant declarations.

Lexicon
NGmax1fromstarter == 40
NGmax2fromstarter == 50

Using a schema when there is only one binding seems clumsy. ISO Standard Z
allows a simpler formulation using a binding extension expression.

BLexicon ==
〈| NGmax1fromstarter == 40,NGmax2fromstarter == 50 |〉

SSA allows more general forms of definition into its lexicon. Expressions that are
common to several assumptions can be named, and they can refer to the inputs

114 I. Toyn and A. Galloway

and outputs of the model and to other definitions in the lexicon. A formulation
that would be able to cope with such definitions follows.

Lexicon
Sig Statechart
NGmax1fromstarter : uint32
NGmax2fromstarter : uint32

NGmax1fromstarter = 40
NGmax2fromstarter = 50

This generality is not needed by the example, so the rest of this paper refers to
the BLexicon form.

Stateflow conditions are easily formalised as Z predicates, mapping & to ∧,
| to ∨ and ˜ to ¬ . They can be given mnemonic names by first turning them
into schemas and then using a binding extension expression, as in the following
binding that contains the assumptions on state InitialState.5

InitialState Anns ==
〈| last ==

[Sig Statechart | ¬ DELAY 2? ∧ ¬ START?],
next ==

[Sig Statechart | ¬ START?],
spc ==

[Sig Statechart | ¬ DELAY 2?],
outputs ==

[Sig Statechart | STARTR! ∧ ¬ FUELON ! ∧ ¬ IJVIEU !],
trigger EngineRunning ==

[Sig Statechart | DELAY 2? ∧ NG? ≥ 10],
trigger EngineStopped ==

[Sig Statechart | DELAY 2? ∧ NG? < 10],
inittrigger ==

[Sig Statechart | true] |〉

This binding also contains transition triggers, to ease access to them during
healthiness condition generation. The formalisations of non-basic states are sim-
ilar, but the bindings contain an initial assumption in place of the state preser-
vation condition spc.

As an example of references to constants in the lexicon, consider the next
assumptions of state DiscreteOutputs, which are formalised as follows.

5 There is no need to worry about the meanings of these assumptions; their form is
what is important here.

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 115

DiscreteOutputs Anns ==
〈| next ==

[Sig Statechart ′ ; Sig Statechart |
(¬ DELAY 2?′ ⇒ ¬ START?) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧

NG?′ > BLexicon.NGmax1fromstarter ⇒
NG? ≤ NG?′) ∧

(DELAY 2?′ ∧ ¬ START?′ ∧
NG?′ ≤ BLexicon.NGmax1fromstarter ⇒

NG? < 59) ∧
(START?′ ∧

NG?′ < BLexicon.NGmax2fromstarter ⇒
NG? ≥ NG?′) ∧

(START?′ ∧
NG?′ ≥ BLexicon.NGmax2fromstarter ⇒

NG? ≥ 10) ∧
(DELAY 2?′ ∧ NG?′ < 15⇒ NG? < 59) ∧
(DELAY 2?′ ⇒ DELAY 2?)]

[Other assumptions elided...]
|〉

These next assumptions on the root state are interesting for two more reasons.
First, they express the assumptions made by the model on its surrounding envi-
ronment. They were not written by the user in advance, but are a consequence
of the PFS analysis: next assumptions can be added by the user to parent states
as needed to make healthiness conditions valid, eventually leading to these as-
sumptions on the root state. Second, they relate the expected next values of the
inputs with the previous (primed) values of the inputs. Thus the inputs’ rates
of change can be constrained as well as their ranges. This use of priming is the
opposite of the usual Z convention, the latter not being needed in this formali-
sation. Primes meaning previous are more mnemonically written as prefixes in
names rather than postfixes, but Z does not allow prefix primes in names. The
SSA tool expects the user to write primes in prefix position, and moves them to
postfix position in the translation to Z.

3.3 Healthiness Conditions

This section says informally what the various healthiness conditions check for,
and shows how specific healthiness conditions related to the InitialState of the
example statechart are formalised.

Next Assumptions Established — for any child state, are its next assump-
tions established by its configuration’s last assumptions and the next assump-
tions of its parent? For example...6

6 The conjecture name is not ISO Standard Z.

116 I. Toyn and A. Galloway

Next InitialState ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
DiscreteOutputs Anns .next •

InitialState Anns .next

This mnemonic formulation is quite readable—it is easy to verify that it has
been formulated correctly—and the binding selections are easily unfolded by a
prover. Each selects a schema from a binding and uses it as a predicate (exploiting
schemas as expressions in ISO Standard Z); all of its variables are bound by the
universal quantification in the healthiness condition. The last assumptions need
to be primed for this healthiness condition, but not in some others; assumptions
are expected to be prepared using the minimum of primes.

The rest of this section discusses the other healthiness conditions. As they
all take a similar Z form, a reader interested only in the use of Z may prefer to
skip over the rest of this section.

The last assumptions of a state implicitly include those of its parent, since all
healthiness conditions refer to the last assumptions of the state’s configuration.
In contrast, the next assumptions of a state need to be made fully explicit.

Last Assumptions Established — for any transition between states, are its
destination configuration’s last assumptions established by its trigger in com-
bination with its source state’s next assumptions and its source configuration’s
last assumptions? For example...

Last EngineRunning InitialState ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
InitialState Anns .next ∧
InitialState Anns .trigger EngineRunning •

DiscreteOutputs Anns .last ∧ NormalOperation Anns .last ∧
StartSwitchOff Anns .last ∧ EngineRunning Anns .last

Also, for any initial transition, are its destination configuration’s last assump-
tions established by its trigger in combination with its destination state’s parent’s
initial assumptions? For example...

Last InitialState DiscreteOutputs ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .initial ′ ∧ InitialState Anns .inittrigger ′ •

DiscreteOutput Anns .last ∧ InitialState Anns .last

Last Assumptions Preserved — for any basic state, are its configuration’s
last assumptions preserved by its next assumptions in combination with its state
preservation condition? For example...

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 117

Last InitialState SPC ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
InitialState Anns .next ∧ InitialState Anns .spc •

DiscreteOutput Anns .last ∧ InitialState Anns .last

Initial Assumptions Established — for any transition to a non-basic des-
tination state, are its destination state’s initial assumptions established by its
trigger in combination with its source configuration’s last assumptions and its
source state’s next assumptions? For example...

Initial EngineRunning InitialState ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
InitialState Anns .next ∧
InitialState Anns .trigger EngineRunning •

EngineRunning Anns .initial

Also, if the transition is an initial transition, are its destination state’s initial
assumptions established by its trigger in combination with its destination state’s
parent’s initial assumptions? For example...

Initial InitialState DiscreteOutputs ==

�? ∀Sig Statechart |
DiscreteOutputs Anns .initial ∧ InitialState Anns .inittrigger •

InitialState Anns .initial

Transitions Complete — for any basic state, do the triggers of its exiting
transitions in combination with its state preservation condition cover all situa-
tions permitted by the combination of its configuration’s last assumptions and
its next assumptions? For example...

Complete InitialState ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
InitialState Anns .next •

InitialState Anns .trigger EngineRunning ∨
InitialState Anns .trigger EngineStopped ∨
InitialState Anns .spc

Transitions Disjoint — for any basic state, are the triggers of its exiting
transitions and its state preservation condition pairwise disjoint in all situations
permitted by the combination of its configuration’s last assumptions and its next
assumptions? For example...

118 I. Toyn and A. Galloway

Disjoint InitialState ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
InitialState Anns .next •

¬ (InitialState Anns .trigger EngineRunning ∧
InitialState Anns .trigger EngineStopped) ∧

¬ (InitialState Anns .trigger EngineRunning ∧
InitialState Anns .spc) ∧

¬ (InitialState Anns .trigger EngineStopped ∧
InitialState Anns .spc)

3.4 Proofs

Automatic proof of the healthiness conditions is desirable. If the healthiness con-
ditions were arbitrary Z conjectures, this would be unachievable, but fortunately
they have a simple form that should usually be decidable. The following CADiZ
tactic aims to automate the proofs of conjectures of this form.

1 CheckTactic goal g |
2 !patcons pred p | 1 •
3 !(“normalization” p ∨ skip) ;
4 match p
5 :: decls ds; pred p2 | ∀ ds • p2 •
6 “apply tactic” p2 “expandAssumptions” ;
7 “apply tactic” p2 “expandLexicons” ;
8 “apply tactic” ds “expandInclusions” ;
9 “apply tactic” p “expandPred”
10 :: . ;
11 (“linear decision” p ∨ “model check” p ∨
12 “heuristic decision” p ∨ “simplification tac” p ∨ skip)

The line numbers are used in subsequent explanation; they are not part of
the tactic. This tactic is used for proofs of all Stateflow models, so is best placed
for CADiZ in section stateflow toolkit .

Line 1 gives the name of the tactic and lists its parameters. If the argu-
ment to which the tactic is applied is not a goal (conjecture paragraph), the
tactic immediately fails. Suppose for example that tactic CheckTactic is applied
to healthiness condition Next InitialState. Line 1 associates g with the whole
conjecture.

Next InitialState ==

�? ∀Sig Statechart ′ ; Sig Statechart |
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
DiscreteOutputs Anns .next •

InitialState Anns .next

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 119

Line 2 of the tactic associates p with the first consequent of the current goal.
Every tactic application has a current goal, which is the goal in which all the
arguments appear. It is coincidental that in this tactic the sole argument is the
whole goal. However, the current goal might not have any consequents: goals
in CADiZ can have antecedents (predicates to the left of the �?) as well as or
instead of consequents. If there are no consequents, this tactic would fail. The
association of p remains in scope to the end of the tactic, unless an inference
rule produces sub-goals in which nothing corresponds to what was associated
with p. Line 2 also has a cut operator (!), which says not to evaluate any
more than the first success of the following tactic. In the example, line 2 as-
sociates p with the universal quantification, keeping g associated with the whole
conjecture.

Line 3 says to normalize the consequent or else (!) to do nothing (skip). If
the consequent is a universal quantification, normalization applies the following
inference rule, where p1 is not true.

∀ ds | p1 • p2 =⇒ ∀ ds • p1⇒ p2

The skip is there in case normalization is not applicable (p1 is true, or p is
not a quantified predicate). For the healthiness conditions considered in this
paper, p1 is always a conjunction, but the tactic is applicable more generally. In
the example, the normalization inference rule applies, producing the following
sub-goal.

�? ∀Sig Statechart ′ ; Sig Statechart •
DiscreteOutputs Anns .last ′ ∧ InitialState Anns .last ′ ∧
DiscreteOutputs Anns .next ⇒

InitialState Anns .next

The p is now associated with the normalized universal quantification, and g is
associated with the whole sub-goal.

Line 4 says to try matching the normalized universal quantification against
following patterns, with line 10 marking the end of the match construct and
denoting sequential composition with what follows.

Line 5 starts the only pattern in this particular match construct; if this
pattern doesn’t match, then the tactic fails. It declares ds and p2, and associates
these with specific parts of p. These associations remain in scope until the end
of the match construct. In the example, ds is associated with the two schema
inclusions, p2 is associated with the implication, p remains associated with the
universal quantification, and g with the whole goal.

Line 6 applies an auxiliary tactic expandAssumptions, whose purpose is to
replace the mnemonic selections of assumptions by the corresponding math-
ematics. In the example, tactic expandAssumptions produces the following
sub-goal.

120 I. Toyn and A. Galloway

�? ∀Sig Statechart ′ ; Sig Statechart •
true ∧ (¬ DELAY 2?′ ∧ ¬ START?′) ∧
(¬ DELAY 2?′ ⇒ ¬ START?) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧

NG?′ > BLexicon.NGmax1fromstarter ⇒ NG? ≤ NG?′) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧

NG?′ ≤ BLexicon.NGmax1fromstarter ⇒ NG? < 59) ∧
(START?′ ∧

NG?′ < BLexicon.NGmax2fromstarter ⇒ NG? ≥ NG?′) ∧
(START?′ ∧

NG?′ ≥ BLexicon.NGmax2fromstarter ⇒ NG? ≥ 10) ∧
(DELAY 2?′ ∧ NG?′ < 15⇒ NG? < 59) ∧
(DELAY 2?′ ⇒ DELAY 2?)⇒

¬ START?

In expanding each assumption, the tactic applies a composition of inference
rules, each producing an intermediate goal. These goals exploit ISO Standard
Z’s syntax that allows use of any schema as an expression, and any schema
expression as a predicate.

Line 7 applies the auxiliary tactic expandLexicons, whose purpose is to re-
place all mnemonic selections of constants by their values. In the example, tactic
expandLexicons produces the following sub-goal.

�? ∀Sig Statechart ′ ; Sig Statechart •
true ∧ (¬ DELAY 2?′ ∧ ¬ START?′) ∧
(¬ DELAY 2?′ ⇒ ¬ START?) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧ NG?′ > 40⇒ NG? ≤ NG?′) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧ NG?′ ≤ 40⇒ NG? < 59) ∧
(START?′ ∧ NG?′ < 50⇒ NG? ≥ NG?′) ∧
(START?′ ∧ NG?′ ≥ 50⇒ NG? ≥ 10) ∧
(DELAY 2?′ ∧ NG?′ < 15⇒ NG? < 59) ∧
(DELAY 2?′ ⇒ DELAY 2?)⇒

¬ START?

Line 8 applies the auxiliary tactic expandInclusions, whose purpose is to
expand the inclusions of Sig Statechart to declarations of the inputs and outputs,
appropriately decorated. In the example, tactic expandInclusions produces the
following sub-goal.

�? ∀START?′ : boolean; DELAY 2?′ : boolean;
NG?′ : 0 . . 100; STARTR!′ : boolean;
FUELON !′ : boolean; IJVIEU !′ : boolean;
START? : boolean; DELAY 2? : boolean;
NG? : 0 . . 100; STARTR! : boolean;
FUELON ! : boolean; IJVIEU ! : boolean •

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 121

true ∧ (¬ DELAY 2?′ ∧ ¬ START?′) ∧
(¬ DELAY 2?′ ⇒ ¬ START?) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧ NG?′ > 40⇒ NG? ≤ NG?′) ∧
(DELAY 2?′ ∧ ¬ START?′ ∧ NG?′ ≤ 40⇒ NG? < 59) ∧
(START?′ ∧ NG?′ < 50⇒ NG? ≥ NG?′) ∧
(START?′ ∧ NG?′ ≥ 50⇒ NG? ≥ 10) ∧
(DELAY 2?′ ∧ NG?′ < 15⇒ NG? < 59) ∧
(DELAY 2?′ ⇒ DELAY 2?)⇒

¬ START?

Line 9 applies the auxiliary tactic expandPred , whose purpose is to unfold
those notations in the given predicate that are unknown to one or more of
the decision procedures. In the example, it merely replaces every occurrence of
boolean by P[]. (Recall that boolean is defined in section stateflow toolkit , which
is unknown by the built-in decision procedures.)

Lines 11 – 12 then try various decision procedures, each of which might or
might not be applicable. The linear decision procedure uses a SUP-INF proce-
dure [13] to decide linear arithmetic problems. The model check procedure tries
to pass the problem to NuSMV [14], which works for some finite problems. The
heuristic decision procedure uses simulated annealing to solve some non-linear
problems. The simplification tac procedure works for some predicates that are
expressed purely in terms of the Z core language (no toolkit operators). The final
skip is beneficial for users wishing to see how far an otherwise failed application
of CheckTactic got. In the example, linear decision is not applicable (empty
schemas are not arithmetic), but model check is (empty schemas are finite, as is
0 . . 100), and it decides that the goal is valid.

To find a counterexample, the healthiness condition is negated and then a
variant of CheckTactic is used, in which the decision procedures are replaced by
solution finders. For example, in an earlier version of the engine starting model,
the transition from FuelPrime to Ignition was labelled [after(5, tick) & START &
15 <= NG <= 59]. Analysis of the healthiness condition for completeness of
the transitions exiting FuelPrime gave the counterexample NG = 11, ′NG =
31,START = True, tau = 5, where tau is a measure of ticks (and with all
unmentioned variables taking arbitrary values from their types). This drew at-
tention to the lack of an exiting transition not just in that circumstance but also
for any value of NG between 10 and 15, and hence the change was made.

More information on the CADiZ tactic language has been published [15] and
up-to-date details may be found in the CADiZ documentation [2].

4 Measurements

The Z formalisation of the engine starting model is about 35 pages as typeset.
There are 83 healthiness conditions typeset over a further 24 pages. This is all
generated in about 13 seconds on a 1900MHz Pentium running Linux.

122 I. Toyn and A. Galloway

The tactics, with all their auxiliaries, are about 7 pages as typeset. Tac-
tic CheckTactic successfully proves all the healthiness conditions for the engine
starting model (having corrected the model and assumptions) in about 10 min-
utes. Some counterexamples were found during the development.

Since CheckTactic searches for proofs, it is to be expected that it should take
longer than replaying scripts of previously found proofs. However, 7 seconds on
average per healthiness condition is annoyingly slow. This performance is largely
due to exponential behaviour in the tactic interpreter, and partly due to the fixed
order of invocation of the decision procedures being sometimes unfortunate.
Much better performance would be possible with further work.

These measurements are for thorough analysis of a single statechart. In a
system modelled by many statecharts, the method can be applied selectively,
typically to the most critical statecharts.

5 Conclusions

Within the specific context of Stateflow models, this paper has presented a for-
mal method that is based on Z yet can be applied without users needing any
special mathematical expertise. The focus has been on the use of ISO Standard Z
and CADiZ. Much good use has been made of the empty schema representation
of Booleans, and of binding extensions for naming the components of structures.
The healthiness conditions exploit schemas as expressions not only in their proofs
but also in the formulation of their conjectures. Sections have assisted the reuse
of common definitions. Without these notations, the Z specifications would have
been much less clear. A CADiZ tactic has been outlined that co-ordinates the
application of inference rules, auxiliary tactics and decision procedures to pro-
duce an inference capability greater than any one decision procedure (though
the integration of the decision procedures is shallow).

Although the PFS method was developed in collaboration with aerospace
engineers, that involved pencil-and-paper exercises: no engineers have yet used
the SSA tool. The engine starting model used as an example in this paper was
first done as a pencil-and-paper exercise, revealing some mistakes in the original
model. Application of the SSA tool to the example revealed incompleteness in
the pencil-and-paper analysis and further mistakes in the model.

The chief barrier to immediate usage of the SSA tool in industry is its lack of
support for some Stateflow notations, e.g. junctions, AND states, supertransi-
tions, and local variables. Further work on the SSA tool should focus on these, as
required by more case studies. It will require further research on the PFS method.

Acknowledgements

Funding for this work was provided by the UK MoD, the EPSRC (MATISSE
project, GR/R/70590/01), the High Integrity Systems Engineering group at the
Department of Computer Science, University of York, and by NATEC. John

Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ 123

McDermid, Frantz Iwu and anonymous referees provided helpful comments on
earlier drafts.

References

1. Toyn, I., McDermid, J.: CADiZ: An architecture for Z tools and its implementation.
Software — Practice and Experience 25 (1995) 305–330

2. Toyn, I.: CADiZ on-line documentation (2005)
http://www-users.cs.york.ac.uk/˜ian/cadiz/.

3. ISO/IEC: Information Technology—Z Formal Specification Notation—Syntax,
Type System and Semantics.
http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568 2002(E).zip (2002)
International Standard 13568:2002.

4. The MathWorks: Matlab and Simulink for technical computing (2005)
http://www.mathworks.com/.

5. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8 (1987) 231–274

6. Arthan, R., Caseley, P., O’Halloran, C., Smith, A.: ClawZ: Control laws in Z. In:
ICFEM 2000: 3rd IEEE International Conference on Formal Engineering Methods.
(2000) 169–176

7. Toyn, I.: Simulink/Stateflow Analyser user’s manual. Technical report, Dept of
Computer Science, University of York (2005)

8. Galloway, A., Cockram, T., McDermid, J.: Experiences with the application of
discrete formal methods to the development of engine control software. In: Pro-
ceedings of Distributed Computer Control Systems (DCCS), IFAC (1998)

9. McDermid, J., Galloway, A., Burton, S., Clark, J., Toyn, I., Tracey, N., Valentine,
S.: Towards industrially applicable formal methods: Three small steps, and one
giant leap. In: International Conference on Formal Engineering Methods, IEEE
Press (1998) 76–88

10. Iwu, F., Galloway, A., Toyn, I., McDermid, J.: Practical Formal Specification for
embedded control systems. In: INCOM’04: 11th IFAC Symposium on Information
Control Problems in Manufacturing. (2004)

11. Blow, J., Galloway, A.: Generalised substitution language and differentials. In:
ZB2002: Formal Specification and Development in Z and B. Volume 2272 of Lecture
Notes in Computer Science., Springer (2002) 396–415

12. Toyn, I.: Innovations in the notation of Standard Z. In: ZUM’98: The Z Formal
Specification Notation. Volume LNCS 1493., Springer-Verlag (1998) 193–213

13. Shostak, R.: On the SUP-INF method for proving Presburger formulas. JACM 24
(1977) 529–543

14. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs, D. Peled, eds.: Proceedings Eleventh Confer-
ence on Computer-Aided Verification (CAV’99). Number 1633 in Lecture Notes in
Computer Science, Trento, Italy, Springer (1999) 495–499

15. Toyn, I.: A tactic language for reasoning about Z specifications. In: 3rd
Northern Formal Methods Workshop, BCS Electronic Workshop in Computing
http://www.ewic.org.uk/ewic/workshop/view.cfm/NFM-98 (1998)

A Stepwise Development of the Peterson’s
Mutual Exclusion Algorithm Using B Abstract

Systems

J. Christian Attiogbé

LINA - FRE CNRS 2729,
University of Nantes, France

Christian.Attiogbe@univ-nantes.fr

Abstract. We present a stepwise formal development of the Peterson’s
mutual exclusion algorithm using Event B. We use a bottom-up approach
where we introduce the parallel composition of subsystems which are
separately specified. First, we specify subsystems as B abstract systems;
then we compose the subsystems to get a first abstract solution for the
mutual exclusion. This solution is improved to obtain the Peterson’s al-
gorithm. This is achieved by refinement and composition of the former
abstract subsystems. Therefore the result is formally proved on the basis
of correctness (safety) properties added to the invariant. Atelier B (a B
prover) is used to check completely the development.

Keywords: Event B, Parallel Composition, Refinement, Mutual Exclu-
sion.

1 Introduction

The B method [1] resides in the category of formal techniques which deal with
correct system development starting from (abstract) model-oriented specifica-
tions. Stepwise refinement is undertaken until more concrete specifications are
obtained or code generated. The refinement steps are formally proved by theo-
rem proving. Consequently, one may build a correct system provided that the
initial abstract specification is judiciously captured from the analysis of the infor-
mal requirements of the problem at hand. The event-based approach of B [6, 2]
allows the specification of abstract systems which may be used for developing
distributed and concurrent systems.

However, the B approach is a top-down approach and its application may be
tedious for large system development. In [8] we propose a bottom-up approach to
complement the top-down one; our approach provides parallel composition of B
abstract systems in order to build large interacting systems by combining their
components. This copes well with the practical need to focus on one subsystem
at time (without omitting the global identified properties) when developing large
systems. Practically it is difficult to formally reason on a very large system; but
a solution is to do it through decomposition and reasoning on the subsystems.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 124–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 125

Thereby this requires compositionality property in order to have correct system
built from the composition of correct and separately built subsystems.

The current paper addresses the development of a system to control the
accesses to critical sections by processes or subsystems which run concurrently.
This topic is a well-studied one; it is known as the mutual exclusion of accesses to
critical sections. It is more generally related to the development of a concurrent
system from its subsystems. Therefore we concentrate on the illustration of our
approach instead of the problem details. The contribution of the paper is a
bottom-up technique to build, within Event B, correct interacting systems with
access to shared variables.

In the paper we focus on one aspect which concerns global shared variables
but our approach of abstract system composition is general; it also deals with
message passing (not discussed in the current paper), which is a more general
technique in distributed environments. Indeed, techniques of message passing
generalise to systems without common memory.

The paper is structured as follows. In Section 2 we present the technique
that we use for the parallel composition of B abstract systems. The Section 3
is devoted to the application to the mutual exclusion algorithm: we present a
stepwise construction (refinement and composition) of Peterson’s algorithm. In
Section 4 we discuss some related works and we finish by the Section 5 where
we give some concluding remarks.

2 Communicating B Abstract Systems: The Technique

In this section, we begin with the presentation of the working hypothesis and
then we present our approach (CBS: Communicating B Systems) through the
composition operator introduced to structure abstract systems and to make them
communicate. We examine the composition based on the classical communication
mechanism of shared state variables.

2.1 Fundamental Preliminaries

Proposition 1. An abstract system involving several events which cooperate to
achieve the same task may be split into several abstract (sub)systems on the basis
of the global state variables and the local variables used by these events.

Variables and Invariant Distribution. The variables and the invariant of
an abstract system may be distributed over two or more abstract (sub)systems
on the basis of the variables used by its events. Some variables are shared by all
events, other variables are not. A common part (made of the shared variables
and the associated invariant part) of the abstract system is then shared by all
events. Accordingly, the remaining variables and invariant may be split to form
the desired distribution.

This constitutes a distribution policy which is an important working hypoth-
esis in what follows. We define a specific composition operator which composes
the abstract subsystems in such a way that the result is an abstract system.

126 J.C. Attiogbé

Shared Variables and Multiple Substitutions. Simultaneous composition
of generalized substitutions (S‖T) was initially defined when the generalized sub-
stitutions S and T have disjoint space of variables [1]. Here, for the composition
of abstract systems, we need the composition of substitutions with non-disjoint
space of variables. Therefore, we use the extension of ‖ proposed by Dunne
[18, 19]. Several authors have dealt with this concern [14, 18, 19]. Dunne [18] ex-
tends the domain of the multiple composition operator ‖ and calls it parallel
composition of substitutions. He adds the following rule to the initial rewrite
rules of Abrial [1]

x := E || x := F =̂ E = F ⇒ x := E

Dunne points out that when the substitutions share the same variable space1, the
generalized composition ‖ corresponds to the more general2 fusion operator of
Back and Butler[11]. Moreover, Dunne’s ‖ parallel composition of substitutions
can have an arbitrarily overlapping variable spaces; It is not the case for the fu-
sion operator. The practical issues involved in adopting this approach are: shared
variables can be introduced in the specification of abstract systems; concurrent
composition is then tractable.

Working Structure of Abstract System. We follow the approach presented
for abstract machines in [14] by considering the signature and the body of an
abstract system. The signature signature(S) of an abstract system S is the set
of the identifiers appearing in the static part (constants, variables) and in the
dynamic part of an abstract system (event names). Consequently, the identifiers
are gathered together according to their category (constant, variable, event). A
concrete shape of a signature with these features is:

{〈constant, {consId list}〉, 〈variable, {varId list}〉, 〈event, {evtId list}〉}

where consId list, varId list and evtId list are respectively the list of constant
identifiers, the list of variable identifiers and the list of event identifiers.

The signature is required for practical reasons: it is the interface for renaming
and comparison of systems. The body body(S) is made of the variables (V), the
invariant (Inv), the initialisation (U) and the set of events (E) of the abstract
system. We introduce auxiliary functions sets(Si), var(Si), inv(Si), init(Si),
events(Si) to denote respectively the set of sets appearing in the sets clause,
the set of variables, the invariant, the initialisation and the set of events of an
abstract system Si . We simplify the constituents3 and the notation by consid-
ering S = 〈Σ,B〉 with Σ representing signature(S) and B = 〈V , Inv ,U ,E 〉
representing body(S) = 〈var(S), inv(S), init(S), events(S)〉.

1 It is called frame by Dunne.
2 It is defined in the general context of all monotonic predicate transformers.
3 We do not consider all the clauses of an abstract system, however the extension is

trivial.

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 127

Thus, an abstract system Si = 〈signature(Si), body(Si)〉 is simply given by
〈Σi ,Bi〉 or equivalently 〈Σi , 〈Vi , Invi ,Ui ,Ei〉〉. Moreover, for each event ee mem-
ber of events(Si), guard(ee) denotes the guard part of ee and subst(ee) denotes
the generalized substitution which describes the action of ee.

Abstract System Renaming. A renaming of an abstract system S = 〈Σ,B〉
is a consistent syntactic replacement of some identifiers used in S by other given
identifiers. Consequently, the renaming is defined on the signature Σ and ex-
tended to B . Let Σi and Σj be signatures (with Σi ⊆ Σ) and α ∈ Σi → Σj
be an injective signature mapping such that the types of the identifiers are pre-
served; α can be extended easily to B in such a way that each free identifier idt
in Σi used within B is replaced by its value α(idt) in α(B).

rename(〈Σ,B〉, α) =̂ 〈α(Σ), α(B)〉

On this basis and following [14], other auxiliary operations can be defined on
abstract systems.

Asynchronous Versus Synchronizing Communication. Communication
involves first the simultaneous evolution of two or more systems, and then the ex-
change of data. For this purpose, we need composition and communication mech-
anisms for abstract systems. Above all the involved systems are asynchronous:
there is no global clock. From a practical point of view, a simple communica-
tion involves a receiver and a sender. Two points of view are generally accepted
for communication mechanisms. The communication can be synchronizing (and
blocking until completion). This is referred to with the rendez-vous paradigm à
la CSP where one considers the final act of communication involving the commu-
nicating systems, provided that all the systems reach the communication point.
From asynchronous communication point of view, any time duration may pass
between the starting of the communication (by one of the involved systems) and
its completion (the other involved system participates). It means that systems
involved are not blocked before completion. In the scope of the event-driven B
approach, events are considered as atomic. Their occurrences are asynchronous,
and they do not consume time. They may be synchronizing when the effect of
one affects the guard of another one. This is explained in more detail below.

2.2 Composition and Communication with Shared State Variables

A composition operator may permit communication between several abstract
systems so as to achieve a common task. We begin with the definition of a
composition operator that makes abstract systems communicate through shared
state variables. The working hypothesis is that this composition should be com-
patible with the top-down approach. That means, following on from the result of
the composition, it may be possible to use refinement and decomposition[3]. The
subsystems to be composed may share some common state variables gv and the
associated global invariant properties I(gv). However if the subsystems do not

128 J.C. Attiogbé

system S1

sets CS ,SS1

variables gv , lv1

invariant Inv1

initialisation U1(gv , lv1)
events

ee1 =̂
any bv1 where

P1(lv1, bv1, gv) ∧ P2(gv)
then

S(gv , lv1, bv1)
end

end

system S2

sets CS ,SS2

variables gv , lv2

invariant Inv2

initialisation U2(gv , lv2)
events

ee2 =̂
any bv2 where

Q1(lv2, bv2, gv) ∧ Q2(gv)
then

T (gv , lv2, bv2)
end

end

Fig. 1. Abstract systems S1 and S2

share state variables, the composition results in a pure interleaving. Addition-
ally, each subsystem Si may have its own local variables (lvi). The initialisation
operates on gv and lvi . In the following we use S1 and S2 for illustration (Fig.
1). Note that the invariant Invi of Si is rewritten with local and common state
variables of Si as: Ii(gv) ∧ Li(lvi) ∧ Ki(gv , lvi).

Li(lvi) deals with the local properties, Ki(gv , lvi) relates local variables and
global ones and expresses the associated properties. As already stated, Ii(gv) is
the common part of the invariant shared by the abstract systems under consid-
eration. If Ki(gv , lvi) is not explicit in a given invariant, it is interpreted as the
true predicate.

The shape of events in Figure 1 is used as a canonical form of the event.
Each abstract systemmay have several events. The guard guard(ee) of an event
ee is made of two predicate parts. The first one is expressed using local state
variables lv , bound variables bv (variables bound by any) and global variables
gv of the event: P1(lv1, bv1, gv). The second one is uniquely based on global state
variables: P2(gv). A before-after predicate BA(v , v ′) is associated to each event
and describes it as a predicate relating the values of the state variables before
(v) and after (v ′) the event occurrence.

An event is enabled if its guard holds otherwise the event is disabled . An
event eei enables another event eej if the action of eei contributes in enabling
the guard of eej . Event guards depend on the state variables. Some events of
one of the composed abstract systems may be affected by the action of certain
events of the other abstract systems. That means the guard of a particular event
may hold after the effect of the other event on the common variables. These
events which depend on each other are called related events. On the other hand,
unrelated events are events whose guards do not depend on the actions of the
others and vice versa.

ParallelCompositionwithAsynchronousCommunication. Asynchronous
communication generally refers to the fact that a communication between two or

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 129

more subsystems is non-blocking; an arbitrary time duration may pass between the
starting of an exchange and its effective completion. It may be contrasted with the
rendez-vous paradigm which is blocking and used in the synchronizing case. The
asynchronous parallel composition of two abstract systems S1 and S2 is denoted by
S1]| [S2. This composition defines an abstract system AS obtained by computing
its state and event parts from those of S1 and S2. The notation AS =̂ S1] | [S2 is
then used. A procedure asynchronousMerging is used for the computation of the
composition result. The procedure is described by the forthcoming inference rules
which formalize the computation of each clause of the resulting abstract system.

For the state part, the sets clause of the resulting abstract system is ob-
tained by merging the sets clauses of the composed abstract subsystems with a
set union: {CS ,SS1} ∪ {CS ,SS2}. This is formalized with the AsyncSetsRule
rule.

AS = S1]|[S2
sS1 = sets(S1) sS2 = sets(S2) sS = sS1 ∪ sS2

sets(AS) = sS AsyncSetsRule

In the same way we formalize using similar inference rules the computation of
the other clauses of the composed abstract systems. The variables clauses of S1
and S2 are merged with a set union to form the variables of S: {gv , lv1}∪{gv , lv2}.

AS = S1]|[S2
vS1 = var(S1) vS2 = var(S2) vS = vS1 ∪ vS2

var(AS) = vS AsyncVarsRule

The initialisation of AS is defined with the merging (parallel composition of
substitutions Ă la Dunne) of the initialisations of S1 and S2: U1‖U2. We adopt
a simplification, the shared variables are not repeated.

The invariant of the resulting AS abstract system is the conjunction of the
S1 and S2 invariants: Inv1 ∧ Inv2 (AsyncInvRule). To avoid inconsistency, we
require that the invariants of subsystems do not express contradictory require-
ments. That means one does not imply the negation of the other and vice versa.
We note notContradict(Inv1, Inv2) for: K1(gv , lv1) ∧ K2(gv , lv2)

AS = S1]|[S2
iS1 = inv(S1) iS2 = inv(S2) notContradict(Inv1, Inv2)

iS = iS1 ∧ iS2

inv(AS) = iS AsyncInvRule

The result of this stage of the procedure is presented in the Figure 2 (a).
As far as the event part is concerned, the events of S1]|[S2 are obtained by

the union of all the events of the abstract systems S1 and S2 (AsyncEvtRule).
The operator

⊎
denotes such a union of event sets (MergeEvtRule).

ee ∈ events(S1) ∨ ee ∈ events(S2)
ee ∈ events(S1)

⊎
events(S2)

MergeEvtRule

130 J.C. Attiogbé

system S1]|[S2

sets
CS ,SS1,SS2

variables
gv , lv1, lv2

invariant
Inv1 ∧ Inv2

initialisation
U1‖U2

(a) State Part

system S1]|[S2 (Cont’d)
· · ·
events

ee1 =̂
any bv1 where

P1(lv1, bv1, gv) ∧ P2(gv)
then

S(gv , lv1, bv1)
end

; ee2 =̂
any bv2 where

Q1(lv2, bv2, gv) ∧ Q2(gv)
then

T (gv , lv2, bv2)
end

end
(b) Event Part

Fig. 2. Abstract system corresponding to S1]|[S2

In case of event names conflict, a renaming should be performed before the
composition of the abstract systems.

AS = S1]|[S2
events(S1) ∩ events(S2) = ∅

eAS = events(S1)
⊎

events(S2)
events(AS) = eAS

AsyncEvtRule

The subsystems should be proved to be consistent with respect to their invariant.
Therefore, The events of S1 (resp. S2) preserve the part of the invariant involving
the free variables used in S1 (resp. S2) due to variable distribution. The resulting
abstract system AS evolves by one of the observable transition denoted by the
events of S1 or by the events of S2. The event part of the resulting abstract
system has the shape shown in Figure 2 (b). From the observational point of
view, the behaviour of AS is a non-deterministic interleaving of events from
S1 and S2. Since S1 and S2 share global variables, the actions of some events
coming from one abstract system may enable (a part of) the guards of some
other events coming from the other abstract system. An occurrence of an event
is then followed (non-deterministically) by any event (of S1 or of S2) whose guard
is true. There is a non-deterministic choice if several guards are simultaneously
enabled.

To sum up, given S1 = 〈Σ1,〈V1,Inv1,U1,E1〉〉 and S2 = 〈Σ2,〈V2,Inv2,U2,E2〉〉,
the parallel composition of S1 and S2 is defined using the previous rules as
follows:

S1]|[S2 =̂ 〈Σ1 ∪Σ2, 〈V1 ∪V2, Inv1 ∧ Inv2,U1‖U2,E1
⊎

E2〉〉

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 131

This formalizes the procedure we called asynchronousMerging which is the com-
bined use of the rules computing each part.

Algebraic Properties of the Composition.

S1]|[S2 ≡ S2]|[S1

(S1]|[S2)]|[S3 ≡ S1]|[(S2]|[S3)

The parallel composition is commutative and associative. Indeed, firstly the in-
variant of the composition is the conjunction of the invariants of the components;
secondly, the parallel composition of substitutions (‖) is used for the initialisation
part; finally, for the event part, the composition results in a set of events.

Because of these two properties, the parallel composition of a finite set of
abstract systems Si is written]|[i∈1···nSi . The result is the successive (pairwise)
application of]|[. Therefore the notation is generalized as follows:

]|[i∈1···nSi =̂ 〈∪i∈1···nΣi , 〈
⋃

i∈1···n
Vi ,

∧
i∈1···n

Invi , ‖i∈1···nUi ,
⊎

i∈1···n
Ei〉〉

We emphasize that our composition approach remains in the initial B frame-
work. We have just temporarily worked on the abstract specification level with
composition, nevertheless the B process will continue with refinement (and de-
composition).

2.3 Modelling Style with Event B

From a methodological point of view, the presented technique permits a speci-
fication style close to the one widely used in the context of process algebra and
of action systems. To build larger systems we may specify several subsystems,
prove their consistency and compose them gradually. Therefore, this may also
help for mastering large systems development. The availability of concurrent
communication operators will facilitate the translation from existing related for-
malisms, based on such operators, into B. Consequently, the B tools may be used
following a first specification step based on process algebra and action systems
for instance.

Practically, one has to identify interacting subsystems, identify shared re-
sources and specify them in the same way in the subsystems. The interaction
between events should then be made explicit (using the composition operator).
This is a common working approach already used for programming concurrent
processes in operating systems for instance.

3 Development of the Mutual Exclusion Algorithm

We present a development of the well-known bakery algorithm for distributed
mutual exclusion. The development is based on the technique introduced in the
previous section. In the discussion we use the term ”subsystem” instead of ”pro-
cess” as is often encountered in the literature on the topic of mutual exclusion.

132 J.C. Attiogbé

system P1

variables
cs1, cs2 /* global variables*/
pc1 /* local variables*/

invariant
pc1 ∈ 0..2 /* this is L1(v1) */

∧ cs1 ∈ 0..1 /* and now I1(gv) */
∧ cs2 ∈ 0..1
initialisation

cs1, cs2 := 0, 0 ‖ pc1 := 1
events

askCS1 =̂
select pc1 = 1
then cs1 := 0 ‖ pc1 := 2 end

; inCS1 =̂
select pc1 = 2 ∧ ¬ (cs2 = 1)
then cs1 := 1 end

; outCS1 =̂
select (cs1 = 1) ∧ (pc1 = 2)
then cs1 := 0 ‖ pc1 := 1 end

end

system P2

variables
cs1, cs2 /* global variables*/
pc2 /* local variables*/

invariant
pc2 ∈ 0..2 /* this is L2(v1) */

∧ cs1 ∈ 0..1 /* and now I2(gv) */
∧ cs2 ∈ 0..1
initialisation

cs1, cs2 := 0, 0 ‖ pc2 := 1
events

askCS2 =̂
select pc2 = 1
then cs2 := 0 ‖ pc2 := 2 end

; inCS2 =̂
select pc2 = 2 ∧ ¬ (cs1 = 1)
then cs2 := 1 end

; outCS2 =̂
select (cs2 = 1) ∧ (pc2 = 2)
then cs2 := 0 ‖ pc2 := 1 end

end

Fig. 3. Concurrent subsystems to be composed

3.1 Quick Overview on Mutual Exclusion: Abstract Solution

The bakery’s mutual exclusion algorithm was studied in many works[21, 25]. In
[21] for example, the study is done within the context of temporal logic. We
begin with a very abstract version of the mutual exclusion algorithm and then
we give a more precise version named Peterson’s algorithm following its author’s
name.

The general problem is that of accesses of the critical sections of code state-
ments, where resources are used or updated by several subsystems. The goal
of the algorithm is to avoid simultaneous accesses to these critical sections. In
the abstract version one considers two subsystems P1 and P2. We specify the B
abstract system corresponding to each subsystem. The B specification is quite
straightforward. The subsystems to be composed are depicted in the Figure 3.

Each subsystem i has a variable pci which indicates if the subsystem is inside
(value 0) or outside (value 1) its critical section or interested in entering it
(value 2). The accesses to the critical section are protected by the use of Boolean
variables cs1 and cs2. They respectively indicate that the subsystem P1 (resp.
P2) is within its critical section. Initially the csi are set to 0 and the pci are
set to 1. Each subsystem desiring to enter its critical section sets its csi to 0
and additionally its pci to 2 (that means its it is ready to enter). A subsystem
enters its critical section if it asked for it and if the other subsystem is not within
its critical section. In this case the variable csi is set properly. On leaving the
critical section, the corresponding cs1 and pci are respectively set to 0 and 1.

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 133

system
P12

variables
/* global variables*/

cs1
, cs2

/* local variables*/
, pc1
, pc2

invariant
pc1 ∈ 0..2 /* this is L1(v1) */

∧ pc2 ∈ 0..2 /* this is L2(v2) */
∧ cs1 ∈ 0..1 /* and now I (gv) */
∧ cs2 ∈ 0..1
initialisation

cs1, cs2 := 0, 0
‖ pc1 := 1
‖ pc2 := 1

events
askCS1 =̂

select pc1 = 1
then cs1 := 0 ‖ pc1 := 2 end

; inCS1 =̂
select pc1 = 2 ∧ ¬ (cs2 = 1)
then cs1 := 1 end

; outCS1 =̂
select (cs1 = 1) ∧ (pc1 = 2)
then cs1 := 0 ‖ pc1 := 1 end

; askCS2 =̂
select pc2 = 1
then cs2 := 0 ‖ pc2 := 2 end

; inCS2 =̂
select pc2 = 2 ∧ ¬ (cs1 = 1)
then cs2 := 1 end

; outCS2 =̂
select (cs2 = 1) ∧ (pc2 = 2)
then cs2 := 0 ‖ pc2 := 1 end

end

Fig. 4. Mutually exclusive resulting system

3.2 The Asynchronous Composition of the Subsystems

The desired system is simply obtained by applying the parallel composition
operator to the already defined subsystems (Fig. 3):

P12 =̂ P1]|[P2

The abstract system resulting from this composition is depicted in Figure 4. It
is computed by applying the rules which formalize the procedure asynchronous-
Merging (section 2.2).

From the composition point of view, this first solution works well and il-
lustrates the idea of asynchronous parallel composition we have presented. The
main desired property for the system is mutual exclusion:

at most one subsystem is in its critical section at the same time

¬ ((cs1 = 1) ∧ (cs2 = 1))

This safety property can be introduced into the invariant of the composed system
and completely proved using Atelier B [17].

However, the solution itself is not satisfactory for that it has some drawbacks.
For example it is not fair for the composed subsystems; a given event can be
observed many times (even infinitely) repeatedly (without allowing other events
to occur). We shall go beyond the composition and improve this abstraction by
using a refinement. This refinement results in the algorithm of Peterson.

134 J.C. Attiogbé

3.3 Refinement: Peterson’s Algorithm

To overcome the drawbacks of the previous abstract solution, we consider the
Peterson’s policy and we show how it can be constructed within the B approach
augmented with parallel composition. We also study the correctness of the system
by strengthening the invariant after the composition. This leads to correctness
proofs that establish the soundness of the solution. Here, the main mechanism to
protect accesses to the critical section is based on the use of the (new) Boolean
variables y1 and y2. They are set to True by each subsystem desiring to enter
its critical section, and which is ready to do it. Additionally, a variable ss is
used to record the number (i) of the process which is the latest to request the
access. The other abstract variables pc1, pc2, cs1, cs2 are respectively refined by
the concrete ones pc1c, pc2c, cs1c, cs2c. As with the previous abstract solution,
y1, y2 and ss are system variables shared by the two subsystems and may be
considered as internal to the system. Therefore a subsystem i enters its critical
section if its request is not the latest (ss �= i), or the other subsystem (say j)
does not request for its critical section: ss �= i ∨ ¬ (yj = True).

Consequently, a subsystem i is within its critical section if its variable yi is set
and, the other subsystem is not within its critical section (¬ (yj = True)), and
if i is not the latest: ((csi = 1) ⇒ ((yi = True) ∧ ¬ (yj = True) ∧ ¬ (ss = i))).

Refining the Previous B Abstract Subsystems. We build the new solu-
tion by refining the abstract system Pi . The B refinement process of an abstract
system may introduce new variables and new events in the resulting (less) ab-
stract system. The guards of the new system events may be strengthened. The
abstract system and its refinement are related by a gluing invariant. The refine-
ment should be proved correct by discharging some proof obligations [5, 6, 22]:
i) each introduced new event refines skip; ii) each abstract event is correctly re-
fined by its corresponding concrete form; iii) the introduced new events do not
take control for ever; this is achieved by decreasing a variant (included in the re-
finement) by each occurrence of a new event; iv) deadlock-freedom is preserved;
considering the disjunction of the event guards.

Consider an abstract system A with variables av and invariant I (av) which is
refined by a concrete system C with variables cv and a gluing invariant J (av , cv).
Consider BAA(av , av ′) and BAC (cv , cv ′) respectively as the abstract and con-
crete before-after predicates of the same event, for the correctness of event re-
finement we have to prove that under the conjunction of the abstract and the
concrete invariant, a concrete event (described with BAC (cv , cv ′)) can be sim-
ulated (∃ av ′) by an abstract one (described with BAA(av , av ′)) in such a way
that the gluing invariant is preserved. Formally

I (av) ∧ J (av , cv) ∧ BAC (cv , cv ′) ⇒ ∃ av ′.(BAA(av , av ′) ∧ J (av ′, cv ′))

In the following, we specify an abstract system Pet1 (Fig.5) which refines
P1; this is noted P1 Pet1. We introduce the new variables ss, y1, y2. The in-
variant of the new system states the type properties of the three new variables.
The old variables are retained. The new initialisation trivially establishes the

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 135

new invariant. We introduce one new event readyP1; it refines skip. The other
events askCS1, inCS1 and outCS1 are the new specifications of their abstract
counterparts. The guard of the event askCS1 does not change. Its body is up-
dated using the new variables y1 and ss following the request policy explained
above. The event inCS1 is refined by changing slightly its guard according to the
considered policy. The new guard uses the link between abstract variables and
the new concrete ones.

The deadlock-freedom is stated by proving that:
i) the guard of each event ee implies that its substitutions is feasible; it does not
establish False. (this is proved from fis(v := E) = TRUE where v is a variable
and E is an expression):

guard(ee) ⇒ fis(subst(ee))

ii) one of the event guards is always true: (pc1c = 0) ∨ (pc1c = 1) ∨ ((pc1c =
2)∧((y2 = FALSE)∨(ss = 2))) ∨ (cs1c = 1)
This is true at the outset because on the initialisation we have pc1c = 0; from
then and cyclically, the event readyP1 is enabled. Then it establishes pc1c = 1
which in turn is the guard of the event askCS1. This one enables the events
inCS1 since y2 has not been changed; the body of outCS1 implies pc1c = 0 and
the cycle continues.

To sum up, each of the two concurrent subsystems to be composed has the
specification (upto a variable renaming) given in the Figure 5. The variables
related to P1 (resp. P2) are subscripted with 1 (resp. 2).

Composition. Now we build the Peterson’s algorithm by the composition of
the components. First we compose two instances of the subsystem depicted in
the Figure 5. Note that the second instance may be obtained by our renam-
ing technique (see Section 3). Then, the asynchronous parallel composition is
performed in the same way as in the section 3.2.

Peterson Alg =̂ Pet1]|[Pet2

The result of the composition is given in the Figure 6.

We may be confident in this result since it is exactly that of the widely known
Peterson’s algorithm. However, another advantage of our approach is that we can
formally state and prove the correctness properties of the obtained algorithm.
This is the subject of the following section.

Correctness of the Algorithm. The mutual exclusion property proved on the
abstract version should be maintained: at most one subsystem is in its critical
section at the same time:

¬ ((cs1c = 1) ∧ (cs2c = 1))

136 J.C. Attiogbé

refinement Pet1
refines P1

variables
/* global variables*/

cs1c, cs2c, ss, y1, y2
/* local variables*/

pc1c
invariant

pc1c ∈ 0..2 /* this is L1(v1) */
∧ cs1c, cs2c ∈ 0..1 /* I1(gv) */
∧ ss ∈ 1..2
∧ y1, y2 ∈ BOOL
∧ ((cs1c = cs1) ∨ (cs1c = 0))

/* glue */
∧ ((cs2c = cs2) ∨ (cs2c = 0))
∧ ((pc1c = pc1) ⇒ ¬ (pc1 = 0))
initialisation

cs1c, cs2c, ss := 0, 0, 1
‖ pc1c := 0
‖ y1, y2 := FALSE ,FALSE

events
readyP1 =̂

select pc1c = 0 then
cs1 := 0 ‖ y1 := FALSE

‖ pc1c := 1
end

; askCS1 =̂
select pc1c = 1 then

y1 := TRUE‖ss := 1
‖ pc1c := 2
end

; inCS1 =̂
select (pc1c = 2) ∧

((y2 = FALSE) ∨ (ss = 2))
then cs1c := 1 end

; outCS1 =̂
select (cs1c = 1)
then cs1c := 0 ‖ pc1c := 0
end

end

Fig. 5. Refinement of P1 with Peterson’s policy

Additionally, we should verify that each subsystem respects the defined condi-
tions when it is within its critical section:

(cs1c = 1) ⇒ ((y1 = TRUE) ∧ ((y2 = FALSE) ∨ (ss = 2)))

∧ (cs2c = 1) ⇒ ((y2 = TRUE) ∧ ((y1 = FALSE) ∨ (ss = 1)))

Therefore in order to guarantee this within B, we augment the invariant of the
abstract system with the conjunction of these properties:

(¬ (cs1c = 1) ∧ (cs2c = 1))
∧ (cs1c = 1) ⇒ ((y1 = TRUE) ∧ ((y2 = FALSE) ∨ (ss = 2)))
∧ (cs2c = 1) ⇒ ((y2 = TRUE) ∧ ((y1 = FALSE) ∨ (ss = 1)))

Monotonicity of the composition. We prove that: the refinement of the
composition is the composition of the refinement.

P1]|[P2 Pet1]|[Pet2

This confirms a general result established for our approach. Formally we have

S1 S ′
1 S2 S ′

2

S1]|[S2 S ′
1]|[S ′

2

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 137

system Peterson Alg
variables

/* global variables*/
cs1c, cs2c, ss, y1, y2

/* local variables*/
pc1c, pc2c

invariant
pc1c, pc2c ∈ 0..2 ∧ cs1c, cs2c ∈ 0..1

∧ ss ∈ 1..2
∧ y1, y2 ∈ BOOL
∧ ((cs1c = cs1) ∨ (cs1c = 0))

/* glue */
∧ ((cs2c = cs2) ∨ (cs2c = 0))
∧ ((pc1c = pc1) ⇒ ¬ (pc1c = 0))
∧ ((pc2c = pc2) ⇒ ¬ (pc2c = 0))
initialisation

cs1c, cs2c, ss := 0, 0, 1
‖ pc1c, pc2c := 0, 0
‖ y1, y2 := FALSE ,FALSE

events
/* they are unchanged */

readyP1 =̂
· · ·

; askCS1 =̂
· · ·

; inCS1 =̂
· · ·

; outCS1 =̂
· · ·

; readyP2 =̂
· · ·

; askCS2 =̂
· · ·

; inCS2 =̂
· · ·

; outCS2 =̂
· · ·

end

Fig. 6. Peterson’s algorithm: result of the composition

Consider the context implicitly indicated by the subscripts for each abstract
system; by instantiating the refinement proof obligations given above (see 3.3),
we have:

I1(av1) ∧ J1(av1, cv1) ∧ BAC (cv1, cv ′
1) ⇒ ∃ av ′

1.(BAA(av1, av ′
1) ∧ J1(av ′

1, cv
′
1))

I2(av2) ∧ J2(av2, cv2) ∧ BAC (cv2, cv ′
2) ⇒ ∃ av ′

2.(BAA(av2, av ′
2) ∧ J2(av ′

2, cv
′
2))

The composed systems shared the variables gv only; therefore av1 ∩ av2 = gv .
For an event originating from one of the composed systems, it follows from

the definition of] | [(conjunction of invariants), the union of events (of com-
posed systems), and that the shared variables are refined in the same way in the
composed systems, that its concrete description (BAC (cv1, cv ′

1)) simulates the
abstract one (BAA(av1, av ′

1)):

I1(av1) ∧ I2(av2) ∧ J1(av1, cv1) ∧ J2(av2, cv2) ∧ BAC (cv1, cv ′
1) ⇒

∃ av ′
1.(BAA(av1, av ′

1) ∧ J1(av ′
1, cv

′
1))

This holds for the other events.
Several authors already establish this general result on the monotonicity of

composition in various contexts: [10] for the refinement calculus, [16] for action
systems, [21, 25] for logical frameworks.

Experiment Report. We use Atelier B to check all the abstract systems and
their refinements. The management of shared variables (naming and initiali-
sation) are achieved manually. Note that Atelier B does not manage abstract

138 J.C. Attiogbé

systems directly. But using an encoding into abstract machines, we generate the
proof obligations and completely prove the development. As far as this encoding
is concerned, the composition is first performed; the new events introduced in re-
finements are first specified with skip in earlier machines; proving the correctness
is then straightforward. There is a prototype tool (evt2b) originally developed
within the Matisse project [22] which may assist in a systematic translation from
B abstract systems into abstract machines.

4 Discussion

Composing systems in a bottom-up manner in B event systems is not a new
topic. It has been studied by several authors in the context of process algebra
and Action Systems for example. Our approach is therefore very close to the
Action Systems view as shown hereafter.

Action Systems View. The Action System formalism of Back and Kurki-
Suonio [12] permits the description of parallel or distributed systems. Actions
are guarded statements and are executed atomically. An action Ai has the shape
gi → Si where gi is the guard and Si is the statement or the body. The statement
can be a non-deterministic choice (noted []) between several other statements Si .
Bottom-up composition has been introduced for action system in [9].

An action system enables one to specify the behaviour of a system by a
collection of actions. It takes the form:

Ai =̂ | [var xi ; ui ; doAi od] | : z

where x and z are (state) variables; x stands for local variables; z stands for
global variables which are used to interact with the environment; ui stands for
the initialisation condition.

The action system formalism provides a parallel composition operator to
model concurrent system. The parallel composition of two action systems is
achieved if they share some global variables but use disjoint local variables. The
composition results in another action system. The latter has the same global
variables and the union of the local variables. Its initialisation is the conjunction
of the initialisations of the component systems and its action part is made of the
choice ([]) of the action part of the component systems.

A1‖A2 =̂ | [var x2, x2; u1 ∧ u2; doA1 []A2 od] | : z

These composition ideas have also been studied in [16] and within B by Butler et
al [15]; they adapt the action systems view (for expressing distributed systems)
to the B formalism. Whilst, in [15] an experimental translation from action
systems to B machines is given, the specific formal rules for the composition are
not given. But these rules are now quite standard for the related formalisms;
further developments on these aspects are presented in [22].

We provide a similar composition approach using Event B (with abstract
systems instead of abstract machines). But the composition is here completely

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 139

defined within B. Moreover, the practical advantage of our B approach is the
tool availability to assist in the proof steps.

Abrial’s Decomposition Approach. Abrial is also working on the decomposi-
tion approach of abstract systems to split a large system into smaller ones using
shared variables [4]. The ideas are similar in that the global system is a com-
position of several interacting subsystems. However he deals with the top-down
approach going from the global system to the subsystems. Moreover there is not
an explicit composition operator. In our bottom-up approach, the shared vari-
ables and the associated invariant are effectively elements of the top level. The
shared variables should be refined in the same manner; this is also a constraint
of the decomposition approach. We have an explicit composition operator (Ă
la Process Algebra) expandable to explicit message passing. Therefore the ap-
proaches are not orthogonal, they are complementary.

As far as the B method is concerned, there are some works related to composi-
tion and interaction between specifications. An example is the work by Schneider
and Treharne [24, 23] on composing CSP and B. CSP processes [20] are used to
describe controllers for B machines. The controllers handle the control flow of
machine operations without sharing machine states. The machine model and
the controller model are developed separately. The composition of B machines
is done here through the CSP controllers of the involved B machines. This ap-
proach is highly CSP-driven even if the machines part may be developed within
the B framework. In our approach B systems are used and the control part is
incorporated in the event guards.

The Assumption-Commitment approach (also called Rely-Guarantee) [27, 26]
has been proposed for the composition of concurrent systems with shared state
variables. Briefly, it consists for each system involved in the composition, to
establish correctness properties by making some assumptions about the other
systems which constitute its environment. Therefore, the design of the com-
ponent systems are not really independent and this makes the structuring of
specifications tedious. The Assumption-Commitment approach does not permit
independent refinement. Our composition approach does not constrain the com-
posed systems to reason about their environment. The components are inde-
pendent but the correctness properties are treated with proof obligations during
the composition. This simplifies the structuring of the global system and also
the independent refinement of the subsystems. Indeed, the interference between
global variables are considered only during the composition.

5 Concluding Remarks

In this paper, we presented a complete development of a concurrent system by
combining composition techniques, refinement and tools. First, a composition
approach (bottom-up) to build interacting concurrent systems within Event B is
presented. Then it is used for a development: the construction of Peterson’s al-
gorithm by refinement from an earlier abstract version. Currently, we use global
variables to ensure the communication between the interacting subsystems. Ate-

140 J.C. Attiogbé

lier B is used to prove the complete development. Only safety properties are
considered here; but we have investigated liveness properties in [7] for a subset
of Event B, by combining B and the Spin Model checker.

As far as composition is concerned, in [16] Butler deals with the refinement
of communicating action systems. We share some features with his work: a com-
positional approach. But the main difference is that Butler’s approach is based
on communication with shared events (occurrences of system transitions which
are commonly named) instead of shared variables as we presented here.

The contribution of our work can be underlined through several points. First,
the systematic construction of software systems using well-defined techniques:
composition (bottom-up approach), refinement and theorem proving. Second,
the effective use of available tools to support this construction.

Some aspects of the presented work are the subject of ongoing development;
for example some dedicated interfaces in front of the B tools (including evt2b),
and the development of many other real size case studies to assess and improve
the proposed approach. Other communication operators are needed. Yet we have
experimented a technique for message passing; we use specific variables to han-
dle messages; but more work on this technique of message passing is necessary,
to make the development of large distributed systems practical. Besides, we are
working on a procedure to translate from process algebra specifications into
Event B systems.

Acknowledgments. Many thanks to my colleagues and to the anonymous ref-
erees for their valuable comments on the current work.

References

1. J-R. Abrial. The B Book. Cambridge University Press, 1996.
2. J-R. Abrial. Extending B without Changing it (for developping distributed sys-

tems). Proc. of the 1st Conference on the B method, H. Habrias (editor), France,
pages 169–190, 1996.

3. J-R. Abrial. Event Driven Distributed Program Construction. MATISSE project,
August 2001.

4. J-R. Abrial. Discrete System Models. Internal Notes (available at www-lsr.imag.fr/
B, B Working Group), February 2002.

5. J-R. Abrial, D. Cansell, and D. Mery. Formal Derivation of Spanning Trees Algo-
rithms. In D. Bert et al., editor, ZB’2003 – Formal Specification and Development
in Z and B, volume 2651 of Lecture Notes in Computer Science, pages 457–476.
Springer-Verlag, 2003.

6. J-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In Proc. of the
2nd Conference on the B method, D. Bert (editor), volume 1393 of Lecture Notes
in Computer Science, pages 83–128. Springer-Verlag, 1998.

7. C. Attiogbé. A Mechanically Proved Development Combining B Abstract Systems
and Spin. In Proceedings of the 4th International Conference on Quality Software
(QSIC 2004). IEEE Computer Society Press.

8. C. Attiogbé. Communicating B Abstract Systems (CBS). Technical Report 02.08,
IRIN, University of Nantes, December 2002.

A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm 141

9. R. J. Back and K. Sere. From Action Systems to Modular Systems. Software -
Concepts and Tools, 17(1):26–39, 1996.

10. R-J. Back and J V Wright. Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, 1998.

11. R. J. R. Back and M. J. Butler. Fusion and Simultaneous Execution in the Refine-
ment Calculus. Acta Informatica, 35(11):921–949, 1998.

12. R.J. Back and R. Kurki-Suonio. Decentralisation of Process Nets with Centralised
Control. In Proc. of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 131–142. ACM, 1983.

13. D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, editors. ZB’2002: Formal
Specification and Development in Z and B, 2nd International Conference of B and
Z Users, France, volume 2272 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

14. D. Bert, M-L. Potet, and Y. Rouzaud. A Study on Components and Assembly
Primitives in B. Proc. of the 1st Conference on the B method, H. Habrias (editor),
France, pages 47–62, November 1996.

15. M. Butler and M. Walden. Distributed System Development in B. Proc. of the 1st
Conference on the B method, H. Habrias (editor), France, pages 155–168, 1996.

16. M. J. Butler. Stepwise Refinement of Communicating Systems. Science of Com-
puter Programming, 27(2):139–173, 1996.

17. ClearSy. Atelier B V3.6. Steria, Aix-en-Provence, France.
18. S. Dunne. The Safe Machine: A New Specification Construct for B. In Proceedings

of FM’99: World Congress on Formal Methods, pages 472–489, 1999.
19. S. Dunne. A Theory of Generalised Substitutions. In Bert et al. [13], pages 270–290.
20. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, NJ, 1985.
21. Y. Kesten, Z. Manna, and A. Pnueli. Temporal Verification of Simulation and

Refinement. In REX Symposium A Decade of Concurrency, volume 803 of Lecture
Notes in Computer Science, pages 273–346. Springer-Verlag, 1994.

22. MATISSE. Handbook for Correct Systems Construction. Technical Report IST-
1999-11345, EU-Project MATISSE: Methodologies and Technoloies for Industrial
Strength Systems Engineering,University of Southampton, April 2003.

23. S. Schneider and H. Treharne. Verifying Controlled Components. In E. Boiten,
J. Derrick, and G. Smith, editors, Proc. of the Integrated Formal Methods
(IFM’2004), volume 2999 of Lecture Notes in Computer Science, pages 87–107.
Springer-Verlag, 2004.

24. S. Schneider and H. Treharne. Communicating B Machines. In Bert et al. [13],
pages 416–435.

25. Q. Xu. On Compositionality in Refining Concurrent Systems. In J. He, J. Cooke,
and P. Wallis, editor, Proceedings of the BCS FACS 7th Refinement Workshop.
Springer-Verlag, 1996.

26. Q. Xu, W. P. de Roever, and J. He. The Rely-Guarantee Method for Verifying
Shared Variable Concurrent Programs. Formal Aspects of Computing, 9(2):149–
174, 1997.

27. Q. Xu and M. Swarup. Compositional Reasoning Using the Assumption-
Commitment Paradigm. Lecture Notes in Computer Science, 1536:565–583, 1998.

An Extension of Event B for Developing Grid
Systems

Pontus Boström and Marina Waldén

Åbo Akademi University, Department of Computer Science,
Turku Centre for Computer Science (TUCS),

Lemminkäisenkatu 14 A, 20520 Turku, Finland
{Pontus.Bostrom, Marina.Walden}@abo.fi

Abstract. Computational grids have become widespread in organiza-
tions for handling their need for computational resources and the vast
amount of available information. Grid systems, and other distributed
systems, are often complex and formal reasoning about them is needed,
in order to ensure their correctness and to structure their development.
Event B is a formal method with tool support that is meant for stepwise
development of distributed systems. To facilitate the implementation of
grid systems we here propose extensions to Event B that take grid specific
features into account. We add new constructs to model the client-server
architecture of grid systems, as well as important features like communi-
cation and synchronisation. We introduce the extensions in such a man-
ner that the necessary proof obligations are automatically generated and
the system can be implemented in a straightforward manner.

1 Introduction

Organizations need the ability to efficiently utilise existing hardware and be
able to effectively share information with each other. Computational grids have
become a popular approach to enable organizations to handle the vast amount
of available information. These grids are also used for solving problems in, e.g.,
biology, nuclear physics and engineering. Grid computing [9, 14] is a distributed
computing paradigm that differs from traditional distributed computing in that
it is aimed toward large scale systems that even span organizational boundaries.

The development of correct grid systems is difficult with traditional software
development methods. Hence, formal methods are needed in order to ensure
their correctness and structure their development from specification to imple-
mentation. The Action Systems formalism [5] is a formal method that is well
suited for developing large distributed systems, since it supports stepwise devel-
opment. However, it lacks good tool support. The B Method [1], on the other
hand, is a formal method provided with good tool support, but originally devel-
oped for construction of sequential programs. The B Method can be combined
with Action Systems in order to formally reason about distributed systems as in
the related methods B Action Systems [20] and Event B [3]. B Action Systems

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 142–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Extension of Event B for Developing Grid Systems 143

models Action Systems in the B Method, while Event B also extends original B
with new constructs. We mainly use Event B in this paper.

With generic formal languages like Event B, specifications are often unin-
tentionally constructed in such a way that they cannot be implemented or are
very difficult to implement efficiently. The problem becomes especially appar-
ent when developing distributed systems with complicated synchronization and
communication patterns. Therefore, we propose new extensions to Event B in
order to be able to construct models of grid systems that can be implemented
and to verify their correctness in a convenient way. The language obtained by
the extensions will be referred to as Distributed B in the rest of the paper.

The language Distributed B is targeted towards Grid systems using the
Globus Toolkit [11] middleware. Grid systems usually have a client-server ar-
chitecture. This means that there is a client that initiates communication with
the server, which only responds to the clients’ requests. Distributed B supports
client-server architectures with multiple concurrent accesses by the same client
to several servers. The main communication mechanism of the grid middleware
is remote procedure calls. However, the grid middleware also supports asyn-
chronous notifications sent from a server to a client. Both these communication
primitives are used in Distributed B. The constructs are introduced in such a
manner that they ensure that the system will be implementable and all needed
proof obligations can be automatically generated.

In Section 2 we describe formal development of systems in Event B. In Section
3 we give an overview of the grid technology and discuss how the grid features are
incorporated into Event B. The new constructs, grid service machine and grid
refinement machine, are presented in Sections 4 and 5, respectively. In Section
6 we discuss implementation issues and in Section 7 we conclude.

2 Formal Development with Event B

In order to be able to develop correct grid systems and other distributed systems,
we need to reason about these systems in a formal manner. Furthermore, it is
important that the formal reasoning is facilitated by good tool support. Action
Systems is a well established formalism for reasoning about distributed systems
[5]. However, it lacks good tool support. Event B [3] is a formalism that is
based on Action Systems and is an extension of the B Method for developing
distributed systems. This formalism is also provided with tool support currently
in the form of a translator to original B. Because of this we have chosen Event
B as the formalism within which we develop our framework for specifying and
implementing grid systems.

2.1 Abstract Specifications

An abstract model of a system within Event B is encapsulated in a system-
machine identified by a unique name. Let us study the abstract model C.

144 P. Boström and M. Waldén

SYSTEM C
VARIABLES

x
INVARIANT

I(x)
INITIALISATION

x := x0
EVENTS

E1 =̂ S1;
E2 =̂ S2;

. . .
END

Each variable x in the variables-clause is associated with some domain of values.
The set of possible assignments of values to the state variables constitutes the
state space. The data invariant I(x) in the invariant-clause defines the state
space of the variables and their invariant properties. In the initialisation-clause
initial values are assigned to these variables. The events-clause contains events
describing the behaviour of the system. Each event in the events-clause is a
substitution statement, where the substitution, for example, can be a skip-
substitution, a simple substitution, a multiple substitution, a sequential sub-
stitution, a preconditioned substitution, a conditional substitution, a guarded
substitution or a non-deterministic guarded substitution. The semantics of these
substitution statements is given by the weakest precondition calculus developed
by Dijkstra [8].

wp(skip, Q) = Q
wp(x := e, Q) = Q[x := e]
wp(x := e ‖ y := f, Q) = Q[x, y := e, f], where x ∩ y = ∅
wp(x := e; y := f, Q) = (Q[y := f])[x := e]
wp(PRE G THEN S END, Q) = G ∧ wp(S, Q)
wp(IF G THEN S ELSE T END, Q) = (G ⇒ wp(S, Q)) ∧ (¬G⇒wp(T, Q))
wp(SELECT G THEN S END, Q) = G ⇒ wp(S, Q)
wp(ANY x WHERE G THEN S END, Q) = ∀x.G ⇒ wp(S, Q)

Here, Q and G are predicates, x and y are variables, e and f are expressions,
while S and T are arbitrary substitution statements.

An event is considered to consist of a guard and a body. For example, for
event E =̂ SELECT G THEN S END the guard, gd(E), is (G ∧ gd(S)).
When the guard of an event evaluates to true in a given state, the event is
said to be enabled. Only enabled events are considered for execution. If several
events are enabled, they are executed in random order. Events that do not share
variables can be executed in parallel. When there are no enabled events the
system terminates. The events are considered to be atomic and, hence, only
their input-output behaviour is of interest.

In grid systems remote procedures play an important role. Remote procedures
[18] are, however, not supported in Event B. The reason for this is that a model
in Event B is closed, i.e., the system is modeled as a whole without relying
on outside information. For reasoning about remote procedures we rely on the
formalism B Action Systems [20], another formalism applying Action Systems

An Extension of Event B for Developing Grid Systems 145

within the B Method and related to Event B. Remote procedures are discussed
in more detail elsewhere [18, 7].

2.2 Decomposing Event Systems

Grid systems are often very complex systems. Therefore, it is beneficial to split
these systems into several smaller ones during the development [6]. Let us study
how an event system C can be decomposed into two components C1 and C2.
System C contains the variables x, y and z, where the event E1 refers to x and
z, and event E2 to y and z. We assume that E1 does not modify z. The parallel
decomposition of system C into the components C1 and C2 is then defined by
splitting the variables and events as follows.

SYSTEM C
VARIABLES

x, y, z
INVARIANT

IC1(x, z) ∧ IC2(y, z)
INITIALISATION

x := x0 ‖
y := y0 ‖ z := z0

EVENTS
E1 =̂ S1;
E2 =̂ S2

END

decomp.−→

SYSTEM C1
EXTENDS

C2
VARIABLES

x
INVARIANT

IC1(x, z)
INITIALISATION

x := x0
EVENTS

E1 =̂ S1
END

SYSTEM C2

VARIABLES
y, z

INVARIANT
IC2(y, z)

INITIALISATION
y := y0 ‖ z := z0

EVENTS
E2 =̂ S2

END

Here we say that system C1 extends system C2 indicating that C1 is composed
in parallel with C2, C1 ‖ C2. Note that the extends-clause is as defined in original
B. After the decomposition the variables x are located in C1 while y and z are
in C2. The invariant, the initialisation, as well as the events referring to the
variables x are included in C1, while the ones referring to y and z are given in
C2. In C2 the variables z are global variables, since they are referenced also in
system C1. The decomposition rule can be applied in reverse and is then called
parallel composition [6, 7]. We can note that the composed system terminates
when all its sub-systems have terminated.

2.3 Refinement

In Event B we can refine an abstract specification in a stepwise manner to a
more concrete and detailed specification. New variables can be introduced and
the old variables can be refined to more concrete ones. This is reflected in the
substitutions of the events, as well. Furthermore, new events that only assign the
new variables may be introduced. In a refinement step we can also merge several
events into one event, as well as refine one event by several events. The merging
and splitting of events should be stated explicitly in the Event B specification
and the rules for these operations are described in more detail in [2, 3].

Let us assume that we have two event systems C and C1 as below. The vari-
ables x in C are refined to x′ in C1, while y are the new variables introduced in
C1. The events Ei are refined by the corresponding events E′

i to also take y into
account. The events Fj are introduced in this refinement step and refer only to
the new variables y.

146 P. Boström and M. Waldén

SYSTEM C

VARIABLES
x

INVARIANT
I(x)

INITIALISATION
x := x0

EVENTS
E1 =̂ S1;
. . .

En =̂ Sn

END

REFINEMENT C1
REFINES C
VARIABLES

x′, y
INVARIANT

J(x, x′, y)
INITIALISATION

x′ := x′
0 ‖ y := y0

EVENTS
E′

1 =̂ S′
1;

. . .
E′

n =̂ S′
n;

F1 =̂ T1;
. . .

Fm =̂ Tm

END

When invariant J(x, x′, y) is a relation between the abstract variables x and the
concrete variables x′ and y, we write E J E′ to denote that the abstract event
E is data refined by the concrete event E′ under J [5]. If I is an invariant of
event E, event E′ is guaranteed to terminate when E is, and E′ establishes a
situation where E cannot fail to maintain the abstraction invariant J :

I ∧ J ∧ wp(E, true) ⇒ wp(E′, true) ∧ wp(E′,¬wp(E,¬J))

then E J E′. In order to show in Event B that system C1 is a refinement of C
under abstraction invariant J, C J C1, the following proof obligations should
hold [3]:

1. wp((x′ := x′
0 ‖ y := y0),¬wp(x := x0,¬J))

2. Ei �J E′
i, for i ∈ 1..n

3. skip �J Fj , for j ∈ 1..m

4. J ∧ ¬(gd(E′
1) ∨ . . . ∨ gd(E′

n) ∨ gd(F1) ∨ . . . ∨ gd(Fm)) ⇒ ¬(gd(E1) ∨ . . . ∨ gd(En))
5. J ⇒ V ∈ N

6. gd(Fj) ⇒ wp(n := V, wp(Fj , V < n)), for j ∈ 1..m

The initialisation in the refined system maintains the behaviour of the abstract
system under abstraction invariant J (1). Every event Ei in the abstract system
is refined by an event E′

i in the concrete system (2). New events Fj should only
refer to the new variables and should not change the behaviour of the abstract
system (3). The refined event system must not terminate more often than the
abstract one (4). The behaviour of the abstract system should be preserved and,
hence, the new events should terminate when executed in isolation (5 and 6).
Here, V is a variant that is decreased by every new event Fj . All these proof
obligations can be automatically generated by the tools for Event B.

For the remote procedures we rely on the proof obligations for B Action
Systems [7]. Let us assume that we have procedure Pk in C that is refined by
P ′

k in C1. When considering procedures in event systems the following additional
proof obligations should hold.

7. Pk �J P ′
k, for k ∈ 1..h

8. J ∧ gd(Pk) ⇒ gd(P ′
k), for k ∈ 1..h

An Extension of Event B for Developing Grid Systems 147

The abstract remote procedure Pk should be refined by the corresponding proce-
dure P ′

k in C1 (7). Furthermore, the guards of the procedures may not be changed
(7 and 8). Proof obligation (7) can be automatically generated via Event B,
while proof obligation (8) requires some extra constructs corresponding to the
ones in [20].

3 Grid Systems in Event B

Relying on Event B we can formally specify correct grid systems. However, it
is not straightforward to develop the specification in such a manner that it can
be automatically implemented. This is due to the difficulties in synchronizing
distributed components and maintaining atomicity of events. We propose an
extension of Event B, Distributed B, that enable us to create implementable
specifications of grid systems in a convenient way.

3.1 Grid Systems

The purpose of grid systems is to share information and computing resources
even over organizational boundaries. This requires security, scalability and pro-
tocols that are suited for Internet wide communication. The Open Grid Service
Architecture (OGSA) [10] aims at providing a common standard to develop grid
based applications. This standard defines what services a grid system should
provide. A technical infrastructure specification defined by Open Grid Service
Infrastructure (OGSI) [12] gives a precise technical definition of what a grid
service is. The Globus Toolkit 3.x [11], an implementation of the OGSI specifi-
cation, has become defacto standard toolkit for implementing grid systems. This
is also the toolkit we use as grid middleware for Distributed B in this paper.

Grid systems usually have a client-server architecture, where the client initi-
ates communication with the server that only responds to the client’s request. A
client may access several servers concurrently. A server is referred to as a grid ser-
vice in Globus Toolkit, since it provides services to other grid components. Grid
services as implemented in Globus Toolkit provide features such as remote pro-
cedures, notifications, services that contain state, transient services and service
data. The main communication mechanism of grid services is remote procedure
calls from client to grid service. By using notifications a grid service can asyn-
chronously notify clients about changes in its state. The state of grid services
are preserved between calls and grid service instances can be dynamically cre-
ated. Service data adds structured data to any grid service interface. Thus, not
only remote procedures, but also variables are available to clients. Furthermore,
Globus Toolkit contains an index service for managing information and keeping
track of different types of services in the grid.

3.2 Extending Event B

The main purpose of the language Distributed B is to be able to specify, verify
and implement correct grid systems in a convenient way. As for grid systems the

148 P. Boström and M. Waldén

Fig. 1. The structure of the Distributed B development

most common communication mechanism in Distributed B is remote procedure
calls. However, in order to support concurrent accesses by the same client to
multiple grid services, Distributed B also takes into account notifications.

In order to meet the requirements above, we propose to extend Event B
with two types of machines, a grid service machine modelling abstract grid
service features and a grid refinement machine for refining an ordinary Event
B model by introducing grid features or for refining a grid service machine. A
grid service machine is a template of which a client (a grid refinement machine)
can obtain instances. Using terminology from object oriented programming, the
grid service machine can be viewed as a class and the instances as objects of
the class. This new composition mechanism is expressed with the references
construct in the grid refinement machine. Several instances of the same grid
service machine can be controlled by the same client as a master can control
several identical worker nodes. A grid service machine contains specifications of
remote procedures, events and notifications. The grid refinement machine, on
the other hand, has clauses for refined remote procedures and events, as well as
a clause for handling notifications. The clients and the grid services use remote
procedure calls and notifications to communicate and synchronize with each
other. For example, a client can make a request to a grid service with a remote
procedure call and when the request has been carried out a notification is sent
back to the client.

The development of the grid system shown in Figure 1 starts with an initial
specification, C, in Event B that is refined in a number of steps, C1. The speci-
fication is then split up into a client, C2, and a number of grid services, A. The
grid services can in turn be independently refined in a stepwise manner, A1, and
reference new grid services, D. For simplicity we assume that each grid service
machine can only be referenced from one grid refinement machine.

Throughout the development of the system the grid constructs are translated
to ordinary B machines for verification purposes. Note that we translate the
Distributed B specifications to B and not to Event B. The reason for this is
that the current tool support also translates Event B specifications to B for
verification. The translation of the Event B constructs in Distributed B to B is
performed as in the current tools for Event B.

An Extension of Event B for Developing Grid Systems 149

4 Grid Service Machines

In Distributed B an abstract model of a grid service is given as the construct
grid service machine. Grid service machines extend Event B with clauses for
specifying remote procedures and notifications. A grid service can wait for a
remote procedure call from a client. Upon the call it performs the requested task.
When the task has been completed, i.e., when all the events in the grid service
machine has become disabled, a notification is sent. By choosing to send the
notification only after the task has been completed, the notification mechanism
can be implemented using the Globus Toolkit in a straightforward manner.

4.1 Grammar for the Grid Service Machine

The grammar for the grid service machine is an extension of the grammar for
an abstract system in Event B. Here only the differences between the grammars
are shown.

gridservice ::= ‘‘GRID SERVICE’’ Name
Clause gridservice+
‘‘END’’

Clause gridservice ::=
Clause system abstract |
Clause rpcs |
Clause notif

Clause rpcs ::= ‘‘REMOTE PROCEDURES’’ Rpc oper+;
Rpc oper ::= Header operation ‘‘=’’ NG Substitution
Clause notif ::= ‘‘NOTIFICATIONS’’ Notif+;
Notif::= Name ‘‘=’’ ‘‘GUARANTEES’’ Predicate ‘‘END’’

The grid service machine grammar contains all the constructs present in
abstract systems of Event B, such as constants, sets, variables and events. Addi-
tionally, the grid service has a number of remote procedures that other services
can access. A remote procedure is an implementable operation in the B Method,
i.e., it only contains non-guarded substitutions (here called NG Substitution) of
the set of substitutions in Event B. The notifications-clause contains guaran-
tees-statements with conditions indicating when the notifications can be sent to
the client. A notification is sent when none of the events in the events-clause are
enabled and the predicate in its guarantees-statement holds.

4.2 Mapping the Specification to B

An abstract grid service machine contains clauses which do not exist in an Event
B specification. In order to be able to use tool support for verifying the consis-
tency of the grid service machine, we need to translate the grid service machine
to an abstract machine specification in B.

Translation of the Grid Service Machine to B. In a system developed
within Distributed B it is assumed that all available instances of all the grid

150 P. Boström and M. Waldén

services are created upon initialisation of the system. The index service of Globus
Toolkit then provides references to available grid service instances of correct type.
In the B Method, a model of the set of instances that can be obtained from the
index service first has to be defined. This dynamic management of instances of
machines has to be explicitly modeled in the B Method [4, 17].

Let us assume that we have a grid service machine A. The set of instances
of A that can be obtained from the index service is then given as the set
A INSTANCES. The constant A null models an empty instance of grid ser-
vice machine A. Upon a request for a new instance from the index service, the
value A null is returned when no non-empty instance is available.

SETS
A INSTANCES

CONSTANTS
A null

PROPERTIES
A null ∈ A INSTANCES

The variable A Instances models the set of non-empty instances of A currently
in use by the client. They are obtained dynamically from the index service.

VARIABLES
A Instances

INVARIANT
A Instances ⊆ A INSTANCES∧
A null /∈ A Instances

All the variables in a grid service machine are translated to functions from the
set of instances in use to the variable types. Assume that grid service machine
A has a variable x of type X. When A is translated to original B the type of x
is defined as x ∈ A Instances → X.

When we translate remote procedures to B to take an instance inst into
account, we introduce the instance for which it is called as an additional param-
eter. For example, procedure Proc(p) =̂ P becomes Proc(inst, p) =̂ P (inst)
upon translation. The events are translated to non-deterministic guarded sub-
stitutions (any-substitutions) to take instances into account. The event E =̂ S
in the grid service machine becomes:

E =̂ ANY inst WHERE inst ∈ A Instances THEN S(inst) END

Hence, there is an event Einst for every instance inst of grid service machine
A in use. As a result of this A can be considered to be a parallel composition
of its instances, A = ‖inst Ainst. Since at least one of the notifications should
be enabled when the events of the grid service machine have become disabled,
we add the following predicate to the invariant of the abstract machine upon
translation:

∀inst.(inst ∈ A Instances ∧ ¬gd(Ainst) ⇒ Q1(inst) ∨ ... ∨ Qn(inst))

where Qi is the predicate of the guarantees-statement in notification i in A. The
predicate states that one of the notifications is enabled when all events of A are
disabled.

An Extension of Event B for Developing Grid Systems 151

In order for a client to be able to obtain new instances for a grid service
machine via the index service, a procedure GetNew is automatically generated
in the translated abstract B machine. This procedure can be viewed as the
constructor of instances.

z ← A GetNew =̂
IF A Instances �= A INSTANCES
THEN

ANY inst WHERE
inst ∈ A INSTANCES − A Instances ∧ inst �= A null

THEN
A Instances := A Instances ∪ {inst} ‖
x(inst) := x0 ‖ z := inst

END
ELSE z := A null
END

The procedure ensures that the instance returned is not already in use and
returns A null if no non-empty instance is available. If variable x is assigned x0
in the initialisation-clause of grid service machine A, variable x for the returned
instance inst is assigned x0, x(inst) := xo, in A GetNew.

Grid services allocated by a client may need to be returned to the index
service. Hence, a procedure Destroy is automatically generated for each grid
service machine upon translation to B to return an instance no longer in use.

A Destroy(inst) =̂
PRE inst ∈ A INSTANCES
THEN

IF inst ∈ A Instances
THEN

x := {inst} �| x ‖
A Instances := A Instances − {inst}

END
END

The operation A Destroy in A deletes the instance, inst, from the set of instances
in use and marks the instance as available in the index service. This procedure
can be viewed as the destructor of instances.

Example of a Grid Service Machine. As an example of translating grid
service machines in Distributed B to B, let us study grid service machine ADDER
that computes the sum of all values it receives. The machine has two remote
procedures, SetNewData and GetResult. The new value to be added to the sum
is given via procedure SetNewData. The result of the latest computation can be
obtained via procedure GetResult. The variable sum gives the current result
of the sum computation, while param contains the latest value received via
SetNewData. The variable state ensures that all the received values are added
once and only once to sum. The actual computation of the sum is performed in
event Comp. A notification is sent after the initialisation, InitNotif, as well as
after a new sum has been computed, DoneNotif.

The grid service machine ADDER is translated to the abstract B machine
ADDER VERIFICATION for verification as follows:

152 P. Boström and M. Waldén

GRID SERVICE
ADDER

VARIABLES
sum, param, state

INVARIANT
sum ∈ N∧
param ∈ N∧
state ∈ STATE

INITIALISATION
sum := 0 ‖ param := 0 ‖
state := init

REMOTE PROCEDURES
SetNewData(p) =̂

PRE p ∈ N

THEN
param := p ‖
state = start

END ;
z ← GetResult =̂

BEGIN z := sum
END

EVENTS
Comp =̂

SELECT state = start
THEN

sum := sum + param ‖
state := done

END
NOTIFICATIONS
InitNotif =̂
GUARANTEES state = init END ;

DoneNotif =̂
GUARANTEES state = done END

END

MACHINE
ADDER V ERIFICATION

. . .
VARIABLES

sum, param, state, ADDER Instances
INVARIANT
ADDER Instances ⊆ ADDER INSTANCES∧
A null /∈ ADDER Instances∧
sum ∈ ADDER Instances → N∧
param ∈ ADDER Instances → N∧
state ∈ ADDER Instances → STATE∧
∀inst.(inst ∈ ADDER Instances∧

¬(state(inst) = start) ⇒
state(inst) = init ∨ state(inst) = done)

INITIALISATION
sum := ∅ ‖ param := ∅ ‖ state := ∅ ‖
ADDER Instances := ∅

OPERATIONS
SetNewData(inst, p) =̂

PRE p ∈ N ∧ inst ∈ ADDER Instances
THEN

param(inst) := p ‖
state(inst) = start

END ;
z ← GetResult(inst) =̂

PRE inst ∈ ADDER Instances
THEN z := sum(inst)
END ;

y ← ADDER GetNew =̂ . . . ;
ADDER Destroy(inst) =̂ . . . ;

Comp =̂
ANY inst WHERE inst ∈ ADDER Instances
THEN

SELECT state(inst) = start
THEN

sum(inst) := sum(inst) + param(inst) ‖
state(inst) := done

END
END
END

The types of the variables in the grid service machine are translated to func-
tions from instances of the grid service machine to data values. For example,
the variable sum has type N in ADDER, while it is a total function from the
instances ADDER Instances to N in ADDER VERIFICATION. Instances are
created and deleted by the procedures ADDER GetNew and ADDER Destroy
introduced in ADDER VERIFICATION. The remote procedures SetNewData
and GetResult also take the instances into account. An additional parame-
ter is introduced to denote for which instance the procedure is called. Event
Comp is translated to an any-substitution for a non-deterministically chosen
instance inst of ADDER. Hence, there is an event Comp for every instance of
ADDER in use. The notifications InitNotif and DoneNotif are not translated
directly to B, although the invariant should explicitly say that the guarantees-
predicate in at least one of the notifications holds when event Comp is not
enabled.

An Extension of Event B for Developing Grid Systems 153

5 Refinement in Distributed B

We introduce a new type of refinement machine in Distributed B to deal with
remote procedure calls and notification handlers in Event B. The grid refinement
machines refine Event B systems, grid service machines, as well as other grid
refinement machines. In a refinement step in Distributed B variables and events
can be refined in the same way as in Event B. The substitutions in the remote
procedures and the notification handlers are also refined as the events to reflect
the changes of the variables. Note that the variables of the abstract grid service
machines are global variables and may not be refined.

A grid refinement machine contains a new structuring mechanism in B that
enables the grid refinement to obtain instances of the grid service machines via
the index service. When the grid refinement machine has obtained a grid service
instance, it can perform a remote procedure call to this instance and then wait
for a notification from it. The grid service machine can in turn be refined into a
grid refinement machine to reference new grid service machines.

5.1 Grammar for Refinements of Grid Services

The grammar of a grid refinement machine is an extension of the grammar of the
refinement machine in Event B. For brevity we concentrate on the differences
from the refinement machine.

Ref gridservice ::= ‘‘GRID REFINEMENT’’ Name
‘‘REFINES’’ Name
Clause ref gridservice+
‘‘END’’

Clause ref gridservice ::=
Clause refinement |
Clause references |
Clause rpcs |
Clause notif handlers

Clause references ::= ‘‘REFERENCES’’ Name+,
Clause rpcs ::= ‘‘REMOTE PROCEDURES’’ Rpc oper+;
Rpc oper ::= Header operation ‘‘=’’ NG Substitution
Clause notif handlers ::= ‘‘NOTIFICATION HANDLERS’’ Notif handler+;
Notif handler ::= Name ‘‘=’’ ‘‘NOTIFICATION’’ Name

‘‘SOURCE’’ Name ‘‘:’’ Name
‘‘THEN’’ NG Substitution ‘‘END’’

In the references-clause we give the names of the grid service machines that
the grid refinement machine can access and obtain instances of. The refined re-
mote procedures are given in the remote procedures-clause. Notifications are han-
dled by special events, notification-substitutions, in the notification handlers-
clause. There should be one notification handler event for each notification in
the referenced grid service machines. The source of the notification is given as
¡instance¿:¡grid service machine¿. The notification handlers and the remote pro-
cedures should be implementable and not contain guarded substitutions. The

154 P. Boström and M. Waldén

notifications-clause that we introduced for grid service machines is not included
in the refinement, since the guarantees-predicate of a notification should not be
refined.

5.2 Translation of the Refinement to B

In order to be able to show that the grid refinement machine is a correct refine-
ment of another machine, e.g., an Event B specification or a grid service machine,
both the grid refinement machine and its referenced grid service machines need
to be translated to B. Note that when we refine a grid service machine, we actu-
ally refine the instances of the grid service. In the translation from Distributed B
to B the instances of grid refinement machines are treated in the same way as
the ones of the grid service machines.

In Figure 2a grid refinement machine C2 refines Event B specification C1 and
references grid service machine A. The grid refinement C2 is translated to the
refinement machine C2 V and A is translated to the abstract machine A V .
The references-relation between C2 and A is translated to an includes-relation
between C2 V and A V .

Managing Instances of Grid Service Machines. In the grid refinement
machines we give instances of referenced grid service machines as ordinary vari-
ables. The instance aa of grid service machine A is declared as variable aa
of type A, aa ∈ A. This type declaration is translated to the predicate aa ∈
A Instances ∪ {A null} in B.

The grid refinement machines refer to the variables and remote procedures
of the instances of a grid service machine with the notation ¡instance¿.¡variable¿
and ¡instance¿.¡procedure¿, respectively. The variables of the grid service ma-
chine can be referred to only in the invariant of the grid refinement
machine.

The remote procedure calls need to be translated to match the corresponding
procedure definitions of the translated grid service machine. A call to a remote
procedure Proc(p) in instance aa, aa.Proc(p), is translated to procedure call
Proc(aa, p) in B, where the instance aa is given as an additional parameter.

Fig. 2. Translation to Event B

An Extension of Event B for Developing Grid Systems 155

Notifications. Notifications in a grid service machine inform the client that
all the events in the grid service machine instance have become disabled. A
notification handler in the client ensures that proper actions are taken for each
notification. In the grid refinement machine a notification handler is expressed
with the notification-substitution:

Handler =̂
NOTIFICATION Notif
SOURCE inst ∈ A
THEN T (inst)
END

Here Notif is the name of the notification to be handled, the source inst ∈ A
stands for the instance inst of the grid service A that sent the notification, and
T (inst) is a non-guarded substitution that refers to instance inst. Note that T
can only make read-only remote procedure calls to instances of A. A notification
handler in a client is only enabled when all the events in the corresponding grid
service have become disabled and the guarantees-predicate of the corresponding
notification holds. Hence, we consider the events in instance inst of grid service
machine A to have higher priority than the corresponding notification handlers
in C2 [13]. Moreover, since a notification handler should only be executed once
for each notification, it must disable itself.

Let us assume that we have an Event B specification C1 that is refined by
the composition of grid refinement machine C2 and its referenced grid service
machine A, C2 references A, as in Figure 2a. We denote the composition of C2
and A with C′

2, C′
2 =̂ C2 ‖ A. Furthermore, let C2 be the composition of the event

systems C2h containing the notification handlers (notification-substitutions) and
C2e containing the rest of the events in grid refinement machine C2, C2 = C2h ‖ C2e

(Figure 2b). In order to ensure the correct behaviour of the notification handling
in C′

2, the following conditions should hold for each notification handler C2h

of C2h:
∀inst.(gd(C2h(inst)) ⇒ ¬gd(Ainst)) (1)

∀inst.(gd(C2h(inst))⇒ wp(C2h(inst),¬gd(C2h(inst)))) (2)

Condition (1) states that all events from instance inst of grid service machine A
are disabled when notification handling event C2h is enabled for that instance.
A notification handler C2h for instance inst can only be executed once for each
notification that C2 receives and, hence, it must disable itself as stated in condi-
tion (2).

In the event system C2e we focus on the local events that do not make remote
procedure calls. A local event C2loc in system C2e should not interfere with the
notification handlers in C2h by enabling or disabling them as stated by conditions
(3) and (4).

gd(C2loc) ∧ gd(C2h)⇒ wp(C2loc, gd(C2h)) (3)

gd(C2loc) ∧ ¬gd(C2h)⇒ wp(C2loc,¬gd(C2h)) (4)

156 P. Boström and M. Waldén

The conditions (1) - (4) above are fulfilled by introducing extra features upon
translating the grid refinement C2 to B. Firstly, we introduce a boolean variable
A notification for each referenced grid service machine A:

A notification ∈ A Instances → BOOL

When the variable A notification(inst) has the value true, the grid refinement
C2 is prepared to receive a notification from instance inst of A. The notification
handler Handler is translated to take variable A notification into account:

Handler =̂
ANY inst WHERE

inst ∈ A Instances∧
¬gd(Ainst) ∧ QNotif (inst)∧
A notification(inst) = TRUE

THEN T (inst) ‖ A notification(inst) := FALSE
END

The guard of the translated notification handler Handler states that the events of
the grid service machine A for the instance inst should be disabled when Han-
dler is enabled, ¬gd(Ainst), ensuring that condition (1) is fulfilled. Predicate
QNotif is obtained from the guarantees-statement of the corresponding notifi-
cation Notif in A and gives the condition for this notification to be sent. The
condition A notification(inst) = TRUE in the guard of the translated notifica-
tion handler states that the grid refinement is prepared to receive a notification.
In order to ensure condition (2) stating that a notification handler is executed
only once for each notification, the assignment A notification(inst) := FALSE
is also added to Handler upon translation. In the events of C2 the assignment
A notification(inst) := TRUE is added after the remote procedure calls to
procedures in instance inst of A to prepare the notification handlers to receive
a notification. Note that this assignment is also added after a call to A GetNew
for a new instance of A.

The guards of the notification handlers, gd(C2h), refer to the variables of A,
as well as the variable A notification. Since, an event C2loc in the event system
C2e does not modify these variables, conditions (3) and (4) hold trivially.

Example of a Grid Refinement Machine. Let us give an example
of a grid refinement machine and its translation to B. The grid refine-
ment machine CLIENT1 below sums up a number of sub-sums (here 100),
(
∑100

counter=1
∑counter

j=0 j). It refines the abstract system CLIENT that computes
this sum in one step. The sub-sums from 0 to counter are computed in the grid
service machine ADDER presented in the example in Subsection 4.2. The in-
stance of grid service machine ADDER used for the sum computation is given by
variable adder. The variable counter keeps track of the number of calls made to
instance adder, while total gives the current result of the sum computation. The
variable rpc states whether there is a computation in progress in adder or not.
Event Evt of CLIENT1 initiates the computation of the inner sum (

∑counter
j=0 j)

by a call to procedure SetNewData in instance adder. The event Comp in adder

An Extension of Event B for Developing Grid Systems 157

performs the computation by adding counter to the previously computed sub-
sum, sum. CLIENT1 waits for a notification to update variable total with the
new sub-sum computed by adder. This process is repeated until the value of
counter is 100.

The grid refinement machine CLIENT1 in Distributed B is translated to the
refinement machine CLIENT1 VERIFICATION in B as follows:

GRID REFINEMENT
CLIENT1

REFINES
CLIENT

REFERENCES
ADDER

VARIABLES
counter, total, rpc, adder

INVARIANT
counter ∈ N ∧ total ∈ N∧
rpc ∈ BOOL∧
adder ∈ ADDER
. . .

INITIALISATION
counter := 0; total := 0;
rpc := FALSE;
adder ← ADDER GetNew

EVENTS
. . .
Evt =̂

SELECT adder �= A null∧
rpc = FALSE ∧ counter < 100

THEN
counter := counter + 1; rpc := TRUE;
adder.SetNewData(counter)

END

NOTIFICATION HANDLERS
Handler =̂

NOTIFICATION DoneNotif
SOURCE inst ∈ ADDER
THEN

VAR val IN
val ← inst.GetResult;
total := total + val;
rpc := FALSE

END
END

END

REFINEMENT
CLIENT1 V ERIFICATION

REFINES
CLIENT

INCLUDES
ADDER V ERIFICATION

PROMOTES
Comp

VARIABLES
counter, total, rpc, adder

INVARIANT
counter ∈ N ∧ total ∈ N∧
rpc ∈ BOOL∧
adder ∈ ADDER Instances∪

{ADDER null}
. . .

INITIALISATION
counter := 0; total := 0;
rpc := FALSE;
adder ← ADDER GetNew;
ADDER notification(adder) := TRUE

OPERATIONS
. . .
Evt =̂

SELECT adder �= A null∧
rpc = FALSE ∧ counter < 100

THEN
counter := counter + 1; rpc := TRUE;
SetNewData(adder, counter);
ADDER notification(adder) := TRUE

END ;

Handler =̂
ANY inst WHERE

inst ∈ ADDER Instances∧
¬(state(inst) = start)∧
state(inst) = done∧
ADDER notification(inst) = TRUE

THEN
VAR val IN

val ← GetResult(inst);
total := total + val;
rpc := FALSE

END ;
ADDER notification(inst) := FALSE

END
END

During the translation variable adder is transformed into an instance type of
the grid service machine ADDER, adder ∈ ADDER Instances ∪ {ADDER null}.
In the remote procedure call SetNewData the instance adder is introduced
as a parameter, SetNewData(adder, counter). The notification handler Han-
dler is translated to a new notification handling event for every instance inst
of ADDER. The notification DoneNotif is taken into account by adding the

158 P. Boström and M. Waldén

condition (state(inst) = done) from its guarantees-clause to the guard of the
notification handling event. The variable ADDER notification is included in the
notification handler and after every remote procedure call in the events, in order
to ensure that notification handler is executed once for each notification.

5.3 Proofs

In order to show that the grid refinement is a correct refinement of a more ab-
stract system the proof obligations given in Subsection 2.3 need to be generated
and discharged. The proof obligations concerning the refinement of the initial-
isation, the procedures, as well as the events are generated automatically by
the tools of the B Method. Furthermore, the proof obligation for showing that
the refined system does not terminate more often than the abstract system can
also be directly generated by these tools (via Event B). In order to show that
the new events terminate when executed in isolation, a variant that is decreased
upon execution of each new event is needed in the grid refinement machine. Note
that the notification handlers are introduced as new events. For the notification
handlers dealing with notifications from grid service machine A the variant is
the number of instances for which the notification has not yet been sent:

card({inst|inst ∈ A Instances ∧ A notification(inst) = TRUE})

This variant requires that new events do not call procedures in A. The proof
obligation ensuring that a refined remote procedure is enabled when the cor-
responding abstract remote procedure is enabled is true by construction, since
the remote procedures contain only non-guarded substitutions. Hence, all the
proof obligations for proving the correctness of a refinement step in Distributed
B can be automatically generated with the tool support for the B Method (via
Event B). These proof obligations can then be automatically or interactively
discharged with the help of these tools.

6 Implementation

The grid system development in Distributed B continues until all the non-
determinism has been removed and all the used constructs can be implemented,
i.e., they belong to the implementable subset of B, B0. When all substitutions
of the system belong to the B0 language, they can be translated to Java. The
remote procedures and notification handlers are constructed in such a way that
they can be directly translated [19]. Furthermore, translation of all the vari-
ables except for instances of grid service machines is straightforward [19]. The
instances are translated to objects encapsulating the grid specific features. Fi-
nally, all the events in an events-clause are merged into a single event [2]. The
composed event is translated to a while-loop in Java as follows:

An Extension of Event B for Developing Grid Systems 159

SELECT G1 THEN S1
. . .
WHEN Gn THEN Sn
END

while (true) {
if(G1) S1;
...
else if(Gn) Sn;
else break;

}
Note that the event can only be implemented, if all the guards Gi and the
substitutions Si belong to the B0 language.

When the grid system has been translated to Java, grid specific features
of Distributed B need to be attended to. Each notification handler need to be
registered with the Globus Toolkit grid middleware to automatically execute it
each time a notification is received. The handling of grid service instances is
set up via the API’s for grid services and for service data provided by Globus
Toolkit. This grid specific code can be inserted into the Java code concerning
the initialisation of the grid services, as well as the procedures GetNew and
Destroy. After we have translated the Distributed B code to Java and all the
grid specific features have been handled, we have implemented the grid system
in a formal manner where the implementation is proved correct with respect to
its specification.

7 Conclusions

In this paper we have proposed a language Distributed B that extends Event
B for designing and implementing correct grid systems. Grid systems are large
distributed systems and standard development tools cannot guarantee their cor-
rect implementation. We introduced two new types of machines, grid service
machine and grid refinement machine, for handling grid specific issues in Event
B. We proposed a method where the development of a grid system starts with
refinement within Event B. After a number of refinement steps the system is
split up into a grid refinement machine that references a number of grid ser-
vice machines in Distributed B. The grid refinement machine manages instances
of the grid service machines dynamically and can access these instances concur-
rently. The grid service machines can in turn be further refined and decomposed.
Throughout the development in Distributed B the grid constructs are translated
to machines in original B for verification purposes. The machines are introduced
in a manner that allows automatic generation of the necessary proof obligations.
Furthermore, the concrete specifications can be automatically translated to exe-
cutable code, since the grid constructs have been introduced in such a way that
they ensure that the system will be implementable. Hence, we have introduced a
method for implementing grid systems where the implementation can be proved
correct with respect to its specification.

The B language has earlier been successfully used for modelling distributed
systems, e.g., in [20]. These examples do, however, not consider implementa-
tion issues of the developed specification. Implementation of distributed systems
using the B Method has also been considered for the combination of B and

160 P. Boström and M. Waldén

CORBA by Rolland et al. [16]. Though, their paper does not consider concur-
rent behaviour and dynamic management of instances of distributed components.
Other formal methods have also been extended previously to enable implemen-
tation of distributed systems using different application domains. For example,
the DisCo formalism has been used for designing and implementing systems that
were translated to Enterprise Java Beans (EJB) [15]. Grid specific features were
not considered in that extension.

The architecture of the systems developed with Distributed B forms a tree
of grid services. Even if this is a very common architecture for grid systems, it
might be too restrictive in some cases. Hence, we plan to investigate also other
architectures. In the modelling of grid systems in Distributed B we have made
the assumption that no network failures occur. In future versions of Distributed
B also network failures and node failures will be taken into consideration in
remote procedure calls and notifications. Moreover, we consider development of
tool support for grid systems in Distributed B.

The language Distributed B that we proposed in this paper can provide a
convenient formal development process for grid systems. The systems will by
construction have an architecture that is implementable. Furthermore, specifi-
cations of grid systems constructed in this language will be clear to understand,
since the systems are modeled in terms of grid primitives with a precise meaning.
We believe that our approach to adapt Event B to the Globus Toolkit middle-
ware can also be useful for other types of middleware for distributed systems.

Acknowledgements

The authors would like to thank the anonymous referees for their useful com-
ments.

References

1. J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J. R. Abrial. Event Driven Sequential Program Construction, 2001. http://
www.atelierb.societe.com/ressources/articles/seq.pdf. (accessed
13.01.2005)

3. J. R. Abrial and L. Mussat. Event B Reference Manual, 2001. http://
www.atelierb.societe.com/ressources/evt2b/
eventb reference manual.pdf. (accessed 13.01.2005)

4. N. Aguirre, J. Bicarregui, T. Dimitrakos and T. Maibaum. Towards Dynamic Pop-
ulation Management of Abstract Machines in the B Method. In D. Bert, editor,
Proceedings of the Third international conference of B and Z users: ZB2003. LNCS
2651. Turku, Finland, pp. 528-545. Springer-Verlag, 2003.

5. R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with cen-
tralized control. In Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium of
Principles of Distributed Computing, pp. 131-142, 1983.

An Extension of Event B for Developing Grid Systems 161

6. R. J. R. Back and K. Sere. From modular systems to action systems. In Software
- Concepts and Tools, 17:26-39, 1996.

7. M. Butler and M. Waldén. Parallel programming with the B Method. Chapter 5
in E. Sekerinski and K. Sere. (eds.) Program Development by Refinement - Case
Studies Using the B Method, pp. 183-195. Springer-Verlag, 1998.

8. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
9. I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. The International Journal of Supercomputer Applications,
15(3), 2001.

10. I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
Technical report, Argonne National Laboratory, 2002. http://www.globus.org/
research/papers/ogsa.pdf. (accessed 13.01.2005)

11. Globus Toolkit. The Globus Alliance, 2004. http://www.globus.org/. (accessed
13.01.2005)

12. K. Czajkowski, et. al. Open Grid Services Infrastructure, 2003. http://
www-unix.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33 2003-06-27.pdf. (accessed 13.01.2005)

13. E. J. Hedman, J. N. Kok and K. Sere. Coordinating Action Systems. Theoretical
Computer Science, 240:91-115. Elsevier Science, 2000.

14. G. Mair and A. Villazón. Implementing a Distributed Master/Slave Grid Ser-
vice with Globus Toolkit 3 (GT3). http://dps.uibk.ac.at/~gregor/mandel.pdf,
2003. (accessed 13.01.2005)

15. R. Pitkänen. A Specification-Driven Approach to Development of Enterprise Sys-
tems. In Proceedings of NWPER’2004 - 11th Nordic Workshop on Programming
and Software Development Tools and Techniques, TUCS General Publication 34.
Turku, Finland, 2004.

16. O. Rolland and T. Muntean. Refining Open Distributed Systems to CORBA. In
Proceedings of RCS’02- International workshop on refinement of critical systems:
methods, tools and experience. Grenoble, France, 2002.

17. C. Snook and M. Waldén. Use of U2B for specifying B action systems. In Proceed-
ings of RCS’02- International workshop on refinement of critical systems: methods,
tools and experience. Grenoble, France, 2002.

18. K. Sere and M. Waldén. Data Refinement of Remote Procedures. Formal Aspects
of Computing, 12(4):278-297, 2000.

19. J. C. Voisinet, B. Tatibouet and A. Hammand. JBTools: An experimental plat-
form for the formal B Method. In Proceedings of the inaugural conference on the
principles and practice of programming and Proceedings of the second workshop on
intermediate representation engineering for virtual machines. National University
of Ireland, 2002

20. M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method.
Formal Methods in Systems Design, 13:5-35, 1998.

The Challenge of Probabilistic Event B
—Extended Abstract—

Carroll Morgan1, Thai Son Hoang1, and Jean-Raymond Abrial2

1 Dept. Eng. and Comp. Sci., Univ. New South Wales,
Sydney 2052, Australia

2 Dept. Comp. Sci., ETH Zürich,
ETH Zentrum RZ H 7 8092 Zürich, Switzerland

Abstract. Among the many opportunities offered by computational se-
mantics for probability, the challenge of probabilistic Event B (pEB) is
one of the most attractive.

The B method itself is now almost 20 years old, and has been much
improved and adapted over that time by the many projects to which it
has been applied, and by its philosophy —right from the start— that it
must be practical, effective and amenable to tool support.; more recently,
Event B has extended it and altered its style of use. The probabilistic-
program semantics we appeal to is even older (in Kozen’s original form),
but has only recently been “revived” in the context of B-style abstraction
and refinement.

The especial attraction of putting the two together is the likely inter-
play between the probabilistic theory, on the one hand, and the decades
of practical experience that have by now been built-in to the B approach,
on the other.

In particular, there are areas where a full theoretical treatment of prob-
ability, concurrency, abstraction and refinement —all at once— seems pro-
hibitively complex; and yet in practice either the complexities seldom
occur, or the exigencies of B ’s having been so-often applied to real, non-
toy problems has forced it to evolve styles for avoiding such complexities.
In short, we want to use (event) B to guide us towards the issues that truly
are important.

Rabin’s randomized mutual-exclusion algorithm is used as a motivat-
ing case study.

1 Theoretical Framework

We summarise separately the theory behind B (very briefly) and behind our
treatment of probability, and then we comment on how they are brought to-
gether.

1.1 B and Event B

The B Method is based ultimately on Dijkstra’s predicate transformers [6] for
its semantics, but has its own distinctive approach:

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 162–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Challenge of Probabilistic Event B 163

– Rather than highlighting the two levels of programs, syntax and semantics,
instead the program text is regarded simply as a specialised notation for
logical substitutions (into post-conditions to yield pre-conditions); thus the
“programming language” is known as Generalised Substitutions [1].

– The substitutions are broken into smaller pieces than in Dijkstra’s guarded
command language [6], on which they are based, in particular giving inde-
pendent meanings —as substitutions— to the individual guarded commands
within an if -fi construct. This required abandoning Dijkstra’s Law of the Ex-
cluded Miracle [23, 24, 19].

– The structuring of (large) systems into modules, and the way they are com-
bined, is based on principles of abstraction and (data-) refinement. For the
proofs of refinement, a first-order formulation is used [7] which has been
shown to be equivalent to the common second-order formulations [5].

– In Event B specifically, the miraculous semantics of “naked” guarded com-
mands is used to interpret their guards as enabling conditions, thus providing
a simple treatment of (interleaving) concurrency [20, 3, 4].

– Event B does not impose any fairness conditions on the (repeated) schedul-
ing of enabled substitutions; rather it is in the B style to elaborate (and
possibly refine) such conditions explicitly.

1.2 Probabilistic Predicate Transformers

Dijkstra’s interpretation of programs as “transformers of desired post-conditions
into the weakest pre-conditions sufficient to attain them” [6] was adapted by
Kozen to transform (what we call) “post-expectations” into “pre-expectations”
[13]; this was based on an underlying operational model of programs as functions
from initial state to final distribution of states [12].

Described informally, a post-expectation is a non-negative real-valued function
of the (final) state that tells you how much quantitative benefit will accrue should
the program finish in that state. A pre-expectation on the other hand is a function
of the initial state, and estimates before the program is run how much you can
reliably expect to gain by running the program from this state.1

Kozen’s work is a generalisation of Dijkstra’s in the sense that it replaces a
simple-but-coarse good/bad (Boolean) judgement —whether or not the postcon-
dition is achieved— by a finer valuation in which the original true/false judge-
ments can still be embedded (win $1 if the postcondition is achieved; win $0
otherwise). But in another sense it is not a generalisation, since the ability to
handle nondeterminism, and hence abstraction/refinement, has been lost: de-
monic choice was replaced by, not combined with, probabilistic choice.

1 For a fruit/slot/poker machine, the post-expectation is the function from fruit-triples
to payout; it is usually written on the front of the machine. The pre-expectation is the
average —weighted by the probabilities implemented in the machine’s hardware—
of the outcomes you can expect before pulling the handle; it is (or easily could be)
a function of the initial state.

164 C. Morgan, T.S. Hoang, and J.-R. Abrial

More recent work has combined probability and demonic nondeterminism by
synthesising a combination of the Dijkstra- (sets of final states) and the Kozen-
(distributions of final states) approaches: the result is that programs take initial
states to sets of distributions of final states [9, 21, 16], and the programming logic
of expectations is correspondingly generalised.

1.3 Probability and B

Because both approaches above are predicate-transformer based, it is tempting
(and rewarding) to put them together, and some experiments have already been
carried out [18, 17, 11, 10]. The issues raised included the following: 2

– Probabilistic substitutions do not satisfy conjunctivity, the property that
allows multiple “conceptual” invariants of a machine to be treated as a single
object (their conjunction) by the B proof-engine; thus a B machine might
need to have several invariants.

– Machines’ invariants need to be given initial values. (Non-probabilistic ma-
chines also need “initialised” invariants, in theory, but there are only two
possible initialisations: false and true. Since false is pointless, the rules are
specialised so that true is assumed and an initialisation need not be written.)

– The proof [5] that the first-order definition of refinement [7] is equivalent to
the standard second-order versions fails without conjunctivity, so that a new
formulation must be found.

– The interaction between probability and demonic choice is subtle and treach-
erous, particularly when the latter is implicit, as in for example in the choice
between possible invocation order of machines’ operations if several guards
are simultaneously enabled.

2 The Mutual-Exclusion Algorithm

As a case study we chose an example where intricate reasoning seems to be
required to achieve a goal that is nevertheless simple to state; it involves con-
currency, probability and adversarial (i.e. demonic) scheculing.

2.1 Background and Suitability

Rabin has proposed a probabilistic mutual-exclusion algorithm [25] where the
randomisation is used to achieve the following advantages over conventional al-
gorithms:

– The size of the shared variable needed to ensure bounded waiting-time and
absence of lockout is only 4 lg N rather than N+1, where N is the number
of competing processes.

2 There were many issues of implementation as well, which we do not discuss, such as
convincing the B software to accept real- rather than Boolean “predicates”.

The Challenge of Probabilistic Event B 165

– The protocols of the processes are identical, and no single process ever be-
comes, even temporarily, controller of the computation.

– The entrance probability of a particular process is bounded below by a func-
tion of the number of processes actively attempting to enter, rather than by
some function of the total number of processes (even “uninterested” ones)
in the whole system.

Because Rabin’s original algorithm was shown to have a subtle flaw [26]
(subsequently corrected [14]), and because that flaw concerned the interaction
of demonic choice (in the processes’ assumed “adversarial” scheduling) with
the probabilistic choices carried out by the processes themselves, and especially
because Rabin’s correctness arguments are informal (though still rigorous and
mathematical), this seemed an ideal example for an attempted formalisation.
Moreover, the algorithm in its original form [25] is not particularly simple (in
detail); and the description of the error [26], and the correction [14] are truly
complicated. Again, this suggests that a formal development could bring out
(for the rest of us) the principal features of the design and how it actually
functions.

2.2 Informal Description

Rabin’s algorithm works roughly as follows. There are three shared variables:
a single semaphore (one bit) that ensures safety; a lottery number used to re-
solve the competition between processes seeking entry to the critical section;
and a round number which prevents multiple concurrent competitions from
interfering.

To attempt entry to the critical section, a process chooses independently its
own lottery number according to a certain distribution (in which higher values
are less likely than lower ones); it then “maxes” that number (as an atomic
action) with the shared lottery number; and finally (a separate and subsequent
atomic action) it examines the shared variables again: if the semaphore says
“critical section is free” and the process’s own local lottery number is equal to
the shared lottery number (thus is the largest), then it enters the critical section
(setting the semaphore to “busy”).

A remarkable feature of the algorithm is that the lottery-number generat-
ing distribution (Bernoulli, in which the probability of choosing k is just 1/2k)
has the property that the probability of a “tie”, where more than one process
has jointly chosen the maximum, is bounded below by a constant c indepen-
dent of the number of processes competing: even if a million processes compete,
the probability of a tie for maximum is still no more than approximately 1/3.
Thus the probability of gaining entry is at least 1/N (by symmetry, the proba-
bility of having the highest lottery number) times 1−c (the constant reduction
factor due to the possibility that the maximum might be shared with a com-
petitor), that is about 2/(3N) where N is the number of processes actually
competing.

166 C. Morgan, T.S. Hoang, and J.-R. Abrial

3 Results of the Case Study So Far

Our initial attempts to develop Rabin’s algorithm threw up a number of inter-
esting challenges, related to the integration of probability and Event B, beyond
those mentioned earlier.3 Here we look at a selection of them.

3.1 How Should Probability Be Specified?

Arguably the most natural way to indicate that an event occurs only with some
probability is to annotate the guard of the event itself with that probability. Not
only is this reminiscent of a similar (and successful) technique in process algebras,
where a guard may combine a Boolean condition with a communication event,
it also continues the Event B tradition of making the events’ internal structure
as simple as possible. That latter is precisely the kind of intuition we hope to
“import” from B, since it is based on practical experience of carrying out real
system developments and so —we hope— will guide us away from trying to
formalise very general interactions that we do not actually need.

In this case, the Event B style encourages us to write two separate events
(with invented but —we hope— obvious syntax)

FlipH = SELECT 1/2 THEN coin: = H END
FlipT = SELECT 1/2 THEN coin: = T END

rather than for example the single event

Flip = PCHOICE 1/2 THEN coin: = H
ELSE coin: = T

END .

(In both cases the Boolean portion TRUE of the guard is elided.)
In the theory [16] however we have transformer semantics only for the second

form, and not for the first: that is, we do not (yet) have a semantics for “naked
probabilistically guarded commands”. Indeed, it’s clear in any case that any set
of mutually-exclusive probabilistic alternatives would have to be linked together
somehow into groups: otherwise, a system comprising two coins (for example, each
one specified in the first style above) would have a combined probability of two.

At the moment the best candidate for compromise here is to introduce extra
variables, one per probabilistic group, with the “housekeeping” organised behind
the scenes by the B software. Thus two separate (biased) coins in the same
system might be written

FlipHa = SELECT a:1/3 THEN coinA: = H END
FlipTa = SELECT a:2/3 THEN coinA: = T END

FlipHb = SELECT b:3/4 THEN coinB: = H END
FlipTb = SELECT b:1/4 THEN coinB: = T END ,

(1)

but would be treated as if it were in fact

3 And we have not yet found an approach that is completely satisfactory!

The Challenge of Probabilistic Event B 167

FlipHa = SELECT a=1 THEN coinA: = H END
FlipTa = SELECT a=2 THEN coinA: = T END

FlipHb = SELECT b=1 THEN coinB: = H END
FlipTb = SELECT b=2 THEN coinB: = T END

and as part of the scheduling process there would be a new pair of events, viz.

SetA = PCHOICE 1/3 THEN a: = 1
ELSE a: = 2

END

and a similar SetB. These new events would be managed and reasoned about by
the B proof-engine without too much intervention by the developer explicitly.

Although this appears merely to “move the problem elsewhere”, in fact the in-
troduced events would always be concerned with simple assignments from among
a small number of values; the possible complexity of the probabilistic choices is
thus removed from the logic of the algorithm proper.

3.2 What Are the Rules for Probabilistic Refinement?

As we mentioned in Sec. 1.3, the Gries-Prins rules [7] for (data-) refinement
(which B uses) no longer work when probability is introduced. For example, the
trivial refinement with coupling invariant coin1 = coin2 between

Flip = PCHOICE 1/2 THEN coin1: = H
ELSE coin1: = T

END

and

Flip = PCHOICE 1/2 THEN coin2: = H
ELSE coin2: = T

END

cannot be proved in the usual way: the couple is not maintained if, for example,
the upper system chooses H while the lower chooses T .

If we apply the technique of Sec. 3.1 then the issue only moves from the Flip
events to the introduced events SetA and SetB which, in this case, are actually
no simpler.

In general, the data-refinement formulations to which we must appeal (and
which validate Gries and Prins [5]) are second-order —they involve quantification
over predicates— and are often presented in two versions, so called upwards-
(or backwards-) and forwards- (or downwards-) refinement [8]. (The Gries-Prins
rule is forwards-refinement.) These more general rules do work for probabilistic
systems, because they are the “bedrock” of the method and do not depend (for
example) on conjunctivity for their validity.

To use the second-order rules within B, and in particular to allow the B
programs to carry out semi-automatic proofs concerning them, we will probably

168 C. Morgan, T.S. Hoang, and J.-R. Abrial

VARIABLES x, z
INITIALLY x: =0

Init1 = SELECT x = 0 THEN x: =1 END
Init2 = SELECT x = 0 THEN x: =2 END

FlipA3 = SELECT a:1/2 & (x=1 OR x=2) THEN x, z: =3, 3 END
FlipA4 = SELECT a:1/2 & (x=1 OR x=2) THEN x, z: =4, 4 END

FlipB3 = SELECT b:1/2 & (x=1 OR x=2) THEN x, z: =3, 3 END
FlipB4 = SELECT b:1/2 & (x=1 OR x=2) THEN x, z: =4, 4 END

Fig. 1. Two-coin four-event system

VARIABLES y, z
INITIALLY y: =0

Init1 = SELECT i:1/2 & y = 0 THEN y: =1 END
Init2 = SELECT i:1/2 & y = 0 THEN y: =2 END

FlipA3 = SELECT y=1 THEN y, z: =3, 3 END
FlipA4 = SELECT y=2 THEN y, z: =4, 4 END

FlipB3 = SELECT y=2 THEN y, z: =3, 3 END
FlipB4 = SELECT y=1 THEN y, z: =4, 4 END

Fig. 2. Alternative two-coin four-event system

have to specialise them to simple events of the kind SetA above, where the
number of values involved —just two (but twice, once for A and once for B)—
is very small. In small cases of that kind, automatic proof may well be possible.

3.3 How Does Probability Interact with Demonic
Nondeterminism?

This is the key theoretical question —we believe— in this area. And it is of great
practical importance as well, being thrown up again and again in the case study.

Rabin’s original formulation [25] of the mutual-exclusion algorithm was incor-
rect precisely because demonic choice (inherent in an adversarial scheduler) could
exploit earlier probabilistic outcomes (for example, of whether lottery numbers
drawn by competing processes led to success or failure). A simple “stand-alone”
example of the potential difficulty is as follows.

We take a system analogous to the four-event two-system at (1) except that
there is only one coin and the probabilities are equal, as shown in Fig. 1. There
are two “initialisation” events: only one can be executed, and the choice between
them is demonic. The system executes exactly one Init event and then exactly
one Flip event; then it terminates. We regard variables x and y as internal: the
“result” of executing the system will be found in z.

We compare Fig. 1 with the system of Fig. 2. It differs from Fig. 1 in that
the Flip events have become deterministic: the probabilistic choice has been

The Challenge of Probabilistic Event B 169

moved earlier, into the Init events. Internal variable x has been replaced by y;
external variable z remains. (The a, b, i are not variables we are concerned with
directly: they are “linking” annotations, as we saw in Sec. 3.1, that identify the
constituent members of a single probabilistic choice.)

Now the question is whether or not we should regard Fig. 2 as a refinement
of Fig. 1. (Remember that ultimately we are concerned only with the value of
the external variable z.)

An informal argument for “YES” is that we imagine a downwards refinement
where the two state spaces are related with a coupling “invariant” as follows:

1. if x = 0 then y = 0;
2. if x = 1 ∨ x = 2 then y is 1 or 2 with probability 1/2; and
3. if x = 3 ∨ x = 4 then y can be any value.

In addition we require that the two z’s — which formally we would call z and
z′ with a coupling conjunct z = z′ — are of course the same, since we have said
that z is to be an externally visible variable. The informal reasoning continues
as follows:

– When x = 0 only the Init events are enabled in Fig. 1; from Item 1 above we
have y = 0, so that only the Init events are enabled in Fig. 2 also. In Fig. 1
the choice between Init1 and Init2 is demonic; in Fig. 2 it is probabilistic;
and probabilistic choice refines demonic choice.
After the Init event has executed (in each of the two systems), the Fig. 1
state satisfies x = 1 ∨ x = 2 and the Fig. 2 state satisfies “y is 1 or 2 with
probability 1/2”, just as Item 2 of the couple requires.

– If x = 1 then each Flip event is enabled with probability 1/2 in Fig. 1. Then
Item 2 of the couple tells us that y is 1 or 2 with probability 1/2, so that
each Flip event is enabled with probability 1/2 in Fig. 2 also. The effects of
the events —whichever is chosen— are the same on z, and because of Item
3 of the couple, there is no requirement to link x and y after the Flips have
executed.

– If x = 2 then we reason as for x = 1.
– If x = 3 ∨ x = 4 then both systems have terminated.

Thus we conclude —perhaps— that Fig. 2 refines Fig. 1. Certainly it seems
that our only control over z, which is all we can see externally, is to set it to
either 3 or 4 with equal probability.

Yet there is also an argument for “NO: it is not a refinement”, which depends
on the demonic scheduler’s being able to exploit its access to y. In Fig. 2 the
scheduler could act to choose the FlipA events (whichever is enabled) when
y = 1, but choose the FlipB events when y = 2. In this way it guarantees to set
z to 3 every time, which is not a refinement of the behaviour in Fig. 1, since the
latter guarantees an unbiased probabilistic outcome between z = 3 and z = 4. 4

4 That might look like a refinement from (z=3)’s point of view — but it is not overall,
since z=4 is being “unfairly treated”.

170 C. Morgan, T.S. Hoang, and J.-R. Abrial

4 Conclusion

We still have some way to go to achieve our goal of an Event B -style development
of Rabin’s algorithm. Yet our work so far has helped us to focus on what may
turn out to be the crucial points in adapting adapting probability to this context.

What seems to be clear even at this stage is that a certain style of development
is going to be the key to success: just sledgehammer mathematics is not enough. 5

That is, rather than tackling the entire issue of probabilistic/demonic transition
systems, instead we adopt a “programming style” dictated by the issues we can
resolve, and which actually occur in practice.

In this case it may be that an explicit treatment of demonic choice, so far
implicit in the possibly overlapping guards of events in Event B, is what will
help us make progress. There, all in one place, we find the interaction of demonic
choice and probability, the gathering together of probabilistic choice into a sin-
gle restricted space (which may allow first-order rules for refinement), and the
mechanisms for allowing “probabilistically guarded” events.

References

1. J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. D. Bert, J.P. Bowen, S. King, and M. Waldén, editors. Proc. 3rd Int. ZB Confer-
ence, volume 2651 of LNCS. Springer Verlag, 2003.

3. M.J. Butler. A CSP approach to action systems. DPhil thesis, Computing Lab.,
Oxford University, 1992.

4. M.J. Butler and C.C. Morgan. Action systems, unbounded nondeterminism and
infinite traces. Formal Aspects of Computing, 7(1):37–53, 1995.

5. Wei Chen and J.T. Udding. Towards a calculus of data refinement. In J.L.A.
van de Snepsheut, editor, Lecture Notes in Computer Science 375: Mathematics of
Program Construction. Springer Verlag, June 1989.

6. E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, Engle-
wood Cliffs, N.J., 1976.

7. D. Gries and J. Prins. A new notion of encapsulation. In Symposium on Language
Issues in Programming Environments. SIGPLAN, June 1985.

8. Jifeng He, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In Lecture
Notes in Computer Science 213, pages 187–196. Springer Verlag, 1986.

9. Jifeng He, K. Seidel, and A.K. McIver. Probabilistic models for the guarded com-
mand language. Science of Computer Programming, 28:171–92, 1997. Available at
[15–key HSM95];
dx.doi.org/10.1016/S0167-6423(96)00019-6.

10. Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver, Carroll Morgan,
and Thai Son Hoang. Development via refinement in probabilistic B — foundation
and case study. LNCS. Springer Verlag.

11. Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver, Carroll Morgan,
and Thai Son Hoang. Probabilistic invariants for probabilistic machines. In Bert
et al. [2].

5 The etymology of “sledgehammer” has nothing to do with Santa Claus.

The Challenge of Probabilistic Event B 171

12. D. Kozen. Semantics of probabilistic programs. Jnl. Comp. Sys. Sciences, 22:328–
50, 1981.

13. D. Kozen. A probabilistic PDL. Jnl. Comp. Sys. Sciences, 30(2):162–78, 1985.
14. Eyal Kushilevitz and M.O. Rabin. Randomized mutual exclusion algorithms revis-

ited. In Proc. 11th Annual ACM Symp. on Principles of Distributed Computing,
1992.

15. A.K. McIver, C.C. Morgan, J.W. Sanders, and K. Seidel. Probabilistic Systems
Group: Collected reports.
web.comlab.ox.ac.uk/oucl/research/areas/probs.

16. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Technical Monographs in Computer Science. Springer Ver-
lag, New York, 2004.

17. Annabelle McIver, Carroll Morgan, and Thai Son Hoang. Probabilistic termination
in B. In Bert et al. [2].

18. Carroll Morgan. The generalised substitution language extended to probabilistic
programs. In Didier Bert, editor, Proc. 2nd Int. B Conference, volume 1393 of
LNCS. Springer Verlag, 1998. Also available at [15–B98].

19. C.C. Morgan. The specification statement. ACM Transactions on Program-
ming Languages and Systems, 10(3):403–19, July 1988. Reprinted in [22];
doi.acm.org/10.1145/44501.44503.

20. C.C. Morgan. Of wp and CSP. In W.H.J. Feijen et al., editor, Beauty is Our
Business. Springer Verlag, 1990.

21. C.C. Morgan, A.K. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–53, May
1996. doi.acm.org/10.1145/229542.229547.

22. C.C. Morgan and T.N. Vickers, editors. On the Refinement Calculus. FACIT Series
in Computer Science. Springer Verlag, London, 1994.

23. J.M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9(3):287–306, December 1987.

24. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–61, October 1989.

25. M.O. Rabin. N -process mutual exclusion with bounded waiting by 4 log 2N -valued
shared variable. Journal of Computer and System Sciences, 25(1):66–75, 1982.

26. I. Saias. Proving probabilistic correctness statements: the case of Rabin’s algo-
rithm for mutual exclusion. In Proc. 11th Annual ACM Symp. on Principles of
Distributed Computing, 1992.

Requirements as Conjectures: Intuitive DVD
Menu Navigation

Jemima Rossmorris and Susan Stepney

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK

susan@cs.york.ac.uk

Abstract. In this paper we use Z to capture the requirements for an
‘intuitive’ menu navigation system as a series of conjectures that should
hold. We use those requirements to investigate potential algorithms. The
Z formalisation enables the somewhat fuzzy requirement of ‘being intu-
itive’ to be captured precisely, analysed, and critiqued, leading to possi-
bly new requirements, and more intuitive algorithms.

Keywords: Z, requirements, conjectures, DVD.

1 Introduction

Interactive systems require some sort of input from the user to instruct the
system on what behaviour is desired. One way of interacting is for the user to
navigate around a menu system, selecting options as necessary to achieve the
desired behaviour. Examples of this are navigating a TV menu to change the
brightness and contrast, navigating a DVD menu to chose an episode or special
feature, and navigating the links on a Web page. Normally Web page navigation
is done using the mouse to control a cursor. However, blind and motion-impaired
users may not be able to use a mouse, and are often restricted to using the
tab key, or cursor keys, to navigate. Most TV and DVD controls are similarly
restricted, and have some form of cursor that jumps between menu items.

The W3 guidelines on the use of the tab key state that web designers should
“create a logical tab order through links, form controls, and objects” [WC3–
checkpoint 9.4]. In practice, the order in which links are tabbed through on a
web page is often taken to be the order in which the links are defined in the
html code. This order may be the desired one, but it may not: it is left to the
page designer to get it right.

For DVDs the situation is even worse. There is no standard or guidelines
for how the cursor should react. As Donald Norman puts it: “Designers haven’t
figured out the cursor model yet either: In most DVDs, pushing the joystick (or
arrow) control up will move the cursor up, but I have encountered some in which
the cursor moves down.” [Norman 2001].

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 172–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Requirements as Conjectures: Intuitive DVD Menu Navigation 173

Fig. 1. Menu navigation: (a) two potentially ambiguous menu layout arrangements
(taken from real DVD menus) (b) a navigation that misses the middle item

Ideally, cursor navigation should be ‘intuitive’, that is, predictable to the
average user. Yet consider figure 1 (a layout seen on real DVD menus). In the
oval layout, is item 2 or item 4 to the ‘right’ of item 1? In the diamond layout,
is item C or item M to the ‘right’ of item A? If the cursor moves to C, how does
it get to M? If it moves to M, where next, to C or to D? And so on.

The cursor navigation problem is a real, non-trivial, unsolved problem in
set-top box,1 DVD, and other interactive design. It is separate from the screen
design problem. Individual screen designers layout their menu items in whatever
manner they see fit; the screen display provider (for example, the set-top box
manufacturer) then has to provide a general purpose ‘intuitive’ algorithm to
navigate the cursor on any potential screen layout.

One selling point of formal methods is their ability to capture abstract re-
quirements without being distracted by implementation detail. For example, a
very abstract Z [ISO-Z 2002] specification would be written as the high level
requirements specification, and then refined down to include more concrete im-
plementation details. The usual approach is to write the Z specification in a
‘state and operations’ style. However, requirements are not always properties
of single operations. In this paper we use Z to capture the requirements for
an ‘intuitive’ menu navigation system as a series of conjectures that we want
to hold on our (initially very underspecified) state and operations specifica-
tion. We use those requirements to investigate potential operation specifications.
In turns out that some obvious requirements (such as ‘undo’) put particularly
strong constraints on the design, whilst others (such as the seemingly innocent
‘right arrow moves the cursor right’) are in fact very difficult to capture, not
at all intuitive, and bear further investigation. The Z formalisation enables the
somewhat fuzzy requirement of ‘being intuitive’ to be captured precisely, anal-
ysed, and critiqued, leading to possibly new requirements, and more intuitive
algorithms.

1 C. A. Whyte, private communication.

174 J. Rossmorris and S. Stepney

2 Basic Specification

We start by specifying the minimum necessary to capture the requirements. We
simplify the problem by considering the screen to be tiled with squares, each of
which may be a menu item.

The screen is xSize units wide and ySize units tall.

xSize, ySize : N1

Positions on the screen are given by a pair of (x , y) coordinates, each numbered
from zero up to the maximum size. x coordinates increase in the rightwards
direction; y coordinates increase in the downwards direction. We require there
to be at least two screen positions, in order to exclude trivial menus.

position == 0 . . (xSize − 1)× 0 . . (ySize − 1)

1 < #position = xSize ∗ ySize

The screen itself is then a set of (at least two) menu positions, and a cursor
positioned on one of the menu items.

Screen
menu : F position
cursor : position

1 < #menu
cursor ∈ menu

The basic cursor movement does not change the menu items. (We do not provide
any operations to change the menu items: it is assumed the screen is initialised
with the desired items.)

BasicMove == [ΔScreen | menu ′ = menu]

The MoveRight operation moves the cursor ‘rightwards’. We do not yet specify
what that means, but we need to provide the declaration for use in the require-
ments conjectures. We can consider this specification to be parameterised by the
MoveRightPredicate, which needs to be chosen such that it fulfils the require-
ments.

MoveRight == [BasicMove | MoveRightPredicate]

Similar declarations are made for the other cursor directions. Then the general
Move operation is a movement in one of the cursor directions.

Move == MoveRight ∨ MoveLeft ∨ MoveUp ∨ MoveDown

Requirements as Conjectures: Intuitive DVD Menu Navigation 175

3 Requirements as Conjectures

We now have enough machinery to capture the requirements. There are sev-
eral requirements that the navigation system should ‘clearly’ fulfil. We analyse
the consequences in the following section. We focus on MoveRight : the other
directions follow by symmetry arguments.

3.1 Conjectures in Z

In ISO Standard Z [ISO-Z 2002], a conjecture paragraph has the following syn-
tax:

�? Predicate

In a well-formed specification, the Predicate must be well-typed in the context
in which it appears, but it need not be true. If it is true (is implied by the
properties of the specification) then it is said to be valid, and is then a theorem of
the specification. (See [Valentine et al. 2004–chapter 5] for further explanation.)

In this paper, we use the following extension to the standard syntax in order
to separate out declarations from the body of the conjecture:

SchemaText �? Predicate

is equivalent to

�? ∀ SchemaText • Predicate

3.2 R1. Is Deterministic

The cursor’s movement should be consistent with its historical behaviour. That
is, whenever the cursor is on a particular menu item and you press a particular
arrow key, the cursor should always move to the same next menu item.

This is captured by requiring each separate part of the Move operation to be
deterministic, or functional.

�? { MoveRight • cursor �→ cursor ′ } ∈ position �→ position

3.3 R2. All Reachable

Whichever menu item you start from, you should be able to reach any other
menu item by a sequence of arrow key presses. (This might seem obvious, but
there are web pages using frames where this does not hold, as it is not possible
to tab between their frames.)

Screen �? { Move • cursor �→ cursor ′ }∗ = menu ×menu

176 J. Rossmorris and S. Stepney

Fig. 2. What is right?

3.4 R3. Undo

Being able to undo one’s actions is an important feature in any interactive system
[Abowd & Dix 1992]. Undo in navigation is useful if you go past the link you
want: you can go backwards, instead of having to scroll through all the links
again.

So MoveRight followed by MoveLeft should leave you back where you started.
(It is possible to consider the use of a ‘shift’ key, giving a separate MoveLeft and
‘undo MoveRight ’, but that adds complexity to the user interface.)

MoveRight o
9 MoveLeft �? ΞScreen

3.5 R4. Move Moves

Feedback is another important feature. If you press a key, something should
happen. We capture this with the requirement that, no matter where the cursor
is, if you press an arrow key, the cursor moves to another menu item. (We could
alternatively require it to ‘flash’, say, if there was nowhere for it to sensibly
move.)

Move �? cursor ′ �= cursor

3.6 R5. MoveRight Moves Right

The previous requirements are all at a very basic level, that pressing a key
does something sensible. This requirement captures a more detailed level of the
intuition, that pressing a key does the ‘correct’ thing. So, no matter where the
cursor is, if you press the right arrow key, the cursor should move to the next
menu item to the right.

This requirement is suprisingly difficult to capture, and is where all the com-
plexity, and most of the interest, lies.

We want the cursor to move to the ‘nearest’ ‘rightward’ menu item, including
wrapping around when close to the right edge of the screen. (It is much easier to

Requirements as Conjectures: Intuitive DVD Menu Navigation 177

Fig. 3. Right-cones in the tiled plane, with the original screen shown in bold

specify if wrapping is not allowed, but that is considered to be a simplification
too far, as real DVD menu navigation does wrap.)

Just what, however, is ‘right’ of the current position? Consider figure 2. In the
lefthand pcture, should the cursor move from A to C (which has the smaller x -
coordinate distance from A) or to B (which has the smaller Euclidean distance
from A)? One feels that ‘intuitively’, the choice should be B. In the middle
picture, B and C have the same Euclidean distance from A, and C has the smaller
x -coordinate distance. One again feels that intuitively, the choice should be B,
(although an argument might be made for C). B seems to be more ‘rightward’,
and C more ‘upward’, as can be seen from the angle of the arrows pointing to
them. However, it is not just the angle of the movement. In the righthand picture,
B is definitely more rightward in terms of angle, yet in this case, C seems to be
the intuitive ‘right’ choice. There is some combination of angle and distance.
This is the intuition captured by the following requirement (which first needs a
little machinery to be defined before it can be stated succinctly).

The definition is complicated by requiring wrapping when the cursor is at the
far right. The usual way to model this is by modulo arithmetic. However, here it
will be easier to visualise the effect by the isomorphic ‘infinite tiling’ approach.
The entire plane is tiled with copies of the Screen rectangle, with corresponding
menu positions and cursor (see figure 3). So each screen position is mapped to
a corresponding set of tiled points in the plane:

tile == λ p : Point • { i , j : Z • (p.1 + i ∗ xSize, p.2 + j ∗ ySize) }

178 J. Rossmorris and S. Stepney

tile takes a Point (defined in the appendix), and gives the set of all Points
resulting from tiling the plane in xSize ∗ ySize tiles.

We then capture the difference between ‘rightward’ and ‘upward’ (or, sym-
metrically, ‘leftward’ and ‘downward’) directions, as a rightward viewing area
subset of this tiled plane. The view to the right of a position is all those points
within a right-pointing cone with 45 degree semi-angle, apex at the position of
interest (see appendix for the definitions of cos45 and unitVector), as shown in
figure 3.

viewRight == λ p : Point •
{ q : Point \ {p} | cos45 ≤ (unitVector(q −v p)).1 }

Now we define a screen of menu items, wrapped into this rightward view. right-
Menu defines all rightward menu items as all the menu items in the infinite tiled
plane, restricted to those in the rightward cone. rightMenu1 picks out the one
of these menu items in the rightward cone that is closest to the cursor (see
appendix for the definition of the distance dR). There may be more than one
tiled menu item at the same distance from the cursor; we leave the definition
loose at this stage.

WrapScreenRight
Screen
rightMenu : Point �→ P Point
rightMenu1 : Point �→ Point

rightMenu = λm : menu • tile m ∩ viewRight cursor
∀m : menu •

rightMenu1 m ∈ { p : rightMenu m |
∀ q : rightMenu m • dR(cursor , p) ≤ dR(cursor , q) }

Then the nearest menu item to the cursor, on the right, is the rightMenu1 menu
item that is no further from the cursor than any other. (Again, this is loose if
there are several at the same closest distance.)

RightView
WrapScreenRight
nearest : position

nearest ∈ menu \ {cursor}
∀m : menu \ {cursor} •

dR(cursor , rightMenu1 nearest) ≤ dR(cursor , rightMenu1 m)

So, finally, the requirement is that a MoveRight operation moves the cursor to
the nearest right menu position:

MoveRight ; RightView �? cursor ′ = nearest

The corresponding requirements on the other direction operations follow by sym-
metry.

Requirements as Conjectures: Intuitive DVD Menu Navigation 179

4 Satisfying the Requirements

4.1 Analysing the Requirements

We now consider the interactions of these five requirements.
R4 (Move moves) is subsumed by R5 (MoveRight moves right). Under R5,

MoveRight does always move the cursor, because of the condition nearest ∈
menu\{cursor}. (And the other direction operations also move it, by symmetry.)
So, under this particular R5, we can ignore R4, but if we modify R5, we must
remember to revisit R4.

R3 (Undo) in combination with R1 (Deterministic) implies that each direc-
tion operation is not just functional, but injective. It defines MoveLeft as the
compositional inverse of the deterministic (functional) MoveRight , so implies
MoveRight is in fact an injection. Undo injectivity requires that each menu be
the closest left item of its closest right item. That is, under the current formu-
lation of R5, if A has B as its nearest item in its ‘right-cone’, then B must have
A as its nearest item in its ‘left-cone’. In terms of figure 4, B is right-closest to
A because there are no other items in the grey and hatched shaded areas. For A
to be left-closest to B, there must also be no menu items in the dotted area of
B’s left-cone. This is a very strong constraint, and clearly not all screen layouts
need meet it.

R2 (Reachable) puts some further strong constraints on Move. It is not clear
at this point if this is compatible with the other requirements.

4.2 Implementing the Requirements

Ideally, the next step would be to calculate the weakest MoveRight predicate
that satisifies all the requirements.

Fig. 4. Undo-consistent right-cone and left-cone, using the difference in x -coordinate
metric

180 J. Rossmorris and S. Stepney

Fig. 5. Impossibility of injective undo under the ‘right-cones’ requirement

However, it is easy to see that this is not possible: consider a screen with two
menu items in the first column, and one in the second (see figure 5). Whichever
item the cursor is on in the first column, MoveRight will move it to the sin-
gle unique item in the second; which clearly cannot be undone in an injective
deterministic manner.

What to do? There are two possibilities: (a) strengthen Screen by putting
more constraints on menu positions such that requirements do hold; (b) weaken
(or change) some requirements conjectures so that they are implementable.

4.3 Constraining the Menu Layout

We discussed above how the undo requirement puts constraints on the menu
layout (figure 4). If we were to enforce this constraint, would it be sufficient to
satisfy all the requirements?

It is certainly not easy to see if such a constraint would guarantee reach-
ability. Yet further constraints might be necessary. Before we expend effort in
establishing such constraints, we should instead ask: is it reasonable to enforce
this constraint? The answer is no, for two reasons. Firstly, it is very complicated:
screen designers would not easily understand where they could place menu items
in order to conform (particularly with Euclidean or Manhattan metrics, where
the analogue of figure 4 is more complicated). Secondly, we actually cannot en-
force it: screen designers can design whatever layouts they please, and we can
make only recommendations.

So let us instead consider changing the requirements, to get an alternative
‘intuitive’ definition, but one that can be implemented.

4.4 Weakening the Requirements

Which requirement to weaken? R1 (Determinisim) and R2 (reachability) are non-
negotiable. R3 (undo) is very strong – forcing injectivity on each Move function
component, yet it does seem very desirable. Let us consider R5 MoveRight : it
is certainly the most complicated requirement to specify and understand, so it
seems an ideal candidate for weakening. (We must remember to check that R4
is still subsumed by the new R5′.)

Requirements as Conjectures: Intuitive DVD Menu Navigation 181

Fig. 6. A set of rightward chains covering all menu items on the screen

The existing requirements can actually help us formulate R5′. Consider plot-
ting the path of a rightward moving cursor. Determinism means this path never
splits; injectivity means no two paths ever join. So we can consider the chain of
menu items described by this path. We want this chain to ‘move right’ across
the screen, which we can specify by some predicate on the x components of the
menu items. What happens at the right-hand edge? The cursor wraps around
to a left-edge menu item. If we were to consider the entire chain of rightward
moves, including several possible wrappings, we would find it difficult to specify
the desired property. But if we consider the rightward chains and the wrappings
separately, we can get an elegant specification of the desired property. Moreover,
we can specify different kinds of wrapping for different circumstances. Figure 6
shows one possible set of ‘rightward’ chains. Such chains do also allow purely
downward movements (which were not allowed by the earlier ‘rightward cone’
formulation of R5), to allow for sensible behaviour with vertically stacked menu
layouts.

An LRChain is an injective sequence of positions (injective, so all the posi-
tions are different), of length at least two (to remove trivial chains, and to ensure
R4). In the chain the x coordinates of the positions are increasing, or are the
same with the y coordinates increasing.

LRChain == { s : iseq position |
1 < #s
∧ (∀m,n : dom s | m < n •

(s m).1 < (s n).1
∨ (s m).1 = (s n).1 ∧ (s m).2 < (s n).2) }

We augment the definition of Screen with a sequence of LRChains.

182 J. Rossmorris and S. Stepney

LRChains
Screen
lrchain : seqLRChain
cl , cn : N

{ l : dom lrchain • l �→ ran(lrchain l) }partitionmenu
¬ ChainsCross[lrchain/chain]
cl ∈ dom lrchain
cn ∈ dom(lrchain cl)
cursor = lrchain cl cn

We require the positions in the set of chains to partition the menu: each
menu position occurs in precisely one chain. The chains run from left to right
across the screen by definition. We also require that the chains do not cross (see
appendix for details). Finally, we define the position in the chains of the cursor.

There are (at least) two possibilities on wrapping: either the cursor moves
back to the beginning of the same chain (a behaviour seen in simple DVD
menues) or it moves to the beginning of the next chain (a kind of ‘carriage-
return/line-feed’ behaviour suitable for text-based web pages). We capture each
of these requirements in a separate conjecture.
R5′a: pressing the right arrow key causes the cursor to move to the next item in
its chain, unless it is at the rightmost end, in which case it wraps to the beginning
of the same chain. (See the appendix for the definition of the ++ operator.)

MoveRight ; LRChains �?
let cn ′ == cn ++ #(lrchain cl) • cursor ′ = lrchain cl cn ′

R5′b: pressing the right arrow key causes the cursor to move to the next item
in its chain, unless it is at the rightmost end, in which case it wraps around to
the beginning of the next chain; if it is at the end of the last chain, it wraps to
the beginning of the first chain.

MoveRight ; LRChains �?
let cn ′ == cn ++ #(lrchain cl) •

let cl ′ == if cn ′ = 1 then cl ++ #lrchain else cl •
cursor ′ = lrchain cl ′ cn ′

The new R5′ does seem to capture the move right requirement adequately. In
addition R5′b satisfies R2 (reachable), as it directly scrolls through all menu
items in the order specified by the chains. However, R5′a does not necessarily
satisfy R2: see figure 7a for a counter-example. The chains may have to be chosen
carefully to ensure reachability (figure 7b).

Requirements as Conjectures: Intuitive DVD Menu Navigation 183

Fig. 7. Two possible patterns of right chains and down chains (a) mutually unreachable
sub-regions under R5′a; (b) full reachability under R5′a

Fig. 8. Two possible patterns of right chains and down chains for the diamond menu
of figure 1

So the diamond menu of figure 1 could be supplied with navigation chains as
shown in figure 8.

5 Conclusions and Further Work

The implementation of the requirements is now reduced to developing an algo-
rithm that can find suitable chains that obey the chain constraints, and provide
reachability. (Recall, this is the responsibility of the screen navigation provider,
not of the screen designer, because there is no standard facility in the screen de-
sign mark-up to include navigation information.) Developing such an algorithm
is beyond the scope of this paper, but clearly requires further refinements of the
requirements to capture ‘good’ chains.

However, the original problem has certainly been reduced to a much simpler
one. The chains approach automatically ensures R1 and R3–R5, and shows a
simple way to detect if R2 is fulfilled (a simple ‘mark and sweep’ algorithm is

184 J. Rossmorris and S. Stepney

sufficient to test reachability). What is next required is a proof that it is always
possible to find some set of chains that fulfil R2, and then an algorithm to find
them.

The ‘requirements as conjectures’ approach has allowed us to write a ‘state
and operations’ style Z specification, to explore the properties of the operations
without having to specify them in any detail, to capture requirements that can-
not be expressed as properties of single operations (such as reachability), and to
analyse the impact and consequences of particular stated requirements.

It might be argued that we did end up with the rather algorithmic-looking
requirement R5′; however the existence of the required chains is merely asserted,
and no algorithm for finding them is (yet) provided. The process of getting to this
point allowed us to understand what the seemingly simple ‘move right’ property
really entailed.

This paper shows the route to a solution for simple menu layouts. The full
problem is more complicated. Menu items may be non-rectangular, complicating
the intuition of which other item should be visited next (figure 1). Menu labels
may affect the intuitive navigation order (for example, if they are numbers).
However, we believe the approach here is applicable in more general cases.

Acknowledgements

We would like to thank Dr. Charles A. Whyte of ANT Ltd. for bringing the very
real problem of DVD navigation menus to our attention, and the anonymous
referees for helpful comments.

All the Z in this paper has been typechecked with Formaliser, and then
undergone some minimal conversion to Standard Z syntax [ISO-Z 2002].

References

[Abowd & Dix 1992] Gregory D. Abowd and Alan J. Dix. Giving undo attention.
Interacting with Computers, 4(3):317–342, 1992.

[ISO-Z 2002] ISO/IEC 13568. Information Technology – Z Formal Specifica-
tion Notation – Syntax, Type System and Semantics: Interna-
tional Standard, 2002. http://www.iso.org/iso/en/ittf/

PubliclyAvailableStandards/c021573 ISO IEC 13568 2002(E).zip.
[Norman 2001] Donald A. Norman. DVD menu design: The failures

of web design recreated yet again. December 2001.
http://www.jnd.org/dn.mss/DVDmenus.html.

[Valentine et al. 2004] Samuel H. Valentine, Susan Stepney, and Ian Toyn. A Z pat-
terns catalogue II: definitions and laws, v0.1. Technical Report
YCS-2004-383, Department of Computer Science, University of
York, October 2004.

[WC3] WC3. HTML Techniques for Web Content Accessibility: Guide-
lines 1.0, WC3 Note 6 November 2000.
http://www.w3.org/TR/2000/NOTE-WCAG10-HTML-TECHS-20001106/.

Requirements as Conjectures: Intuitive DVD Menu Navigation 185

A Utility Functions and Predicates

We use real numbers and associated functions (including the extension of addi-
tion and multiplication to the reals, real division, square roots, and so on), to
capture various vector operations on screen positions interpreted as vectors. We
use the definitions in [Valentine et al. 2004].

A Point is a pair of reals, representing a point in the infinite plane, or equiv-
alently, as a vector from the origin to that point in the plane.

Point == R× R

We define (+v) as vector addition, (−v) as vector subtraction, (.v) as
vector dot product, and (∗v) as scalar multiplication on Points in the obvious
way (but omit the definitions here, for brevity).

+v , −v : Point × Point → Point
.v : Point × Point → R

∗v : R× Point → Point

The definition of the rightward viewing cone uses the cosine of 45 degrees:

cos45 == 1÷
√

2

A unit vector derived from a general non-zero vector p is that unique vector that
has unit length and points in the same direction as p.

unitVector == λ p : Point | {p.1, p.2} �= {0} •
(μ u : Point ; α : R | u.vu = 1 ∧ 0 < α ∧ α ∗v u = p • u)

We define the distance between points. We leave this loose, because we may
want to use a Euclidean metric, a Manhattan metric, the difference between
the respective x coordinates, or some other measure. So we define the minimal
constraints.

dR : Point × Point → R

∀ p, q : Point • 0 ≤ dR(p, q)
∀ p, q : Point • dR(p, q) = 0⇔ p = q
∀ p, q : Point • dR(p, q) = dR(q , p)
∀ p, q , r : Point • dR(p, r) ≤ dR(p, q) + dR(q , r)
∀ p, q , r : Point ; α : R | dR(r , p) = dR(r , q) ∧ 0 ≤ α ≤ 1 •

dR(r , (1− α) ∗v p +v α ∗v q) ≤ dR(r , p)

The first four predicates capture the property of being a metric: it is positive,
points are zero distance apart precisely when they are the same point, it is
symmetric, and it satisfies the triangle inequality. The last predicate requires
the metric to be convex: given two points p and q the same distance from a

186 J. Rossmorris and S. Stepney

third point r , then any point on the straight line (defined in terms of the usual
Euclidean metric on the plane) drawn between them is no further from r (it may
well be closer).

Given two line segments, one defined by end points p and q , and the other
by end points p′ and q ′, the predicate LineSegmentsCross is true if they cross,
that is, if they share a point in common.

LineSegmentsCross
p, p′, q , q ′ : position

∃α, α′ : R | 0 ≤ α ≤ 1 ∧ 0 ≤ α′ ≤ 1 •
α ∗v p +v (1− α) ∗v q = α′ ∗v p′ +v (1− α′) ∗v q ′

A collection of chains of line segments cross if any segment from one crosses a
segment from another.

ChainsCross
chain : seq iseq position

∃ l , l ′ : dom chain | l �= l ′ •
∃m,n : dom(chain l); m ′,n ′ : dom(chain l ′) •

let p == chain l m; p′ == chain l ′ m ′;
q == chain l n; q ′ == chain l ′ n ′ •

LineSegmentsCross

The infix operator ++ increments its first argument, unless it equals its second,
in which case it returns 1. (It is similar to addition of 1 modulo n, except that
it is based from 1 rather than from 0.)

function 30 leftassoc(++)

++ : Z× N1 → Z

∀ i : Z; n : N1 • i ++n = if i = n then 1 else i + 1

A Prospective-Value Semantics for the GSL

Frank Zeyda, Bill Stoddart, and Steve Dunne

School of Computing, University of Teesside,
Middlesbrough, TS1 3BA, UK

{f.zeyda, bill, s.e.dunne}@tees.ac.uk

Abstract. We present a prospective-value (pv) semantics for the Gener-
alised Substitution Language. Whereas wp semantics captures the mean-
ing of a computation in terms of the weakest precondition that must be
fulfilled for a generalised substitution S to establish any given postcon-
dition Q , pv semantics expresses the meaning of a computation in terms
of the value any expression E would take were the computation to be
carried out. To integrate non-termination we formulate improper bunch
theory, an extended version of Hehner’s bunch theory where each type
is augmented with an improper bunch. Algebraic simplification laws for
the pv expression transformer are presented, and proved to be sound.
Iteration is treated as a fixed-point in expressions, and a corresponding
theorem is presented allowing us to infer the pv effect of the while-loop
construct.

Keywords: Generalised substitution, bunch theory, prospective-value
semantics, expression transformers, wp calculus, B Method.

1 Introduction

The B Method is based on the use of predicate transformers and the wp calculus,
with the transformation of predicates by programs being expressed in terms of
the Generalised Substitution Language (GSL).

The substitution rules of the GSL can also be used to transform expressions.
In previous work [7] we have used expression transformers to extend the expres-
sive power of expressions in a programming language. In this paper we return to
them with a different agenda; we would like to investigate the extent to which
they can provide a more intuitive understanding and even perhaps, a semantic
foundation for B. As before we use S ! E to represent the values expression E
could take were it to be evaluated after the execution of program S . We call these
its “prospective values”. The current treatment will include a way of expressing
the effect of non-termination, a problem which did not concern us previously
but which we wish to consider now that we are concerned with more general
semantic issues.

As motivation, consider a substitution S , assumed to act in the context of
state variable(s) s. The characteristic predicate prd(S) of S is then a predicate
on before-values s and after-values s ′ which expresses the effect of S . For example

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 187–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 F. Zeyda, B. Stoddart, and S. Dunne

if S is x := x + 1 [] x := x + 2 then prd(S) is x ′ = x + 1 ∨ x ′ = x + 2. Using a
predicate transformer formulation we have the general rule prd(S) = ¬ [S]x �= x ′

where the double negative is required to accommodate non-determinism.
In prospective-value terms we define prd(S) by saying x ′ must be one of the

values which x could take after executing S . In the bunch theory formulation
we use this is written as x ′ : S ! x . We hope the simplicity of this form will
encourage the reader to bear with us in our forthcoming exposition.

The rest of the paper is organised as follows. In Section 2 we introduce “Im-
proper Bunch Theory”, an extension of bunch theory we have developed to
capture the effect of non-termination. In Section 3 we introduce a bunch com-
prehension expression which intuitively captures the meaning of S !E . We use it
to provide proofs for a set of laws, defined over the syntactic constructs of GSL,
which enable us to eliminate the diamond operator from expressions. We have
already given, without proof, a restricted form of these laws in [7]. Here they are
formulated in a way that expresses the effect of non-termination.

In Section 4 we present a fixed-point treatment of iteration. In Section 5 we
draw our conclusions and indicate future work.

2 Bunch Theory and Improper Bunch Theory

Bunch theory is a simplification of set theory. Set theory in general allows
one to build arbitrarily nested structures since sets are packaged, for exam-
ple {1, {2, {3}}}. In contrast, bunches haven’t got this packaging ability and
therefore always remain flat. Accordingly, we don’t write encapsulating brack-
ets around bunches as we do with sets. The expressions 1 and 1 , 2 , 3 are both
bunches (the first one only containing one element and hence called elementary).
Note that bunch theory is defined in such a way that no distinction has to be
made between the number 1 and the elementary bunch containing 1, in the same
manner as there is no need to differentiate the rational number 1 and the com-
plex number 1. In this paper our bunches are strongly typed, so that all the
elements of a given bunch must be of the same type, and each type has its own
distinct empty bunch.

Bunch theory was invented by Hehner [4, 5]. He argued that in most cases in
computer science set theory is not required in its entire power, and for notational
convenience we should aim for a simpler theory that has ‘just the right’ power
for its purpose. Bunch theory has recently been used to notable effect by Morris
and Bunkenburg [6]. Our particular reason for adopting bunch theory in our
work here is that we believe it indeed does have ‘just the right’ expressive power
we need to present our prospective-value semantics for the GSL.

2.1 Operators

The familiar set operators ‘∪’, ‘∩’ and ‘−’ have their counterparts in bunch
theory, namely bunch union ‘ , ’, bunch intersection ‘ ′ ’ and bunch subtraction
‘ \ ’. Enumerated elements of a bunch are simply separated by ‘ , ’, and the comma

A Prospective-Value Semantics for the GSL 189

also serves as the bunch union operator. Thus if E and F are bunches we may
write E , F for the bunch that contains both the elements of E and F . The
bunch that contains no elements is designated by null. For bunch inclusion the
symbol ‘:’ is used; since every single element is as well a bunch there is no need
for a separate membership operator. Equality of bunches we define in terms of
mutual inclusion, i.e. E = F if, and only if E : F ∧ F : E .

Any operator defined on elementary values can be lifted to bunches in the
obvious way, so that it distributes through bunch union and is strict with respect
to null. For example, we can lift the addition operator ‘+’ on naturals to be an
operator on bunches of naturals, so that for instance

1 , 2 + 3 , 4 = 4 , 5 , 6 and 1 , 2 + null = null

2.2 The Improper Bunch

Conventional bunch theory isn’t expressive enough to distinctively describe the
outcome of a possibly non-terminating computation, e.g. the value of 2+ x after
execution of the GSL program abort. To do so we extend bunch theory here
with a new bunch for each type, called its improper bunch. We use the same
symbol ‘⊥’ for all these, relying on context to determine type. Note that ⊥ is
not some sort of improper elementary value, but a special bunch having the
property of absorbing all other bunches, in the sense that bunch union and all
bunch operators lifted from operators on underlying types are strict with respect
to it. For example, for any bunch E of natural numbers

E , ⊥ = ⊥ and E +⊥ = ⊥

2.3 The Bunch Refinement Lattice

In our improper bunch theory the two extreme bunches ⊥ and null form respec-
tively the bottom and top of the inverted inclusion ordering on the bunches of
any given type, i.e. E F ⇔ F : E , which is moreover a complete lattice.1 The
motivation for this ordering is the reduction of non-determinism when moving
up the lattice: as we will use bunches in what follows in Section 3 to describe
the outcome of computations, less deterministic computations will yield bunches
which are lower, and more deterministic computations ones which are higher in
the lattice.

In our definitions, theorems and examples we use E and F for bunch expres-
sions, x , y for single variables and z , w for arbitrary tuples of variables. P , Q and
G will denote predicates, while S , T denote generalised substitutions. We will

1 In fact in ordinary bunch theory the proper bunches of a type also form a complete
lattice, whose top is null and whose bottom is the carrier bunch of that type, for ex-
ample for the naturals Nb = 1 , 2 , 3 , In improper bunch theory we effectively
extend the lattice by appending our improper bunch ⊥ as a new bottom element
below this.

190 F. Zeyda, B. Stoddart, and S. Dunne

often use corresponding lower-case letters to refer to the frame of a generalised
substitution, for example s may stand for the frame of the substitution S .

2.4 Bunch Comprehension

It is often useful to describe a bunch by means of a bunch comprehension ex-
pression. This is similar to a set comprehension. We introduce the following
fundamental notation:

§ z • E

where z is a list of variables and E is an expression. The types of the variables of
z must be inferable from E . The comprehension denotes the bunch of all values
E as each variable of z ranges over the elementary values of its type. That the
type(s) must be inferable from the syntax of E usually means E in practice
will be a guarded bunch, as explained in the next subsection, whose guard will
involve some type-constraining predicate for all the variables of z .

We note here as a general rule that quantified variables appearing in any
universal or existential quantification range over the elementary values of a type.

Degenerate Bunch Comprehension. A degenerate case of a bunch compre-
hension arises when the list of range variables featuring in the comprehension is
empty. Denoting such an empty list by ∅ we have

Definition 1. § ∅ • E =df E

2.5 Guarded and Preconditioned Bunches

We use the notation G −→E for a guarded bunch, and P ||| E for a precondi-
tioned bunch. The formal definitions (by means of a conditional expression) are
given below.

Definition 2. G −→E =df if G then E else null end

Definition 3. P ||| E =df E , ¬ P −→⊥

Guarded and preconditioned bunches evaluate to the value of the expression E
when the guarding predicate is true, however degenerate respectively to null or
⊥ if not so. Note that in particular we need the concept of a guarded bunch
to express comprehension in its more familiar form involving a constraining
predicate P restricting the values of E to be included2:

§ z | P • E =̂ § z • P −→E

2 We used the notation § z | P • E in [7], but in this paper we use the more funda-
mental alternative form § z • P −→E .

A Prospective-Value Semantics for the GSL 191

2.6 Substitution

We will write E [F/w], where E is an expression, possibly denoting a bunch, w is
a list of variables and F is a corresponding list of elementary-valued expressions
of appropriate types, to denote the expression syntactically derived from E by
replacing each free occurrence of any of the variables of w by the corresponding
expression in F .

In particular, substitution distributes across bunch union. For example, if E
is a bunch such that E = E1 , E2 then

E [F/w] = E1[F/w] , E2[F/w]

3 Prospective-Value Semantics

In prospective-value semantics the meaning of a computation S , expressed in
the Generalised Substitution Language, is given by the value an expression E
would take were S to be carried out. We denote this value by S !E , it is indeed
the prospective value of E after execution of S . Similarly to transforming a
predicate in wp semantics, the application of ! has no state changing side-effects.
Note that variables occurring free in S ! E refer to the state before executing
S . The following closed form, involving the frame, trm and prd of a generalised
substitution S , serves as a semantic definition for S ! E :

Definition 4. Let S be a generalised substitution, and E be an expression then

S ! E =df trm(S) ||| § s ′ • prd(S)−→E [s ′/s]

where s is the list of variables constituting the frame3 of S , and s ′ the list of
respective primed variables.

Note that the predicates trm(S) and prd(S) have their usual meanings and can
be inferred from the wp semantics of S . One might object that we aren’t devel-
oping an independent and self-contained theory when building on the semantics
of an existing one (the wp calculus for the GSL). There are however reasons for
this: for one we have a sufficient conceptual understanding of the frame, trm and
prd to confidently assert the correctness of Def. 4, and furthermore we will see
that this definition allows us to prove elementary algebraic laws which would
otherwise have to count as axioms. It is indeed a departure from our previous
exposition [7], which presented pv semantics only for the terminating subset of
the GSL, but in the light of incorporating non-termination soundly we feel a
sensible one.

3.1 Example for Calculating S � E

As an illustrating example for applying Def. 4 let us consider the following
generalised substitution

3 The theory of generalised substitutions incorporating frames is presented in [3].

192 F. Zeyda, B. Stoddart, and S. Dunne

S =̂ x > 0 | (x := x + 1 [] x := x + 2) .

We first have to compute the frame, trm and prd of S . We can trivially see the
frame of S only consists of the variable x . Fig.2 contains a few laws we can use
to infer the trm and prd.

trm(S) = x > 0 ∧ trm(x := x + 1 [] x := x + 2)

= x > 0

prd(S) = x > 0⇒ prd(x := x + 1 [] x := x + 2)

= x > 0⇒ (x ′ = x + 1 ∨ x ′ = x + 2)

With these characteristic predicates we can now apply Def. 4. Let us decide to
calculate the prospective value of the expression 2 ∗ x after execution of S :

S ! 2 ∗ x

= “Applying Def. 4”

trm(S) ||| § x ′ • prd(S)−→ 2 ∗ x [x ′/x]

= “Rewriting trm and prd”

x > 0 ||| § x ′ • x ′ = x + 1 ∨ x ′ = x + 2−→ 2 ∗ x [x ′/x]

= “Splitting bunch comprehension into two cases”

x > 0 ||| (§ x ′ • x ′ = x + 1−→ 2 ∗ x [x ′/x] , § x ′ • x ′ = x + 2−→ 2 ∗ x [x ′/x])

= “One-point rule for bunch comprehension”

x > 0 ||| (2 ∗ (x + 1) , 2 ∗ (x + 2)) .

Note that the result is an expression on the state before executing the compu-
tation S . The interpretation of it is that the value of 2 ∗ x would be x > 0 |||
(2 ∗ (x + 1) , 2 ∗ (x + 2)) if we executed S . Since S behaves non-deterministically
we obtain a bunch of elementary results: 2 ∗ (x + 1) , 2 ∗ (x + 2). In particular if
we invoke S from a state where x = 0 holds the outcome for 2∗x after executing
S is ⊥, indicating the possibility of non-termination.

3.2 Special Case for the Frame of S Being Empty

To strengthen our confidence in Def. 4 we submit it to the boundary case where
the frame of the generalised substitution S is empty. Hence we let S be the
substitution Skip, and remind the reader that the trm and prd of Skip are both
equivalent to true.

skip ! E

= “Applying Def. 4”

trm(skip) ||| § ∅ • prd(skip)−→E [∅/∅]
= “E [∅/∅] degenerates to E”

trm(skip) ||| § ∅ • prd(skip)−→E

A Prospective-Value Semantics for the GSL 193

= “Rule for bunch comprehension: § z • P −→E = P −→§ z • E when z \P”

trm(skip) ||| prd(skip)−→§∅ • E

= “Degenerate case of bunch comprehension, see Sect. 2.4”

trm(skip) ||| prd(skip)−→E

= “Rewriting trm(skip) and prd(skip), see Fig.2”

true ||| true−→E

= “Simplifying preconditioned and guarded bunch”

E

This coincides with our expectation because Skip always terminates having no
state-changing effects, and hence doesn’t alter the value of the expression E .

3.3 Algebraic Laws to Simplify S � E

From the previous derivation we can immediately conclude that skip ! E may
be replaced by E wherever it occurs in our mathematical formalism (whereby
the expression transformer ! is eliminated). Knowing this has got practical ad-
vantages, e.g. that we don’t need to appeal to the semantic definition Def. 4
anymore and carry out the cumbersome calculations involving the trm and prd
of S . Moreover such algebraic laws exist for all other operators of the GSL, a
comprehensive summary of them is given in Fig.1. Note that s and t designate
the frames of the corresponding generalised substitutions S and T . The nota-
tional conventions are as agreed in Section 2.3.

As we assume the reader is familiar with the Generalised Substitution Lan-
guage, we won’t explain the meaning of each individual construct given in Fig.1
in detail, but only make a few selected remarks where we think clarification could
be beneficial. See [1, 3] for a more detailed explanation of each GSL construct.

We follow [3] by incorporating frames into our pv semantics for the GSL.
The frame of a generalised substitution is the list of state variables which the
substitution potentially can affect. When using the GSL outside the context of a
B machine, frames are essential to give a meaningful definition to all operators of
the GSL - in particular parallel composition. We now present detailed remarks
on some of the individual GSL constructors.

Assignment. One might wish to differentiate simple and multiple assignment,
e.g. x := 1 and x , y := 1, 2. Such a distinction is however unnecessary since sim-
ple assignment can be regarded as a special case of multiple assignment. Hence
in our rule for assignment z always represents a tuple of variables, and F a tuple
of expressions. Both tuples nevertheless are required to have the same dimen-
sion, and the elements of the right-hand tuple have to be well-defined and of
corresponding appropriate type. In case of z being the empty tuple it is easy to
show that such an assignment degenerates to Skip.

194 F. Zeyda, B. Stoddart, and S. Dunne

Generalised Substitution Name Syntax Frame S � E

Skip skip ∅ E

Assignment z := F z E [F/z]

Precondition P |S s P ||| S � E

Guard G =⇒S s G −→S � E

Frame extension Sy s ∪ y S � E

Choice S [] T s ∪ t S � E , T � E

Unbounded Choice @z • S s − z § z • S � E if z \E

Sequential Composition S ; T s ∪ t S � T � E

Fig. 1. Simplification rules for S � E for all constructs of the GSL

Precondition. The precondition rule is one of the central contributions of this
paper. In our previous approach of presenting an expression-transformer seman-
tics for the GSL [7] we resolved the issue through neglect, e.g. restricting ourself
to the terminating subset of the GSL. Here however we don’t want to impose
such an a priori restriction on the command syntax, and thereby give a meaning
to the entire GSL in terms of its pv effect.

Preconditioning a substitution (thin bar ‘ | ’) naturally translates into pre-
conditioning an expression (thick bar ‘ ||| ’). The latter is only meaningful in our
extension of bunch theory to improper bunch theory.

Guard. Similarly, guarding a generalised substitution translates into guarding
the respective bunch S ! E . Where the guard G is false we consider the substi-
tution S to be infeasible, and hence don’t expect any outcomes from an attempt
to execute S . Note that both the Precondition and the Guard constructors could
have been defined solely in terms of conditional expressions, without the aid of
guarded and preconditioned bunches. We believe however that these render the
theory more comprehensive.

Frame Extension. Frame extension is a constructor which is peculiar to Dunne’s
exposition of a theory of generalised substitutions [3]. It explicitly allows us to en-
large the frame of a substitution. Note that this has no effect on the prospective
value S !E as the values of the variables in the residual frame y−s are conserved
and thus not altered.

Iteration. For an iteration W , or indeed more generally any recursively defined
substitution W , we define W ! E as the least fixed-point of a corresponding
self-referential expression, having first established suitable orders on expressions
of each given type. This will be discussed in Section 4 of the paper.

A Prospective-Value Semantics for the GSL 195

3.4 Proof of Algebraic Laws

As we already pointed out, using the closed form Def. 4 as a semantics definition
for S ! E , the algebraic rules listed in Fig.1 become subject to validation via
proof. Here we present three of the proofs in detail. We have selected proofs of
moderate difficulty: namely, those for assignment, preconditioning and choice.

Proposition 1. z := F ! E = E [F/z]

Proof. z := F ! E

= “Applying Def. 4”

trm(z := F) ||| § z ′ • prd(z := F)−→E [z ′/z]

= “Rewriting trm and prd, see Fig.2”

true ||| § z ′ • z ′ = F −→E [z ′/z]

= “One-point rule for bunch comprehension”

true ||| E [F/z]

= “Simplifying preconditioned bunch”

E [F/z] "#

Proposition 2. P |S ! E = P ||| S ! E

Proof. P |S ! E

= “Applying Def. 4, let s be frame(S)”

trm(P |S) ||| § s ′ • prd(P |S)−→E [s ′/s]

= “Rewriting trm and prd, see Fig.2”

P ∧ trm(S) ||| § s ′ • P ⇒ prd(S)−→E [s ′/s]

= “Eliminating preconditioned bunch”

§ s ′ • P ⇒ prd(S)−→E [s ′/s] , ¬(P ∧ trm(S))−→⊥
= “Logic”

§ s ′ • ¬P ∨ prd(S)−→E [s ′/s] , ¬P ∨ ¬trm(S)−→⊥
= “Splitting bunch comprehension and guarded bunch”

§ s ′ • ¬P −→E [s ′/s] , § s ′ • prd(S)−→E [s ′/s] , ¬P −→⊥ , ¬trm(S)−→⊥
= “Reordering terms and applying Def. 4”

S ! E , § s ′ • ¬P −→E [s ′/s] , ¬P −→⊥
= “Rule for bunch comprehension: § z • P −→E = P −→§ z • E when z \P”

S ! E , ¬P −→§ s ′ • E [s ′/s] , ¬P −→⊥
= “Distribution of guarding through bunch union, absorptive property of ⊥”

196 F. Zeyda, B. Stoddart, and S. Dunne

S ! E , ¬P −→⊥
= “Rewriting into preconditioned bunch”

P ||| S ! E "#

Proposition 3. S [] T ! E = S ! E , T ! E

Proof. S [] T ! E

= “Applying Def. 4, let s be frame(S), t be frame(T), and u = s ∪ t”

trm(S [] T) ||| § u ′ • prd(S [] T)−→E [u ′/u]

= “Frame extension law: prd(S [] T) = prd(St [] Ts)”

trm(S [] T) ||| § u ′ • prd(St [] Ts)−→E [u ′/u]

= “Eliminating preconditioned bunch”

§ u ′ • prd(St [] Ts)−→E [u ′/u] , ¬trm(S [] T)−→⊥
= “Rewriting trm and prd, see Fig.2”

§ u ′ • prd(St) ∨ prd(Ts)−→E [u ′/u] , ¬(trm(S) ∧ trm(T))−→⊥
= “Logic”

§ u ′ • prd(St) ∨ prd(Ts)−→E [u ′/u] , ¬trm(S) ∨ ¬trm(T)−→⊥
= “Splitting bunch comprehension and guarded bunch”

§ u ′ • prd(St)−→E [u ′/u] , § u ′ • prd(Ts)−→E [u ′/u] , ¬trm(S)−→⊥ ,

¬trm(T)−→⊥
= “Frame extension law: trm(S) = trm(Sy)”

§ u ′ • prd(St)−→E [u ′/u] , § u ′ • prd(Ts)−→E [u ′/u] , ¬trm(St)−→⊥ ,

¬trm(Ts)−→⊥
= “Reordering terms and applying Def. 4”

St ! E , Ts ! E

= “Frame extension law, see Fig.1”

S ! E , T ! E "#

3.5 Some Characteristic Predicates

The characteristic predicates of a generalised substitution trm, fis and prd are
already familiar from wp semantics. Fig.3 summarises how they can be calcu-
lated from the wp predicate transformer. In pv semantics we can provide a set
of simple equations to do the same. Given any generalised substitution S , the
following predicates allow us to characterise its trm, fis and prd directly from its
pv semantics.

A Prospective-Value Semantics for the GSL 197

Sub trm(Sub) fis(Sub) prd(Sub) note

skip true true true

z := E true true z ′ = E

P |S P ∧ trm(S) P ⇒ fis(S) P ⇒ prd(S)

P =⇒S P ⇒ trm(S) P ∧ fis(S) P ∧ prd(S)

Sy trm(S) fis(S) prd(S) ∧ w = w ′ w is y − s

S [] T trm(S) ∧ trm(T) fis(S) ∨ fis(T) prd(St) ∨ prd(Ts)

@z • S ∀ z • trm(S) ∃ z • fis(S) ∃ z ,w ′ • prd(S) w is s ∩ z

S ; T [S] trm(T) ¬ [S]¬ fis(T) trm(S) ⇒
(prd(St) ; prd(Ts))

Fig. 2. Characteristic predicates of each basic substitution construct

Proposition 4. trm(S) = S ! null : null

Proof. S ! null : null

≡ “Applying Def. 4, let s be frame(S)”

trm(S) ||| § s ′ • prd(S)−→null[s ′/s] : null

≡ “Simplification of substitution: null[F/z] = null for elementary F”

trm(S) ||| § s ′ • prd(S)−→null : null

≡ “Simplification of bunch comprehension: § z • P −→null = null”

trm(S) ||| null : null

≡ “Logic, the above is exactly true when trm(S)”

trm(S) "#

Proposition 5. fis(S) = ⊥ : S ! ⊥

Proof. ⊥ : S ! ⊥
≡ “Applying Def. 4, let s be frame(S)”

⊥ : trm(S) ||| § s ′ • prd(S)−→⊥[s ′/s]

≡ “Simplification of substitution: ⊥[F/z] = ⊥ for elementary F”

⊥ : trm(S) ||| § s ′ • prd(S)−→⊥
≡ “Rewriting bunch comprehension: § z • P −→E = (∃ z • P)−→E if z \E”

198 F. Zeyda, B. Stoddart, and S. Dunne

⊥ : trm(S) ||| (∃ s ′ • prd(S))−→⊥
≡ “Eliminating preconditioned bunch”

⊥ : ¬ trm(S)−→⊥ , (∃ s ′ • prd(S))−→⊥
≡ “Merging guarded bunches”

⊥ : ¬ trm(S) ∨ (∃ s ′ • prd(S))−→⊥
≡ “Logic, the above is exactly true when ¬ trm(S) ∨ ∃ s ′ • prd(S)”

¬ trm(S) ∨ ∃ s ′ • prd(S)

≡ “Property of trm and prd: ¬ trm(S)⇒ prd(S), see Prop. 2.1 in [3]”

∃ s ′ • prd(S)

≡ “∃ s ′ • prd(S) is an alternative characterisation for the feasibility of S since
S is feasible exactly where it has some behaviour”

fis(S) "#

Proposition 6. prd(S) = s ′ : S ! s where s is the frame of S .

Proof. s ′ : S ! s

≡ “Applying Def. 4, let s be frame(S)”

s ′ : trm(S) ||| § s ′ • prd(S)−→ s[s ′/s]

≡ “Simplification of substitution s[s ′/s]”

s ′ : trm(S) ||| § s ′ • prd(S)−→ s ′

≡ “Elimination of preconditioned bunch, ⊥ is a superbunch of any other bunch”

¬ trm(S) ∨ s ′ : § s ′ • prd(S)−→ s ′

≡ “Simplification of s ′ : § s ′ • prd(S)−→ s ′, generally z : § z • P −→ z ≡ P”

¬ trm(S) ∨ prd(S)

≡ “Property of trm and prd: ¬ trm(S)⇒ prd(S), see Prop. 2.1 in [3]”

prd(S) "#

predicate name in wp semantics in pv semantics note

trm(S) [S] true S � null : null

fis(S) ¬ [S] false ⊥ : S � ⊥

prd(S) ¬ [S] s �= s ′ s ′ : S � s where s is the frame(S)

Fig. 3. Characteristic predicates trm, fis and prd in both wp and pv semantics

A Prospective-Value Semantics for the GSL 199

Remark. We proved the correctness of Proposition 4 - 6 under the assumption
that S is a computation expressed in the GSL. We could have indeed generalised
here by permitting S ! to be an arbitrary “meaningful” pv expression trans-
former, not necessarily one resulting from application of the closed form Def. 4.
Then these three propositions would merely have intuitive justifications. More
awkwardly we would have to explain what we mean by a meaningful expression
transformer in the context pv semantics. Such a discussion is worthwhile but
beyond the scope of this paper.

4 Iteration

The standard treatment of handling iteration in wp semantics is to define first
a suitable ordering on substitutions, which has to be a complete partial order
and each construct of the language has to be monotonic with respect it. The
ordering used in total correctness is simply the refinement lattice of generalised
substitutions. The meaning of a loop construct W is then interpreted as the least
solution of a fixed-point equation [2]. To write down this equation there are two
possibilities, either we describe W directly as a fixed-point in generalised sub-
stitutions, or we express for a given postcondition Q the outcome of wp(W ,Q)
as a fixed-point in predicates. Both approaches can be found in [2].

In pv semantics we express the meaning of W ! E as a fixed-point in ex-
pressions. To do so we first have to agree on the ordering that is going to be
employed. As explained in Section 2.3 we use the reverse inclusion ordering de-
fined by E F ⇔ F : E as a basis for a fixed-point treatment4. Like the
inclusion ordering on sets over a given type yields a complete lattice, the inclu-
sion ordering on bunches yields one too. In defining we slightly modify the
lattice by turning it upside down and giving it a new bottom, that is ⊥. Note
that this doesn’t destroy the integrity of the original lattice. The second issue
to be looked at is monotonicity. We won’t present a proof here to show that in
pv semantics all operators of the GSL are monotonic with respect to , however
such can indeed be done with little effort.

Our satisfying the previous conditions justifies the application of Tarski’s
fixed-point theorem [8] and hence the assertion that μY • S !Y for a generalised
substitution S exists.

Theorem 1. Let W be a loop construct having the form WHILE G DO S END.
Then the pv effect of W for any expression E is given by:

W ! E = μY • if G then S !Y else E end

Before deriving the pv effect of W and thereby proving Theorem 1 we will
first establish a lemma which characterise the pv effect of the transitive opening

4 Notice that the overloading of � as the refinement relation for generalised substitu-
tions as well as the ordering relation for expressions isn’t a problem as long as the
context makes clear in what sense it is used.

200 F. Zeyda, B. Stoddart, and S. Dunne

S∧ of a generalised substitution S . The transitive opening is the fundamental
iteration construct introduced by Abrial [1]. Formally it is the least solution of
the fixed-point equation X = (S ; X) [] skip. Operationally we can think of it as
the choice of successively executing S an arbitrary number of times (including
the case of infinite repetition).

Lemma 1. Let S be a generalised substitution, and E an expression. The pv
effect of the transitive opening of S is given by

S∧ ! E = μY • S !Y , E

Proof. S∧ is the least solution of X = (S ; X) [] skip, thus

S∧ = (S ; S∧) [] skip

⇒ “Leibniz law: S = T ⇒ S ! E = T ! E”

S∧ ! E = (S ; S∧) [] skip ! E

≡ “Simplification of Choice (laws given in Fig.1)”

S∧ ! E = (S ; S∧) ! E , skip ! E

≡ “Simplification of Sequential Composition and Skip (laws given in Fig.1)”

S∧ ! E = S ! S∧ ! E , E

≡ “Substituting Y =̂ S∧ ! E”

Y = S !Y , E

We have now obtained a fixed-point equation for S∧ ! E in expressions. S∧ ! E
shows indeed to be the weakest expression Y that satisfies it. It has to be the
weakest in order to render S∧ in the least deterministic way (note that weaker
expressions convey more behaviours under the -relation).

S∧ ! E = μY • S !Y , E �

Equipped with the previous Lemma 1 we can conclude the proof of Theorem 1
by using Abrial’s representation of a loop involving transitive opening:

WHILE G DO S END =df (G =⇒S)∧ ; ¬G =⇒ skip (1)

W ! E

= “Equation 1 characterising the while loop”

(G =⇒S)∧ ; ¬G =⇒ skip ! E

= “Simplification of Sequential Composition (laws given in Fig.1)”

(G =⇒S)∧ ! ¬G =⇒ skip ! E

= “Simplification of Guard and Skip (laws given in Fig.1)”

(G =⇒S)∧ ! ¬G −→E

A Prospective-Value Semantics for the GSL 201

= “Lemma 1”

μY • G =⇒S !Y , ¬G −→E

= “Simplification of Guard (laws given in Fig.1)”

μY • G −→S !Y , ¬G −→E

= “Reformulating as a conditional expression”

μY • if G then S !Y else E end "#

5 Conclusion and Future Work

We have developed a prospective-value semantics for the GSL by interpreting
each basic command and constructor of the GSL as a pv expression transformer.
We would contend S ! captures the meaning of S as least as well intuitively
as wp(S ,) does. However a formal proof of isomorphism between these two
semantics is beyond the scope of this paper.

To capture the effect of non-termination in pv semantics we have extended
ordinary bunch theory with an improper bunch in order to describe the out-
come of an abortive computation. A set of algebraic laws has been presented
for each construct in terms of its pv semantics. With these the ! operator can
be eliminated from any expression by successive rewrites. We proved the cor-
rectness of each law, making the initial definition superfluous from a practical
point of view. Nevertheless it played an important part in presenting the theory
because it permitted us to prove facts which would otherwise have to count as
axioms.

We incorporated the treatment of iteration into pv semantics by first arguing
the existence of a suitable ordering, and then characterising the pv effect of a
substitution as a fixed-point in expressions, which is an alternative to the familiar
interpretation of it as a fixed-point in predicates or substitutions [1, 2].

Our future work will consist of investigating whether S ! E can be incorpo-
rated into the expression syntax of the GSL, in contrast to our use of it in this
paper only at a meta-level to reason about generalised substitutions. To avoid
complications arising from the fact that S !E might not represent a single value
but a bunch of such, we may have to restrict its occurrence within the GSL
syntax so that it can only appear in set brackets (thus converting the bunch into
a set). We are currently investigating this issue.

The question also naturally arises of how to express important constructions
of the B Method in pv semantics such as invariants and data refinements. Our
hope is thereby to obtain more elegant and intuitive formulations of their asso-
ciated laws.

Acknowledgements. We would like to thank the anonymous reviewers for their
valuable comments and encouraging remarks.

202 F. Zeyda, B. Stoddart, and S. Dunne

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlage, 1998.

3. S. Dunne. A theory of generalised substitutions. In ZB 2002: Formal Specification
and Development in Z and B, volume 2272 of Lecture Notes in Computer Science,
pages 270–290. Springer-Verlag, January 2002.

4. E. C. R. Hehner. Bunch theory: A simple set theory for computer science. Infor-
mation Processing Letters, 12(1):26–30, February 1981.

5. E. C. R. Hehner. A Practical Theory of Programming. Texts and Monographs in
Computer Science. Springer-Verlag, 1993.

6. J. M. Morris and Bunkenburg A. A theory of bunches. Acta Informatica, 37(8):541–
561, May 2001.

7. W. J. Stoddart and F. Zeyda. Expression transformers in B-GSL. In ZB 2003:
Formal Specification and Development in Z and B, volume 2651 of Lecture Notes in
Computer Science, pages 197–215. Springer-Verlag, January 2003.

8. A. Tarski. A lattice-theoretical fixed-point theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

Retrenchment and the B-Toolkit

Richard Banach and Simon Fraser

Department of Computer Science, University of Manchester,
Manchester M13 9PL, UK

{banach, sfraser}@cs.man.ac.uk

Abstract. An experiment to incorporate retrenchment into the B-
Toolkit is described. The syntax of a retrenchment construct is given,
as is the proof obligation which gives retrenchment its semantics. The
practical aspects of incorporating these into the existing B-Toolkit are
then investigated. It transpires that the B-Toolkit’s internal architecture
is heavily committed to monolithic refinement, because of B-Method phi-
losophy, and this restricts what can be done without a complete rebuild
of the toolkit. Experience with case studies is outlined.

1 Introduction

The B-Method [2, 14, 19, 18, 17] has enjoyed what can only be called spectacular
success in terms of vindicating the view that model based refinement, despite
its theoretical depth, can, via the enabling effects of appropriate mechanisation,
lead to highly significant benefits for the practical engineering of systems of the
highest criticality. By now, B-engineered systems are widespread on the railways
in France, and in other countries, where the French success has convinced the
appropriate authorities [10, 9, 11].

It is well appreciated by practitioners of refinement, that for all its desirable
properties, the technique displays a certain brittleness. The abstract and con-
crete models have to be in just the right relationship before the refinement proof
obligations (POs) can be discharged. Unfortunately this state of affairs takes no
account of the human-centred needs/requirements engineering that must con-
tribute to system design, and depending on circumstances, can be a greater
or lesser impediment to a transparent system construction process. In order to
improve matters in this regard, retrenchment was introduced so that almost-
but-not-quite-refinements could be described within a formal framework similar
to that used for refinement [5, 6, 7, 4, 15, 16]. The ability to describe not-quite-
refinements leads to the capacity to describe and analyse much more general
system evolution scenarios [8, 3]. Needless to say this flexibility comes at a price;
the guarantees offered by refinement are forfeit.

If refinement greatly benefits from mechanisation then so does retrenchment.
The aim of this paper is to describe an experiment to incorporate retrenchment
into the B-Toolkit [1], one of the two commercially available implementations of
the B-Method, the other being Atelier-B. In fact retrenchment was first conceived

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 203–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 R. Banach and S. Fraser

in the context of the B-Method [5], precisely so that the impact of the issues
surrounding mechanisation could be taken on board right at the outset.1

The rest of this paper is as follows. Section 2 covers the theoretical aspects
of the integration, namely: the syntax and the PO it describes, a small example,
and what it means for a syntactically correct retrenchment construct to be type
correct. Section 3 covers the B-Toolkit’s architecture, and how it interacts with
the theoretical aspects of incorporating retrenchment. Section 4 covers evalua-
tion, and Section 5 concludes.

Acknowledgements and Note. The authors are indebted to BCore (UK) Ltd.
for access to the source of the B-Toolkit. According to the terms under which
the access was granted, the IPR residing in the experimental tool described in
this paper remains the property of BCore (UK) Ltd.

2 Extending the B-Method for Retrenchment

The B-Method [2, 17] is a methodology in which abstract models can be de-
scribed and then refined all the way down to code; all this in a manner that
lends itself to extensive and integrated machine checkability at all stages. As
noted above, retrenchment was introduced to enable the benefits of formal de-
cription and machine checkability to migrate beyond the confines mapped out
by strict refinement. The original retrenchment proposal [5] employed a syntax
that combined the syntax of abstract machines with the flavour of refinement
machines. And while it is adequate for most theoretical investigations into the
system engineering aspects of retrenchment, it proves less convenient for imple-
mentation within an existing toolkit, since it necessitates extensive modification
to the code for processing abstract machines. So for the present experiment, a
different syntactic strategy was employed.

2.1 Syntax, the POs, and an Example

In the B-Method, refinement characterises the target as an extension of the
source abstraction [2]. Retrenchment however, is a relationship between two
abstract machines, and so it was appropriate to introduce a new RETRENCH-
MENT construct, which refers to the relevant machines, but which (conveniently
enough) does not impact their syntax and processing. Table 1 describes the syn-
tax. The RETRENCHMENT keyword introduces the construct, and the FROM
and TO keywords indicate the source and target abstract machines respectively
of the retrenchment. The RETRIEVES predicate gives the desired retrieve rela-
tion between the machines, and the OPERATIONS clause lists the ramifications
of the operations common to source and target abstract machines.

Since [5], a number of different flavours of retrenchment have been investi-
gated, including the original or ‘primitive’ form, the ‘sharp’ form [6], and the

1 The choice of the B-Toolkit was dictated principally by familiarity from its use in
teaching the B-Method at Manchester.

Retrenchment and the B-Toolkit 205

Table 1. Syntactic Categories for Retrenchment Relationship

Syntactic Category Definition

RETRENCHMENT
Identifier

FROM
Identifier

Retrenchment TO
Relationship Identifier

RETRIEVES
Predicate

OPERATIONS
Ramifications

END

Ramifications Ramifications ; Ramification Declaration
Ramification Declaration

RAMIFICATIONS
Identifier

LVAR
Id List

WITHIN
Predicate

Ramification CONCEDES
Declaration Predicate

OUTPUT
Predicate

NEVERTHELESS
Predicate

END

Id List Id List , Identifier
Identifier

‘output’ form [4]. All of these can be viewed as special cases of a common ‘sharp
output’ form, and so the ramifications of the RETRENCHMENT construct were
designed to cater for this more general variant. Thus for a given operation, the
RAMIFICATIONS clause consists of an LVAR clause (allowing the introduction
of ‘logical variables’ for remembering before-values in the context of the after-
state), the WITHIN clause, for constraining the antecedent of the operation PO,
and the CONCEDES, OUTPUT, and NEVERTHELESS clauses for use in the
operation PO consequent. The operation PO itself is:

206 R. Banach and S. Fraser

ICf ∧ ICt ∧ (Qf ∧R ∧W)⇒ Qt ∧ [St]¬[Sf]¬(((R ∧O) ∨D) ∧ E)

where ICf , ICt are source/target static contexts, Qf , Qt are source/target pre-
conditions, Sf , St are source/target predicate transformers, and R, W, O, D, E
are the retrieve, within, output, concedes, and nevertheless relations respectively.

Of the top level clauses, the RETRIEVES and OPERATIONS clauses are
optional, whilst the RETRENCHMENT, FROM and TO clauses are mandatory.
If an operation is ramified, then only the RAMIFICATIONS clause itself is
mandatory, the remaining clauses are optional (although if an LVAR clause is
present, then it is mandatory for a WITHIN clause to also be present that allows
for the type checking of the variables declared).

Of course the operation PO is complemented by the intialisation PO:

ICf ∧ ICt ⇒ [It]¬[If]¬(R)

We give a small example of retrenchment in this syntax. The example shows how
some of the clauses of the retrenchment may be omitted, and indirectly, how the
more elaborate structures of the sharp or output forms can increase expressivity:
the two conjuncts of the concession could justifiably be separated, putting the
TRUE case in an output clause.

MACHINE abc MACHINE def
VARIABLES aa, bb, cc SEES Bool TY PE
INVARIANT aa ∈ N ∧ CONSTANTS MaxNum

bb ∈ N ∧ PROPERTIES MaxNum ∈ N

cc ∈ N VARIABLES dd
INITIALISATION aa := 0 ‖ INVARIANT dd ∈ N

bb := 1 ‖ INITIALISATION dd := 0
cc := 2

OPERATIONS OPERATIONS
my plus =̂ aa := bb + cc resp←− my plus(ee, ff) =̂

PRE ee ∈ N ∧ ff ∈ N ∧
ee ≤MaxNum ∧ ff ≤MaxNum

THEN IF ee + ff ≤MaxNum
THEN dd := ee + ff

‖ resp := TRUE
ELSE dd := 0 ‖ resp := FALSE
END

END
END END

The abstract machines abc and def

Retrenchment and the B-Toolkit 207

RETRENCHMENT abc to def
FROM abc
TO def
OPERATIONS

RAMIFICATIONS my plus
WITHIN bb = ee ∧ cc = ff
CONCEDES (resp = TRUE ∧ dd = aa) ∨

(resp = FALSE ∧ dd = 0)
END

END

The retrenchment construct between the abstract machines abc and def

Table 2. Source and Target Abstract Machines

Source Machine Target Machine

MACHINE Mf (Xf , xf) MACHINE Mt(Xt, xt)
CONSTRAINTS Cf CONSTRAINTS Ct

SETS Sf ; Tf = {af , bf} SETS St; Tt = {at, bt}
CONSTANTS cf CONSTANTS ct

PROPERTIES Pf PROPERTIES Pt

VARIABLES vf VARIABLES vt

INVARIANT If INVARIANT It

ASSERTIONS Jf ASSERTIONS Jt

INITIALISATION Uf INITIALISATION Ut

OPERATIONS of OPERATIONS ot

END END

2.2 Type Checking

The B-Method requires that, before a predicate involving set-theoretic variables
be proved, it must be type-checked. Here we show how the retrenchment con-
struct can be type-checked by extending the ‘check’ predicate of [2]; we use the
same techniques as [2]. We assume that a retrenchment relationship as described
above2 holds between a source machine Mf and a target machine Mt (see Ta-
ble 2), with operations opf and opt (see Table 3).

Table 4, presents the type checking rule for a retrenchment construct. The
validity of three antecedents implies the validity of the ‘check’ predicate for
the whole construct. The first antecedent asserts the distinctness of the various

2 The fields R, W , D, O and E refer to the RETRIEVES, WITHIN, CONCEDES,
OUTPUT and NEVERTHELESS clauses respectively.

208 R. Banach and S. Fraser

Table 3. Source and Target Operations

Source Machine Target Machine

uf ←− opf (wf) =̂ PRE Qf ut ←− opt(wt) =̂ PRE Qt

THEN Vf THEN Vt

END END

Table 4. Type Checking Rules for Retrenchment Constructs

Antecedents Consequent

Mf ,Mt,N ,vf ,vt,rmDup(cf , ct), check (
rmDup(Sf , St),rmDup(Tf , Tt),rmDup(af , at), RETRENCHMENT
rmDup(bf , bt),Xf ,Xt,xf ,xt are all distinct N

FROM
Operation names of of are identical to operation Mf

names of o, and are all included in the operation TO
names of ot Mt

RETRIEVES
given(Xf), given(Xt), R
given(Sf), given(St), OPERATIONS
given(Tf), given(Tt), o
af ∈ Tf , at ∈ Tt, END
bf ∈ Tf , bt ∈ Tt)
�
check(∀xf , xt • (Cf ∧ Ct ⇒

∀ cf , ct • (Pf ∧ Pt ⇒ ∀ vf , vt • (R ∧ o))))

lexical elements listed. Note that rmDup removes duplicates prior to distinct-
ness checking, therefore permitting limited sharing of identifiers (more details
are given below). The second antecedent checks the inclusion of source opera-
tion names in target operation names. The third antecedent succeeds provided:
given the set parameters, and abstract and declared sets of the source and tar-
get machines, assuming the numerical parameters and the machine constraints,
and assuming the constants and their properties, then the retrieve relation type-
checks.

Table 5 presents the type checking rules for the ramifications of operations.
The first rule allows lists of ramifications to be checked elementwise. The second
rule infers the validity of the ‘check’ predicate for a ramification on the basis
of five antecedents. The first two check the presence of the operation op in the
(previously typechecked) source and target machines, and extract their I/O types
(Sf , St, Tf , Tt). The next two check that I/O variables and logical variables are

Retrenchment and the B-Toolkit 209

Table 5. Type Checking Rules for Ramifications

Antecedents Consequent

ENV � check(o)
ENV � check(o ; q)

ENV � check(q)

Sf ←− op(Tf) occurs in of ENV � check (
RAMIFICATIONS

St ←− op(Tt) occurs in ot op
LVAR

l,uf ,ut,op,wf ,wt are all distinct l
WITHIN

l,uf ,ut,op,wf ,wt \ ENV W
CONCEDES

ENV, D
uf ∈ Sf , wf ∈ Tf OUTPUT
ut ∈ St, wt ∈ Tt O
� NEVERTHELESS
check(∀ l • (W ⇒ D ∧ O ∧ E)) E

END
)

Table 6. Visibility of Abstract Machine Variables

R W D O E

Machine Variables
√ √ √ √ √

Logical Variables
√ √ √ √

Operation Inputs
√ √ √ √

Operation Outputs
√ √ √

distinct from each other and the environment. The final antecedent succeeds
provided: given the environment, and the I/O variables in their types, assuming
the logical constants and the within relation, then the concedes, output, and
neverthless relations all typecheck.

Note that the rules outlined above take no account of the SEES, USES or
INCLUDES mechanisms. These work in the standard way and are not discussed
further here.

210 R. Banach and S. Fraser

2.3 Visibility

The syntactic validation of a retrenchment necessitates the enforcement of a
visibility discipline. Table 6 shows which clauses of a retrenchment can access
which variables.

3 The B-Toolkit and Its Support for Retrenchment

The B-Toolkit is proprietary software of B-Core (UK) Ltd. Its architecture is
shown in Fig. 1. The workhorse of the toolkit is the B-Platform (also known as
the B-Tool or B-Kernel). This is a theorem proving assistant,3 whose capabil-
ities include various side effects such as the writing of files. Thus, although it
maintains no state of its own, it can affect externally managed B-Toolkit state.
To this end it is put to work for all sorts of B-Toolkit tasks such as parsing and
typechecking . . . which goes some way towards explaining the tool’s sometimes
eclectic responses to syntactic errors etc.

Maintaining a grip on the state of a B-Toolkit development is the job of the
Construct Manager module. And acting as intermediary between the Construct
Manager and the B-Platform is the Process Manager. So: users express their
demands via the User Interface, these get digested by the Construct Manager,
who translates them into a suitable series of commands for the B-Platform, which
then get sent to it via the Process Manager. The B-Platform processes them one
at a time, making appropriate reference to the B-Toolkit Libraries as necessary.

Toolkit Binaries

B-PlatformConstruct Manager

User Interface

Process Manager�� ��

�
�

�
�

Fig. 1. Architecture of the B-Toolkit

3.1 The Machine Development Structure

A B-Toolkit construct is either an abstract machine (AM), a refinement machine
(RM) or an implementation machine (IM). A B-Toolkit machine development is
a collection of such constructs that provide different views of a single model. The
B-Toolkit considers the development of one (main) abstract machine to proceed
linearly from the abstract to the concrete (Fig. 2).

Incorporating retrenchment via a separate retrenchment construct (rather
than a retrenchment machine), means that the B-Toolkit’s mechanisms for re-
finement and implementation remain unaltered. However the B-Toolkit limits

3 So it can perform inferences, but from user-supplied axioms and theories.

Retrenchment and the B-Toolkit 211

AM RM RM IM� ···········� �

···
···
···
···
··Specification Implementation

1 2 n n + 1

Fig. 2. B-Toolkit Development Structure

AM RR AM RR AM RM RM IM···········� � � ···········� � ···········� �

1 i i + 1 i + 2 j j + 1 k k + 1···
···
···
···
··Specification Implementation

Fig. 3. Proposed Machine Development Structure

the use of abstract machines, allowing only one abstract machine per develop-
ment, and restricting it to be only at the start. This raises some problems for the
support of the retrenchment construct, as retrenchment fundamentally involves
at least two abstract machines. (Typically, there is an ‘idealised’ abstract model,
that undergoes one or more retrenchments until an abstraction refinable to code
emerges.) A change to the structure of a machine development was thus required
that allowed for at least the structure of machine development as just discussed.
See Fig. 3, in which a retrenchment relation (RR) connects successive pairs of
abstract machines until a machine refinable to an implementation is reached.

The B-Toolkit’s limitations on the use of abstract machines turn out to be
pervasive. The integration of the refinement relationship with the target machine
is not just a syntactic convenience, but is maintained in all representations,
internal and external. So the concept of a relationship distinct from (some flavour
of) machine did not exist in the B-Toolkit, necessitating extensive redesign.4

3.2 Lifecycle of a Retrenchment Construct

Each construct under configuration control in the B-Toolkit has a state, recorded
in the Construct Manager. This can be one of: uncommitted, unanalysed, anal-
ysed, unproved or proved. The state changes as the construct is moved through
the construct lifecycle, and can be altered by changes occurring elsewhere in the
development. This all applies equally to retrenchment constructs.

Introduction. The basic introduction of a retrenchment construct is a straight-
forward extension of the existing introduction mechanism; especially since the
possibility to ‘Introduce a retrenchment of Analysed Machines’ was not pursued.
The latter would have entailed a more extensive reworking of the introduction
mechanism.

4 For this reason the possibility of allowing the retrenchments to form an arbitrary
(loop-free) directed graph between abstract machines was not entertained.

212 R. Banach and S. Fraser

Committing and Dependency Analysis. The commit process basically has
two phases. The first determines and resolves any dependencies on the construct,
while the second verifies its syntactic correctness.

In the B-Method, a refinement machine is semantically an extension of the ab-
straction it refines. In the B-Toolkit therefore, when the abstraction is changed,
any refinement of it can no longer be trusted, and it, and any further refinements
are set to unanalysed and removed from the (B-Toolkit’s internal view of the)
state of the machine development.

By contrast, the target of a retrenchment is emphatically not an extension
of its source machine. Both source and target machines need to be self con-
tained consistent machines. Thus an alteration to the data of any retrenchment
construct that connects them need affect neither the source or target machines
themselves, nor the B-Toolkit’s view of their state.

Fig. 4 illustrates a dependency chain starting with a series of retrenchments,
and continuing with a series of refinements beyond machine i + 2. Fig. 5 shows
what happens to this when retrenchment i+1 is altered. This relies on the simple
development structure implemented during this experiment, which allows only
for zero or more retrenchments followed by zero or more refinements.

We turn now to abstract machines. There are three distinct types of relation-
ship that can cause dependency on an abstract machine – refinement, retrench-
ment and inclusion/importation. The refinement and retrenchment relationships
are restricted to a single machine development, and are examined first. Fig. 6
shows the senarios we need to consider.

AM AM RR AM ??··················� � � ··················�
1 i i + 1 i + 2 j

Fig. 4. A Retrenchment Construct in a Machine Development

�2 AM ??

�1 AM AM

··················�

··················�

i + 2 j

1 i

Unanalysed Constructs:

RR

Fig. 5. Resolution of a Retrenchment Construct Commit

Retrenchment and the B-Toolkit 213

�4 AM AM RR AM RR AM ??··············� � � � � ··············�
1 y y + 1 y + 2 y + 3 y + 4 z

�3 AM AM RR AM RM ??··············� � � � ··············�
1 w w + 1 w + 2 w + 3 x

�2 AM RR AM ??� � ··············�
1 2 3 v

�1 AM RM ??� ··············�
1 2 u

Fig. 6. Abstract Machines in Machine Developments

AM ??··················�
3 v

Unanalysed Constructs:

AM , RR

Fig. 7. Resolution of an Abstract Machine Commit 2©

Development 1© in Fig. 6 shows an abstract machine at the head of a (possibly
empty) refinement chain. This is a standard B-Toolkit refinement picture, and
needed no alteration in dependency analysis.

Development 2© in Fig. 6 shows an abstract machine which is retrenched.
Here the only construct dependent on the abstract machine is the retrenchment
construct. When the machine is altered, it and the retrenchment construct be-
come unanalysed, and the remainder of the chain forms a separate development.
See Fig. 7

Development 3© in Fig. 6 shows an abstract machine which is the target of a
retrenchment and the source of a refinement. It is clear that when the machine is
altered, it, its parent retrenchment construct, and all its refinement descendants,
must become unanalysed. Fig. 8 illustrates.

Finally, development 4© in Fig. 6 shows an abstract machine which is both
the source and target of retrenchments. In this case, the development splits into
two: the initial part up to the most concrete ancestot of the machine in question
forms one piece, and the other part consists of the most abstract descendant of
the machine in question up to the end. Fig. 9 illustrates.

An abstract machine can also be included in another (via the AMN IN-
CLUDES clause), and although it can only be included in one other machine,

214 R. Banach and S. Fraser

AM AM··················�
1 w

Unanalysed Constructs:

RR , AM , RM , ... , ??

Fig. 8. Resolution of an Abstract Machine Commit 3©

�2 AM ??

�1 AM AM

··················�

··················�

y + 4 z

1 y

Unanalysed Constructs:

RR , AM , RR

Fig. 9. Resolution of an Abstract Machine Commit 4©

AM AM RR AM RR AM ??··················� � � � � ··················�

1 p p + 1 p + 3 p + 4 q

AM RM ??� ··················�
1 2 n

�
includes

···
···
···
···�

········
includes

Fig. 10. Cross Machine Development Dependencies

that machine may itself be included in another . . . and so on indefinitely. Fig. 10
shows a typical scenario.

The inclusion dependencies must be resolved before the refinement or re-
trenchment dependencies. The machine including the one at issue is located;
then the one including that one, and so on until the end of the chain. All of
these machines must become unanalysed. The last one has its refinement and
retrenchment dependencies resolved according the rules above. Then its prede-

Retrenchment and the B-Toolkit 215

�2 AM ??

�1 AM AM

··················�

··················�

p + 4 q

1 p

Unanalysed Constructs:

AM , RM , ... , ??

RR , AM , RR

Fig. 11. Resolution of Inclusion Relationship

cessor, and so on until the original machine is unanalysed. For example, com-
mitting a change in the indicated machine in Fig. 10 would result in the state
shown in Fig. 11.

Importation dependencies are handled in a way similar to this, the only dif-
ference being that an abstract machine may be imported by many different
implementation machines.

Once the dependencies of a putative commit of a construct are resolved, the
new definition of the construct is parsed. If it fails to parse, the changes remain
uncommitted and of course any constructs set to unanalysed during dependency
resolution remain unanalysed.

Analysis. The analysis phase consists of three stages: Normalisation, Syntax
Checking and Type Checking. The aim is to ensure that the user’s definition
conforms to the rules of the B-Method, and to produce an internal representation
of it.

Normalisation begins with a parse check of the user’s construct. It should
be noted that this parse check is different to the one in the commit phase, and
can uncover different errors. The commit phase parse check simply determines
whether the user’s definition can be parsed by the B-Platform, and confirms
that all keywords and operators have been used correctly. The parse check of the
analyse phase determines whether the user’s definition satisfies the restrictions
encoded in the toolkit binaries.

It was necessary therefore, to create rules for the parsing of a retrenchment
construct in the toolkit binaries, and to ensure that retrenchment keywords were
not used in other constructs (and vice versa). For example, declaring a FROM
clause in an implementation machine would cause an error as would using a
VARIABLES clause in a retrenchment. Since the construct manager relies on
the file extension of a construct to determine its type, checks were introduced to
ensure that a .rmt extension corresponded to a retrenchment construct.

216 R. Banach and S. Fraser

It was also necessary to introduce an acyclicity check into the normalisation
stage. In principle, two machines can be retrenchments of each other. And while
it is theoretically desirable to permit this and other pathologies, the resulting
breaking of the linear development structure would have required a drastic re-
design of the B-Toolkit due to its extensive internal dependence on linearity, so
it was excluded.

After normalisation, a construct progresses to what the B-Toolkit calls syn-
tax checking. In this stage, the B-Toolkit checks that the contents of each clause
conform to the expected syntax. For example, each identifier is checked to ensure
that its length is between two and sixty characters. Checks are also performed
to ensure that the rules governing clause-use have been followed. For exam-
ple, it is forbidden to have a CONSTANTS clause without a PROPERTIES
clause.

Little of the latter is needed for retrenchments. The only clause in which
new variables can be declared is the LVAR clause, and the identifiers of these
variables must be checked in the same way as any other new identifier. If an
LVAR clause is used however, it must have an associated WITHIN clause (so
that the variables declared can be given some before-values and types). All the
clauses consisting of predicates can be assumed to be well-formed (as they would
not otherwise have passed the commit phase parse), but it is still necessary to
check these clauses to ensure that typing errors have not occurred.

Once the basic checks described above have been performed, the list of con-
stants, sets and variables of each construct is examined for duplication. When
checking a machine, the B-Toolkit will fail with any duplication in any of these
clauses. As a retrenchment construct inherits these lists from its source and
target machines however, there is some scope for valid duplication. For exam-
ple, both source and target abstract machine may see a common library ma-
chine which defines a constant used by both machines. Since seen constants
are contained within the internal definition of the CONSTANTS clause, the re-
trenchment relationship will have two instances of this constant in its own list
of constants. However, it is clear that this is not an error but a consequence
of the difference in modelling machines and relationships. When examining the
lists of sets and constants for a retrenchment construct therefore, the B-Toolkit
will produce a warning when finding duplicate declarations. Any errors (where
a constant has the same identifier, but different properties) will be caught in the
type checking stage of the analysis. Duplications in the list of variables, however,
will produce errors as it is necessary to be able to distinguish the variables of
the source machine from those of the target.

For refinement and implementation machines, the B-Toolkit checks that the
set of operation names matches that of their abstraction. For retrenchments,
this is relaxed to an inclusion of source operation names in those of the target,
requiring a slightly different check.

Having survived thus far, a construct passes to the type checking stage. For
a retrenchment construct, the constants, sets, properties and variables clauses
are derived from its source and target machines. The combined lists of sets and

Retrenchment and the B-Toolkit 217

constants are each type checked against the combined properties clause, and it
is at this stage that problems due to the duplication of constant or set identifiers
can be uncovered. For example, if abstract machine aa defines a constant const
with the property const ∈ N, and abstract machine bb also defines a constant
const, but with the property const ∈ N1, then an attempt to relate the two
abstract machines via a retrenchment will cause type checking errors in the
retrenchment as the constant cannot have both type N and N1. Clearly, this
type checking cannot guarantee that duplicate constants or sets are valid when
their types do not disagree. For whilst two constants may have the same type, it is
possible that they can have different values. Within the B-Toolkit’s architecture
there is no simple way to check that this is not the case. It was decided that the
warnings given in the syntactic check and during type checking were sufficient for
the purposes of this experiment, and it is left to the user to spot any erroneous
duplication when attempting to prove their retrenchment relationship correct.
Although this is not ideal, the framework of the B-Toolkit was designed for use
with refinement, and a drastic reworking would have been needed to provide the
complete checking required in this instance.5

The type checking stage results in the production of a file, stored in the TYP
sub-directory of a development, that stores the type information for the variables
and operations of an analysed construct. When type checking a retrenchment,
the B-Toolkit uses the type files of source and target machines to ensure that
all the variables used in the RETRIEVES clause have been defined (and typed)
in the machines involved.

Likewise, for every operation, the ramifications are checked to ensure that
the variables used, conform to the typing of that operation’s inputs and outputs
in source and target machines (any duplication of inputs and outputs between
source and target machine will again cause errors). It is also necessary to check
that the type of any logical variables declared in an LVAR clause can be derived
from the associated WITHIN clause.

Once type checking is complete, the only task remaining is to add the analysed
object to a machine development. For the existing constructs, this happens just
as before. For retrenchment constructs, the only thing that needs to happen is to
join up the development chains of the source and target machines. For example,
Fig. 12 shows the state just before, and Fig. 13 shows the state just after, the
moment when source machine AMx and target machine AMy get related via a
retrenchment construct.

Generation of Proof Obligations. Once a construct has been analysed, proof
obligations can be generated (since being in the analysed state is the only pre-
requisite for PO generation for any construct). The discharge of the POs will
prove that the construct’s definition is consistent. Of course, subsequent change
to a construct discards any previously established proofs regarding it.

5 The arguably preferable option of generating proof obligations to settle such unre-
solved issues was not pursued.

218 R. Banach and S. Fraser

�2 AMy ??

�1 AM AMx

··················�

··················�

1 y

1 x

Unanalysed Constructs:

RR

Fig. 12. Machine Developments Before Analysis of a Retrenchment Construct

AM AMx RR AMy ??··················� � � ··················�
1 x x + 1 x + 2 x + y

Fig. 13. Resolution of Retrenchment Construct Analysis

In generating the POs for a retrenchment from a source to a target, there are
three sets of obligations to create. Two sets concern the internal consistency of
the source and target machines themselves, and the third concerns the validity
of the claimed retrenchment relationship between them. Each of these PO gen-
eration activities is tied to the requisite syntactic construct; this must be in the
analysed state as noted previously. For the retrenchment relationship, obviously
all three participating constructs must be analysed.

The first stage in PO generation for a retrenchment construct is the creation
of the initialisation PO. This is a simple task, and the form of the obligations
depends only upon the presence of a RETRIEVES clause in the retrenchment
construct. The second stage involves the generation of a PO for each ramified
operation. The precise form of these proof obligations depends on which of the
available clauses (see Table. 1) have been used in the ramifications for the oper-
ation.

Once the proof obligations have been generated, the GSL definitions of the
initialisation and operations are used to replace the jokers within these obliga-
tions. The B-Toolkit then applies its special and implicit tactics to reduce these
obligations to a number of predicates. Typically the substitution tactic will be
used to reduce the proof obligation to a predicate, and then the deduction and
conjunction tactics are used to break the PO into smaller chunks. These putative
lemmas are then written to a file which contains all the obligations that must
be discharged to validate the associated construct.

Retrenchment and the B-Toolkit 219

4 Evaluation

The development of the extended B-Toolkit described above involved the usual
levels of functional and unit testing, which revealed that the basic ingredients
were working satisfactorily. More extensive testing came via two case studies,
one small the other larger.

The small case study was the little example that we saw in Section 2, involv-
ing machines abc and def , and the retrenchment of the addition of unbounded
numbers to the addition of finite numbers. The small size of this example meant
that the extended toolkit dealt with all aspects of it unproblematically.

The larger case study was based on a case study focused on requirements
engineering via retrenchment in the area of telecoms feature interaction [8]. Al-
though, compared to the normal scale of things in real applications this was very
much still a toy, as regards exercising the extended B-Toolkit it proved to be
very much not a toy.

The case study centred on the operations of an atomic call model, with the
inclusion or not of various additional features. Here is the most basic connect
operation:

calls -(i, connectn, o)-> calls′ iff
free(n) ∧
if free(i) ∧ (n �= i)
then o = OK ∧ calls′ = calls ∪ {n �→ i}
else o = NO ∧ calls′ = calls

As is clear, this was written in a transition system notation, and its size is hardly
enormous by today’s standards (enhanced versions of the connectn operation
typically had an additional clause).

A typical concedes relation from one of the retrenchments in [8] is reproduced
below:

CCF,connectn(u, v, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ dom(fortab) ∧
fortab+(j) = z ∧ free(z) ∧ z �= n ∧
u′ = u ∧ v′ = (calls ∪ {n �→ z}, fortab) ∧
o = NO ∧ p = OK)

(This concession captures the difference in behaviour between the connect oper-
ation in a simple system and in an enhance system incorporating call forwarding,
with the forwarding data held in the fortab function.) Again the size is hardly
excessive, and there are a number of slightly more complicated models and more
complicated retrenchments in [8].

For processing by the extended B-Toolkit, the above were hand translated
into B syntax. After translation, and using the resources of a typical desktop
machine, proving even the simplest of these retrenchments correct, turned out
to be all but beyond the capabilities of the system. Upon closer investigation,
the reason revealed itself to be that the B-Toolkit’s prover took a rather naive
approach to proving statements making heavy use of disjunctions (as retrench-
ment proof obligations invariably do). With a little bespoke optimisation, the

220 R. Banach and S. Fraser

toolkit was eventually persuaded to discharge the POs for the simplest of the
retrenchments in [8] involving the concession above. When the more complex
cases in [8] were attempted, it became clear that available machine resources
were decidedly insufficient and the fully mechanised route was not pursued. Vi-
sual inspection confirmed however, that although it was unable to prove them,
the toolkit had generated appropriate proof obligations, and that these were in
fact true statements. A more extensive treatment of this case study can be found
in [12] and is supported by [13].

5 Conclusions

In the preceding sections we described the essential tasks addressed in incorpo-
rating retrenchment into the B-Toolkit. We gave the syntax of the retrenchment
construct and the proof obligation that that syntax represented, and then de-
scribed how the data was processed within the toolkit’s architecture. The latter
details revealed that various aspects of the B-Toolkit’s internal design were very
heavily tied to its original objective of monolithic refinement, this being a result
of the underlying B-Method philosophy that a refinement machine is really a
kind of extension of its abstraction, rather than an independent entity. The con-
sequences of this were principally that the development structure was restricted
to linear as regards retrenchment/refinement dependencies. Moreover the fea-
sibility of proving nontrivial retrenchments correct on today’s typical desktop
machines turned out to be heavily compromised by the relatively unsophisti-
cated nature of some aspects of the B-Toolkit’s prover.

Thus retrenchment was incorporated in a limited way, and it rapidly became
clear that any attempt to extend this limited integration would yield very much
diminishing returns. For this reason the implementation here described should
be viewed principally as an experiment in the design of mechnical assistance
for retrenchment, rather than an ideal solution. The experience gained quickly
convinced us that addressing the full array of possibilities opened up by retrench-
ment would be much better served by a tool built from scratch. Such a tool is
the objective of the second author’s current doctoral work, for which the present
experiment (described at greater length in [12]) provides valuable experience of
course.

References

[1] J.R. Abrial. The B-Tool Reference Manual, Version 1.1. B-Core (UK) Ltd.
[2] J.R. Abrial. The B Book. Cambridge University Press, 1996.
[3] R. Banach and R. Cross. Safety requirements and fault trees using retrenchment.

In Heisel, Liggesmeyer, and Wittmann, editors, Proc. SAFECOMP-04, volume
3219 of Lecture Notes In Computer Science, pages 210–223. Springer, 2004.

[4] R. Banach and C. Jeske. Output retrenchments, defaults, stronger compositions,
feature engineering. Submitted, 2002.

[5] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refine-
ment. Lecture Notes In Computer Science, 1393:129–147, 1998.

Retrenchment and the B-Toolkit 221

[6] R. Banach and M. Poppleton. Sharp retrenchment, modulated refinement and
simulation. Formal Aspects of Computer Science, 11(5):498–540, 1999.

[7] R. Banach and M. Poppleton. Engineering and theoretical underpinnings of re-
trenchment. Submitted, 2001.

[8] R. Banach and M. Poppleton. Retrenching partial requirements into system def-
initions: A simple feature interaction case study. Req. Eng. Journal, 8:266–288,
2002.

[9] P. Behm, P. Desforges, and J-M. Meynadier. Meteor: An industrial success in
formal development. In Bert, editor, Proc. B-98, volume 1393 of Lecture Notes In
Computer Science, page 26. Springer, 1998.

[10] P. Desforges. Using the b-method to design safety-critical software for railway
systems. Recherche et Developpements - Fatis Marquant 97, 1998.

[11] D. Essame. Handling safety critical requirements in system engineering using
the b formal method. In Heisel, Liggesmeyer, and Wittmann, editors, Proc.
SAFECOMP-04, volume 3219 of Lecture Notes In Computer Science, page 115.
Springer, 2004.

[12] S. Fraser. Mechanised Support for Retrenchment in the B-Toolkit, 2004. Master’s
thesis, School of Computer Science, University of Manchester.

[13] S. Fraser. Specifications, Proof Obligations and Proofs Supporting a
Case Study of Retrenchment in the B-Toolkit, 2004. Available online at
http://www.cs.man.ac.uk/~frasers/casestudy.

[14] Haughton H. Lano, K. Specification in B: An Introduction Using the B-Toolkit.
Imperial College Press, 1996.

[15] M. Poppleton and R. Banach. Retrenchment: Extending the reach of refinement.
In Proc. ASE-99, IEEE, pages 158–165, 1999.

[16] M. Poppleton and R. Banach. Controlling control systems: An application of
evolving retrenchment. In Bert, Bowen, Henson, and Robinson, editors, Proc.
ZB-02, volume 2272 of Lecture Notes In Computer Science, pages 42–61. Springer,
2002.

[17] S. Schneider. The B-Method: An Introduction. Palgrave, 2001.
[18] E Sekerinski and K. Sere, editors. Program Development by Refinement. Springer,

1999.
[19] J.B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

Refinement and Reachability in Event_B

Jean-Raymond Abrial1, Dominique Cansell2, and Dominique Méry3

1 ETHZ Zurich, Switzerland
jabrial@inf.ethz.ch

2 LORIA, Université de Metz France
3 LORIA, Université Henri Poincaré Nancy 1 France

{Dominique.Cansell }@loria.fr

Abstract. Since the early 90’s (after the seminal article of R. Back [4]), the re-
finement of stuttering steps [5] are performed by means of new actions (called
here events) refining skip. It is shown in this article that such a refinement method
is not always possible in the development of large systems. We shall instead use
events refining some kind of non-deterministic actions maintaining the invariant
(sometimes called keep). We show that such new refinements are completely
safe. In a second part, we explain how such a mechanism can be used to express
some reachability conditions that were otherwise expressed using some special
temporal logic statements à la TLA [5] in a previous article [2]. Examples will be
used to illustrate our proposals.

Keywords: Refinement, Stuttering, Reachability, B Method

1 Introduction

In this article1, we are addressing three problems, which occur in Event-B develop-
ments. The first one (section 2) deals with the proof rules concerning the introduction
of new events in a refinement. The second one (section 3) is rather simple: it deals with
the introduction of a new form of development step, which is different from refinement,
it is a merging step. The third problem (section 4) deals with a simplification of the
temporal logic statement that was proposed some years ago in [2]. Problems 1 and 3
will be illustrated by two examples (section 2.5 and sections 4.1 to 4.8).

2 First Problem: About New Events in a Refinement

Before explaining the nature of this first problem and the proposed solutions (sections
2.4 to 2.6), let us give a number of brief reminders on Event-B. These reminders deal
with events (section 2.1), refinements (section 2.2) , and the special case of refinement
consisting of introducing new events (section 2.3).

1 This work has been partly supported by IST FP6 Rigorous Open Development Environment
for Complex Systems (RODIN, IST-511599) Project.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 222–241, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Dominique.Mery,

.

Refinement and Reachability in Event_B 223

2.1 Reminder 1: Event Shape

Events. A formal model is made of a state defined by some variables v and invariant
I(v). It is also made of various transitions (called actions or events). An event bears a
unique name and it has the following form:

when G(v) then S(v) end

where S(v) is a generalized substitution (next paragraph) defining the transition asso-
ciated with the event, and where G(v) denotes a conjoined list of predicates defining
the guard of the event (we remind the reader that the guard of an event is the necessary
condition for the event to occur). They are both parameterized by the variables v.

Generalized Substitutions and Before-After Predicates. We have three kinds of gen-
eralized substitutions: the deterministic multiple substitution, the empty substitution
(skip), and the non-determinitistic multiple substitution.

The before-after predicate is supposed to denote the relationship holding between
the state variables of the model just before (denoted by v) and just after (denoted by v′)
“applying” a substitution. The before-after predicate is defined as follows for the three
kinds of generalized substitutions:

Generalized Substitution Before-after Predicate

v := E(v) v′ = E(v)

skip v′ = v

any x where P (x, v) then v := F (x, v) end ∃x· (P (x, v) ∧ v′ = F (x, v))

Invariant Preservation. Given a model with variables v, invariant I(v) and an event
with guard G(v) and before-after predicate R(v, v′), the statement to prove in order to
guarantee invariant preservation is the following:

I(v) ∧ G(v) ∧ R(v, v′) ⇒ I(v′) INV1

2.2 Reminder 2: Event Refinement

So far, we have seen that a model was made of a number of state variables v, invariants
I(v) and finally some events. From a given model M , a new model N can be built and
asserted to be a refinement of M . Model M will be said to be an abstraction of N and
model N will be said to be a refinement of M or a concrete version of it.

The concrete model N has a collection of state variables w, which must be com-
pletely distinct (in first approximation) from the collection v of variables in the abstrac-

224 J.-R. Abrial, D. Cansell, and D. Méry

tion. Model N also has an invariant dealing with these variables w. But contrarily to the
previous case where the invariant of M exclusively depended on the local variables of
this model, this time it is possible to have the invariant of N also depending on the vari-
ables v of its abstraction M . This is the reason why we collectively name this invariant
of N the gluing invariant J(v, w): it “glues” the state of the concrete model N to that
of its abstraction M .

The new model N has a number of events. For the moment, each event in the con-
crete model N is supposed to refine a certain event in its abstraction M . Suppose we
have an abstract event with guard G(v) and before-after predicate R(v, v′) and a cor-
responding concrete event with guard H(w) and before-after predicate S(w,w′). The
latter is said to refine the former when the following holds:

2.3 Reminder 3: Creation of New Events in a Refinement

Constraints on a Simple Case. Let us present a simple case to introduce the matter.
We shall then generalize it.

Suppose we have an abstract model M which only contains a single very primi-
tive event E, whose “execution” makes its own guard false. In other words, model M
immediately deadlocks after “executing” E only once. Now, event E might be real-
ized, in a more concrete model N , by means of a collection of more elementary events
F1, . . . ,Fn,F, where the Fis are new events which have no counterparts in the abstract
model, while F is supposed to be a refinement of the more abstract event E2.

As an example, event E might be one yielding in one shot the maximum of a certain
finite set S of numbers, whereas event F1 might be computing the relative maximum of
a subset T of S (T being obtained by adding an element of S \ T to its previous value).
In that case, event F (the refinement of E) just does nothing when T is equal to S.

It is clear that the refinement we have just presented with events Fi and F is slightly
different from a classical refinement as described in previous section. It contains three
constraints, which are the following:

1. Each new event Fi should refine an implicit dummy event which does nothing
(skip). This is so, precisely because event Fi is not part of the abstraction. No-
tice that this proposal of refining stuttering steps [5] by actions refining skip had
first been proposed by R. Back in the early nineties in [4].

2. The new events should not together diverge (run for ever) since then the refinement
could not be considered valid: remember, the abstraction immediately deadlocks
after the “execution” of the single event E so that the refined model must also
eventually deadlock after some finite elementary executions of the concrete events.

2 Of course, the resulting model N can be further refined in another model P with each event
Fi being now itself realized by means of a collection of more elementary new events Gij and
refined event Gi, which is supposed to be a refinement of the more abstract event Fi, and so on.

More precisely, the refined model “execution” should be as follows: a finite (in-
cluding zero) number of executions of events Fi (after this, no more Fi should be
enabled), followed by a single executions of F, possibly followed by a finite (in-

I(v) ∧ J (v, w)∧H(w) ∧ S(w,w′) ⇒ G(v)∧ ∃ v′ · (R(v, v′) ∧ J(v′, w′)) REF1

Refinement and Reachability in Event_B 225

cluding zero) execution of events Fi (again after this, no more Fi should be enabled),
finally followed by deadlock.

3. We have just seen that the refined model must eventually deadlock, but it should
not deadlock too early. This means that it can only deadlock after the “execution”
of event F. More precisely, the concrete model should not deadlock before its ab-
straction, otherwise the concrete model might not have achieved what the abstract
model had previously required.

Generalization. The simple situation we have just described can now be generalized
to more complicated cases. A first simple extension is one where we have several events
like E but still with a deadlock when each of them has been executed exactly once. The
same constraints 1, 2, and 3 must clearly apply.

A more interesting generalization is one where we have no deadlock at the abstract
level. In other words, the abstract model is supposed to run for ever. Constraint 1 above
has no reason to be changed. Likewise, constraint 3 should not be changed either. Since
the abstract model does not deadlock (this is part of its specification), it would certainly
be an error for the concrete one to deadlock. Maintaining constraint 2 is more question-
able however. Since the abstraction does not deadlock, a concrete version that run for
ever (diverges) would seem to be correct. The problem is that the abstract model was
able to execute, say, event E, which was thus an achievable goal that the model had
to fulfill (it is part of the specification). As a consequence, it might then be incorrect
to have (the refinement of) event E being never executed (because the refined model
diverge). We shall therefore also suppose that constraint 2 must be followed.

A final generalization is one where the abstract model might sometimes deadlock
but not always: in certain circumstances it can run for ever. This mixed situation should
also follow the three constraints above. When the refinement deadlocks then the ab-
straction must have deadlocked too (constraint 3). And the new events must not diverge
(constraint 2). The justifications are exactly the same as in the previous case.

Formalizing the Constraints. We now formalize the three constraints we have just
studied. Suppose we have an abstract model M with variables v and invariant I(v).
This model is refined to a more concrete model N with variables w and gluing invariant
J(v, w). In refined model N , we supposedly have a new event with guard H(w) and
before-after predicate S(w,w′). Constraint 1 (refining skip) leads to the following Law:

I(v) ∧ J(v, w) ∧ H(w) ∧ S(w,w′) ⇒ J(v, w′) REF2

In order to prove that the new events do not diverge (constraint 2), it is necessary
to exhibit a variant V (w) (which, in first approximation, could be a natural number).
And it is then necessary to prove that each new event decreases that variant. Here is the
corresponding Law to be proved:

I(v) ∧ J(v, w) ∧ H(w) ∧ S(w, w′) ⇒ V (w) ∈ N ∧ V (w′) < V (w) REF3

Finally, constraint 3 about the relative deadlock freeness of the refined model with
regards to the abstract one, can be formalized as follows:

226 J.-R. Abrial, D. Cansell, and D. Méry

I(v) ∧ J(v, w) ∧ ¬ (H1(w) ∨ · · · ∨Hm(w)) ⇒ ¬ (G1(v) ∨ · · · ∨Gn(v))

Here the Gis denote the abstract guards whereas the His denote the concrete ones.
The predicate ¬ (H1(w)∨· · ·∨Hm(w)) denotes the condition for the concrete model to
deadlock (all concrete guards are false), whereas the predicate ¬ (G1(v)∨· · ·∨Gn(v))
denotes the condition for the abstract model to deadlock (all abstract guards are false).
So that the law says that if the concrete model deadlocks then the abstract one does also
(perhaps even before the concrete one, but never after). By contraposition, we obtain
the following n more tractable laws:

I(v) ∧ J(v, w) ∧ Gi(v) ⇒ H1(w) ∨ · · · ∨Hm(w) REF4

2.4 Problem Raised by New Events Refining skip

Coupling New Events with New Variables. One of the main difficulties in develop-
ing event models is to find the right order in which to introduce details (by refinement)
which represent some extensions in the problem analysis. When doing such a refine-
ment, we might have two kinds of extensions: that of the state and that of the events.
These extensions are clearly coupled. When extending the state with new variables (su-
perposition), we might have to extend the events accordingly by adding new events
which modify these variables. There is a strong coupling between the two because each
new event must refine skip as we have seen in the previous section.

Suppose we introduce a new variable v in a refinement M . We clearly cannot intro-
duce in a subsequent refinement N another new event, say E, which modifies v and, at
the same time, refines skip since it modifies a variable, which was already there in the
abstraction. In other words, all events modifying variable v must be introduced together
with v.

The problem is that in large model development such a coupling is very difficult
to achieve. Such cases happen quite frequently. For example, suppose we develop the
model of a piece of software which controls a rotating device. At some stage, we might
introduce a variable m representing the state of a motor: working or stopped. And
we define some new events controlling this variables: start_motor, stop_motor. Such
events (and probably others) decrease a certain variant V . In a further refinement, we
might be interested in the safety analysis of this system. This means that under certain
emergency conditions we have to stop the motor. This situation can be handled by an
event called emergency_stop, which certainly modifies variable m. Other emergency
events might be introduced at this level, they all decrease a certain variant W . Because
each new event must refine skip, then the emergency_stop event has to be introduced
together with variable m and events start_motor, stop_motor. This means that the
safety analysis cannot be undertaken afterwards. It also probably means that some vari-
ables dealing with safety have also to be introduced earlier. So that, we sometimes end
up in a situation where it is just impossible to gradually refine our analysis: we have to
introduce every detail of the system at once.

Coupling New Events with their Variant. There is, in fact, another kind of coupling
we might consider: that of new events with their corresponding variant. Remember

Refinement and Reachability in Event_B 227

from the last section that all new events introduced in a refinement must decrease a
certain unique variant. It sometimes happen that a simple variant (say a natural number
expression) is not feasible: one must exhibit a lexicographical variant. In other words, a
certain group of new events all introduced at a certain refinement stage and collectively
called GE, together decrease a certain quantity V , while another group of new events
introduced at the same refinement stage and collectively called GF, keeps V unchanged
but decreases another quantity W .

When a situation like that occurs, this indicates that the development is probably not
adequate: it might be better to introduce events GE in a certain refinement and events
GF later in another subsequent refinement. But again, this is impossible because new
events must refine skip.

Coming back to our previous example, it is probably the case that the variant asso-
ciated with events start_motor and stop_motor is different from that associated with
event emergency_stop as well as others events dealing with emergency conditions.
That second variant might depend on variables dealing with emergency, while the first
variant might depend on variables dealing with the main function of the system. The
situation seems thus to be completely blocked.

2.5 The Solution

The idea of the solutions we present now is to have the new events strongly coupled with
their variant rather than with their variables, so that no lexicographical variant will ever
be needed in a refinement. In fact the lexicographical structure will be implicit in the
embedding of the refinement. In order to explain the solution and have it coherent with
the proof rules of previous section, we shall present two solutions in sequence. First a
heavy (but fully correct) solution, and then a simpler one, from which the heavier one
could always be mechanically reconstructed.

A Heavy Solution. The first solution we propose is one where we continue to have all
new events refining skip. This solution, as we shall see, is rather heavy but it can always
be used. The simpler solution we shall propose afterwards will be a kind of shorthand
to the present solution.

Suppose we introduce a new variable v and some new events at some refinement
stage M . All such events refine skip. They can be divided into two groups: GE and
GF. The new events of group GE all decrease a certain variant V (v), which is defined
on the newly defined variables and maybe on some other variables. The event of group
GE are called the genuine new events of refinement M .

We have almost no information for the moment about the second group GF of new
events. The only thing we know are the following two facts: (1) they all modify variable
v in a certain way which we do not know for the moment (it is thus non-deterministic at
this stage), and (2) they keep the variant V (v) unchanged. We call the events of groups
GF the anticipating new events of refinement M .

In order, however, to be certain that all new events introduced in refinement M in-
deed decrease a certain variant (this is a requirement from previous section), we have
to introduce another (dummy) variable, say d, with the following constraints: (1) d is a
Natural Number, (2) d is decreased (non-deterministically) by the events of group GF,

228 J.-R. Abrial, D. Cansell, and D. Méry

At some subsequent refinement stage N , a new variable w is introduced. This is also
the place where we are able to give full definitions to the previous events of groups GF.
This is the case simply because we now have all the needed variables at our disposal.
In order to simplify the presentation, we suppose that all new events introduced at this
stage decrease a certain variant W (w, v). And we suppose that the events refining the
events of group GF also decrease that variant W (w, v). We can thus now remove the
(dummy) variable d introduced in refinement M . In order to prove the refinement of
the events in GF we have to introduce the gluing invariant d = W (w, v). The antici-
pating events of group GF are now genuine events of refinement N although they were
introduced earlier (simply because they were modifying variable v).

The solution we have presented here although already complicated could have been
made more complicated by having the events of group GF becoming genuine events
in different refinement steps not just in one (N here). And the situation described in
refinement N could have been made more complicated by having genuine new events
and also other anticipating new events too.

A Simpler Solution. What makes the previous solution heavy concerns essentially the
variable d, that is: (1) the introduction of d in refinement step M , (2) the lexicographical
variant <V (v), d> in refinement step M , (3) the non-deterministic decreasing of d by
events of group GF, (4) the non-deterministic modification of d by events of group
GE, and (5) the removal of d in refinement step N by means of the gluing invariant
d = W (w, v). All this can be removed since it can be mechanically reconstructed. As
a consequence, we shall never introduce such dummy variables like d in this simpler
solution.

But we keep the idea of the two groups of new events in a refinement like M : the
group GE of genuine new events (with variants V (v)) and the group GF of anticipating
events, which will be further refined to become genuine events in some refinement stage
N . Notice that GF might be empty.

We shall proceed as follows. Whe developing refinement step M (where variable v
is introduced), we introduce the genuine new event group GE. And we ignore for the
moment the group GF simply because we have no idea at this stage of which events
it may contain. When reaching subsequent refinement step N , we figure out that there
are a number of “new” events GF which, with other genuine events of this refinement,
decrease the variant W (w, v), but which also modify variable v introduced in refine-
ment M .

We then modify refinement M by introducing events of GF in M as anticipating
events. The constraints on these anticipating events in M are simple: (1) they refine
skip, (2) they modify non-deterministically the variable v, and (3) they do not modify
the variant V (v). All this can be defined in a simple manner in these events. In between
refinements M and N exclusively, the refinements of these events pertaining to group
GF should not modify the local variant if any. Most of the time these events remain

(3) d might be modified (non-deterministically) by events of group GE. As a conse-
quence, the global variant of refinement M is the lexicographical variant: <V (v), d>

unchanged between M and N exclusively. In section 4 we shall develop an example
showing an illustration of this solution.

Refinement and Reachability in Event_B 229

2.6 A Special Case

An interesting (and frequently encountered) special case is one where refinement stage
M is the first model of a formal development (it is not a refinement thus). In that case,
the constraints on anticipating events of group GF are simpler than in the more general
case since there is no variant V (v). The only constraint on these events is that they
maintain the local invariant. Later in refinement step N (quite frequently the refinement
step following M), the events of GF are refined and prove to decrease a local variant
W (w, v) built on the new variable w introduced at this stage. Let us illustrate now this
special case on an example.

Initial Model. Consider the following abstraction defining the sorting of a Natural
Number array f with n distinct elements3 :

First Refinement. In the next refinement step, we introduce a new variable k and a
new event progress. Invariant inv_3 expresses that the array is sorted between indices
1 and k − 1 and that all members of the array situated between indices 1 and k − 1 are
smaller than those situated between indices k and n.

3 In the following events, conjunction symbols, ∧, are omitted at the end of each line in an any
condition. Likewise, parallel symbols, ‖, are omitted at the end of the substitution part.

Cst : n

Vrb : f

prp_1 : n ∈ N1

inv_1 : f ∈ 1 .. n � N

init =̂
begin

f :∈ 1 .. n � N

end

sort =̂
any g where

g ∈ 1 .. n � N

ran (g) = ran (f)

∀ i, j ·

⎛⎜⎝ i ∈ 1 .. n− 1
j ∈ i + 1 .. n
⇒
g(i) < g(j)

⎞⎟⎠
then

f := g
end

Cst : n

Vrb : f, k

inv_2 : k ∈ 1 .. n

inv_3 : ∀ i, j ·

⎛⎜⎝ i ∈ 1 .. k − 1
j ∈ i + 1 .. n
⇒
f(i) < f(j)

⎞⎟⎠
init =̂

begin
f :∈ 1 .. n � N

k := 1
end

sort =̂
when

k = n
then

skip
end

progress_1 =̂
any l where

k < n
l ∈ k .. n
f(l) = min (f [k .. n])

then
f := f �− {k �→ f(l)}�− {l �→ f(k)}
k := k + 1

end

230 J.-R. Abrial, D. Cansell, and D. Méry

Generating Code. Using a technique similar to the one presented in [3], it is now pos-
sible to mechanically generate the following straightforward sorting program, sorting
an injective Natural Number array f of size n.

In event progress_1, the two array elements situated at indices k and l are swapped.
The array element situated at index l is the minimum of the array elements situated
between indices k and n (this sorting model is rather simplistic!). As can be seen, event
progress_1 modifies f hence it cannot refine skip. It has thus to be introduced in the
initial model as an anticipating event which simply maintains invariant inv_1:

Second Refinement. We now refine one step further. For this, we introduce two more
variables j and l and two more events progress_2 and progress_3. This time the new
events are genuine events since they indeed refine skip. So there is no need to introduce
them in the previous refinement as anticipating events. These events are used to compute
the minimum envisaged in the previous section.

Cst : n

Vrb : f, k, j, l

inv_4 : j ∈ k .. n

inv_5 : l ∈ k .. j

inv_6 : ∀i ·
(

i ∈ k .. j
⇒
f(l) ≤ f(i)

)
init =̂

begin
f :∈ 1 .. n � N

k, j, l := 1, 1, 1
end

sort =̂
when

k = n
then

skip
end

progress_1 =̂
when

k < n
j = n

then
f := f �− {k �→ f(l)}�− {l �→ f(k)}
k, j, l := k + 1, k + 1, k + 1

end

progress_2 =̂
when

k < n
j < n
f(l) ≤ f(j + 1)

then
j := j + 1

end

progress_3 =̂
when

k < n
j < n
f(l) > f(j + 1)

then
j := j + 1
l := j + 1

end

progress_1 =̂
any g where

g ∈ 1 .. n � N

then
f := g

end

Refinement and Reachability in Event_B 231

k,j,l := 1,1,1 ; init
while k < n do

while j < n do
if f(l) ≤ f(j + 1) then

j := j+1 progress_2
else

j,l := j+1,j+1 progress_3
end

end ;

f := f �− {k �→ f(l)}�− {l �→ f(k)};
k, j, l := k + 1, k + 1, k + 1 progress_1

end

3 Second Problem: Merging Step

This problem is relatively simple and it will receive a straightforward solution. When
doing large development, we figure out that it is sometimes convenient to introduce
between refinement steps some, so-called, merging steps. It occurs in the special case
where two or more events in a model are very close to each others. Given a model with
variables v and two events of the following forms

Alpha =̂
any x where

P (v, x)
Q(v, x)

then
S(v, x)

end

Beta =̂
any x where

P (v, x)
R(v, x)

then
S(v, x)

end

The merging of these two events results in a single event, which is the following:

Alpha_Beta =̂
any x where

P (v, x)
Q(v, x) ∨R(v, x)

then
S(v, x)

end

Quite often, R(v, x) is just ¬Q(v, x). It makes Q(v, x) ∨ R(v, x) disappear. We
shall give such a merging example in section 4.6.

232 J.-R. Abrial, D. Cansell, and D. Méry

4 Third Problem: Reachability

In this section we investigate the possibility to avoid having special constructs in the
Event-B formalism for expressing some temporal logic statements. Such constructs
were defined in an article [2] published some years ago. We now reduce such state-
ments to the simpler statement of reachability. It seems for us that it is the main dy-
namic property we want to express and prove. Such a property, as we shall explain in
what follows, is just a generalization (to ever running program) of the total correctness
property (termination) of sequential programs.

As we know, partial correctness for a sequential program is the property which
states that the program delivers the expected outcome (post-condition) provided it ter-
minates. Whereas total correctness is the property which states that the program termi-
nates and delivers the expected outcome. A sequential program which is made of a loop
can be verified to be partially correct by proving that the loop invariant and the negation
of the loop guard implies the post-condition. But it is not totally correct unless the loop
terminates. Telling that a loop program terminates is clearly not enough: we have to
prove it. This is done by exhibiting a variant expression (usually a Natural Number),
which is then proved to be decreased by the loop body.

We can view an ever running program as containing an infinite number of tasks,
where each such task is in fact a sequential program. Thus total correctness first looks
like the one we had for individual sequential programs. Each task must deliver the
expected outcome (post-condition) and also terminate if supposed to run alone. In other
words, each task should first be a totally correct sequential program.

But we have another dimension of total correctness in an ever running program
whose tasks are individually totally correct. We want that there does not exist any task,
which, once started, cannot terminate (although it could have terminated if run alone)
because it is indefinitely postponed by other running tasks, which always take priority
over it. In other words, what has been expressed and proved to be individually achiev-
able should always be achievable in the presence of other tasks. This is what we call
reachability. In other words, the termination of each task must be reachable.

In order to prove such a reachability, the idea we might investigate in what follows
is to define the task we are interested in as performed in one shot in a first model: it
then indeed terminates because it is done at once. Other tasks thus cannot indefinitely
postpone it since a single event executes the task: it terminates immediately after being
called. This initial model is now refined and new events are added. But we know from
section 2.3 that new events cannot take control for ever (a variant is exhibited) so that
the task which was performed in one shot in the abstraction might not be done in one
shot any more, but it will anyway be guaranteed to be done after a “finite time”.

The question we study now is whether this approach is satisfactory. For this we shall
take the example that was studied in the original paper [2]

4.1 Clients and Service: Initial Model

We are given a set C of clients, which is finite (prp_1). Each such clients can ask for a
certain service. Client which have asked for the service but have not yet been serviced
are waiting in the set p (inv_1). Thus, requesting the service puts a client (which is not

Refinement and Reachability in Event_B 233

yet requesting the service) in the waiting set p (event Request_any), while servicing a
client which is waiting in the set p, simply removes it from this set (event Serve_any).

The property we would like to express is that no client can wait indefinitely in the
waiting set p. In other words, every waiting client can eventually “reach” the service.
At this stage we have no way to express this property.

4.2 Refinement: How to Express Non-starvation

The idea of this refinement is that each client is (magically) given a certain unique
maximum non null waiting time t when requesting the service. This means that the
client is sure to wait no more than t before being serviced (the “time” is a logical time
expressed in terms of event execution). This is practically realized in this refinement by
means of a partial injective function w from C to N1 (inv_2). The gluing invariant links
the abstract variable p to the domain of w (inv_3). A client c in the waiting set (in the
domain of w) has thus to wait at most w(c).

Set : C

Vrb : w

inv_2 : w ∈ C �� N1

inv_3 : p = dom (w)

init =̂
begin

w := ∅

end

The event Request_any is modified to be able to assign to a requesting client a
certain waiting time which has not been given to any already waiting client. The event
Serve_any chooses the client with the smallest waiting time and decreases all waiting
times accordingly.

Request_any =̂
any c, n where

c ∈ C \ dom(w)
n ∈ N1 \ ran(w)

then
w(c) := n

end

Serve_any =̂
any c where

c ∈ dom(w)
w(c) = min(ran(w))

then
w := {c}�− (w ; minus(w(c)))

end

Set : C

Vrb : p

prp_1 : C ∈ F(C)

inv_1 : p ⊆ C

init =̂
begin

p := ∅

end

Request_any =̂
any c where

c ∈ C \ p
then

p := p ∪ {c}
end

Serve_any =̂
any c where

c ∈ p
then

p := p \ {c}
end

At this stage we still have no way to express and prove that no client will wait in-
definitely in the waiting set. In the mentioned paper [2] this was expressed by means

234 J.-R. Abrial, D. Cansell, and D. Méry

of a special statement involving a proof obligation. What we would like to have is a
way of expressing this reachability simply by means of the “standard” variant needed
for new events as described in section 2.3.

4.3 Revisiting the Initial Model: Considering an Arbitrary Client cl

We then come back to our initial model and modify it. Since all clients are identical it
suffices to do the proof for a single one that is chosen arbitrarily. This is close to what
is done in classical logic when proving a predicate of the form ∀x·P (x): it is usually
performed by simply proving P (x) for an arbitrary x (provided it is “fresh”).

Here we choose a client cl and split the Request and Serve events. The two events
Request_cl and Serve_cl are dealing with client cl exclusively. The two events Re-
quest_more and Serve_more are dealing with other clients, but only when cl is not
in the waiting set p. So that cl is immediately serviced after being put into the set p.

Set : C

Cst : cl

Vrb : p

prp_1 : cl ∈ C

inv_1 : p ⊆ C

init =̂
begin

p := ∅

end

The behavior of this model can be illustrated on the following diagram where the im-
mediate service for client cl can be seen (it can be formalized more carefully by showing
that when cl is in p, the only event that could be enabled is precisely Serve_cl).

Request_cl =̂
when

cl ∈ C \ p
then

p := p ∪ {cl}
end

Serve_cl =̂
when

cl ∈ p
then

p := p \ {cl}
end

Request_more =̂
any c where

c ∈ C \ (p ∪ {cl})
cl /∈ p

then
p := p ∪ {c}

end

Serve_more =̂
any c where

c ∈ p
cl /∈ p

then
p := p \ {c}

end

Serve_cl

Request_more

Serve_more

Request_cl

Refinement and Reachability in Event_B 235

As you can see, the “old event” Serve_cl is not enabled immediately but only
after a finite number of executions of event Serve_others. This is due to the pres-
ence of a variant that can be exhibited (namely w(cl)) and prove to be decreased by
Serve_others.

Set : C

Vrb : w

inv_2 : w ∈ C �� N1

inv_3 : p = dom (w)

vrt_1 : w(cl)

init =̂
begin

w := ∅

end

Request_cl =̂
any n where

cl /∈ dom(w)
n ∈ N1 \ ran(w)

then
w(cl) := n

end

Serve_cl =̂
when

cl ∈ dom(w)
w(cl) = min(ran(w))

then
w := {cl}�− (w;
minus(w(cl)))

end

Serve_others =̂
any c where

cl ∈ dom(w)
c ∈ dom(w) \ {cl}
w(c) = min(ran(w))

then
w := {c}�− (w;
minus(w(c)))

end

4.4 Refinement 1: Client cl oes ot Starve

We now revisit our previous refinement by implementing the set p as before by means
of a partial injective function w: the gluing invariant is exactly the same as above.
We add a new event called Serve_others, which is supposed to serve clients that are
waiting when cl is also waiting. Note that this event is not genuinely new (it does not
refine skip), it has thus to be an anticipating event in the previous model as indicated
in section 2.5. We might illustrate the new situation with the following diagram, which
could be considered a “refinement” of the previous one:

Serve_cl
Serve_others

Serve_others

Serve_others

Serve_others

Request_more
Serve_more

Request_cl

ND

236 J.-R. Abrial, D. Cansell, and D. Méry

Request_more =̂
any c, n where

cl /∈ dom(w)
c ∈ C \ (dom(w) ∪ {cl})
n ∈ N1 \ ran(w)

then
w(c) := n

end

Serve_more =̂
any c where

cl /∈ dom(w)
c ∈ dom(w)
w(c) = min(ran(w))

then
w := {c}�− (w ; minus(w(c)))

end

Notice that the variant w(cl) is indeed decreased by the new event Serve_others
since w is an injection of range N1. As a consequence, the values of w is indeed de-
creased by a positive number by means of the function minus (w(c)).

4.5 Refinement 2

In this refinement we introduce another new event Request_others (which must also
be an anticipating event in the first model) dealing with clients requesting for service
while client cl is waiting in the waiting set. The corresponding variant is card (C \
dom(w)). Notice that this event does not modify the previous variant, namely w(cl).
This is illustrated in the following diagram:

Notice that we slightly refine the various Request and Serve events so that it will
be possible to merge them in the next step.

Set : C

Vrb : w
vrt_2 : card (C \ dom(w))

init =̂
begin

w := ∅

end

Request_cl

Serve_cl
Serve_others or Request_others

Serve_others or Request_others

Serve_others or Request_others

Serve_others or Request_others

Request_more
Serve_more

Refinement and Reachability in Event_B 237

Request_cl =̂
any c, n where

c ∈ C \ dom (w)
n ∈ N1 \ ran(w)
c = cl

then
w(c) := n

end

Serve_cl =̂
any c where

c ∈ dom(w)
w(c) = min(ran(w))
c = cl

then
w := {c}�− (w ; minus(w(c)))

end

Request_more =̂
any c, n where

c ∈ C \ dom(w)
n ∈ N1 \ ran(w)
c �= cl
cl /∈ dom(w)

then
w(c) := n

end

Serve_more =̂
any c where

c ∈ dom(w)
w(c) = min(ran(w))
c �= cl
cl /∈ dom(w)

then
w := {c}�− (w ; minus(w(c)))

end

Request_others =̂
any c, n where

c ∈ C \ dom(w)
n ∈ N1 \ ran(w)
c �= cl
cl ∈ dom(w)

then
w(c) := n

end

Serve_others =̂
any c where

c ∈ dom(w)
w(c) = min(ran(w))
c �= cl
cl ∈ dom(w)

then
w := {c}�− (w ; minus(w(c)))

end

4.6 Putting Together Requests and Services

It is now a simple matter to put together requests and services and thus obtain a model
which is identical to the one of section 4.2. For this, we apply the merging rule that was
given in section 3.

Set : C

Vrb : w

inv_2 : w ∈ C �� N1

inv_3 : p = dom (w)

init =̂
begin

w := ∅

end

238 J.-R. Abrial, D. Cansell, and D. Méry

Request_any =̂
any c, n where

c ∈ C \ dom(w)
n ∈ N1 \ ran(w)

then
w(c) := n

end

Serve_any =̂
any c where

c ∈ dom(w)
w(c) = min(ran(w))

then
w := {c}�− (w ; minus(w(c)))

end

We are now in a good position to propose two different refinement strategies im-
plementing the “magic” behavior of the request event: the queue strategy and the ring
strategy.

4.7 Refinement 3.1: he Queue Strategy

A queue strategy is obtained by imposing that the range of w is exactly the interval
1 .. card(dom(w)). The waiting times are then “dense”, and the minimum waiting time
(if any) is always 1. Notice that the queue is exactly the list obtained by inverting the
injective function w.

inv_3 : ran(w) = 1 .. card(dom(w))

init =̂
begin

w := ∅

end

Request_any =̂
any c where

c ∈ C \ dom(w)
then

w(c) := card
(dom(w)) + 1

end

Serve_any =̂
any c where

c ∈ dom(w)
w(c) = 1

then
w := {c}�− (w ; pred)

end

4.8 Refinement 3.2: Ring (or Lift) Strategy

We suppose that the clients have a fixed setting forming a ring as indicated in the fol-
lowing figure:

The ring can thus be defined by means of a bijective function nxt as indicated.

nxt ∈ C �	 C

The problem with this bijective function is that it allows one to define several rings
not a single one as we want:

T

heT

Refinement and Reachability in Event_B 239

For solving this little difficulty, we first define a notion of interval itv(x, y) on a ring
between x and y:

itv ∈ C × C → P(C)

An interval can be defined first with a single element and then with more:

a b

c

e

f

d

nxt

a b

c

e

f

d

nxt

g

hi

j

k

x

y

nxt

240 J.-R. Abrial, D. Cansell, and D. Méry

∀x · (x ∈ C ⇒ itv(x, x) = {x})

∀x, y ·

⎛⎜⎜⎜⎜⎝
x ∈ C
y ∈ C
x �= nxt(y)
⇒
itv(x, nxt(y)) = itv(x, y) ∪ {nxt(y)})

⎞⎟⎟⎟⎟⎠
Finally a single ring is defined if the interval from nxt(x) to x is exactly the entire

set C for any x, formally:

∀x · (x ∈ C ⇒ itv(nxt(x), x) = C)

Besides the two constants nxt and itv, we define a new variable d which denotes the
client which is next to the last serviced client (d is initialized to the predefined constant
client cl). All this can now be summarized as follows:

Notice invariant inv_5 which says that any client in the domain of w is assigned
a maximum waiting time which is equal to card(itv(d, c)). Event Request_any is
modified to assign a maximum waiting time to a requesting client c, which is equal to
the cardinal of the interval between d and c. Event Serve_any is also modified to move
the variable d to the client nxt(c).

nxt
x

ynxt(y)

Set : C

Cst : cl, nxt, itv

Vrb : w, d

prp_2 : nxt ∈ C �	 C

prp_3 : itv ∈ C × C → P(C)

prp_4 : ∀x · (x ∈ C ⇒ itv(x, x) = {x})

prp_5 : ∀x, y ·

⎛⎜⎜⎜⎝
x ∈ C
y ∈ C
x �= nxt(y)
⇒
itv(x, nxt(y)) = itv(x, y) ∪ {nxt(y)})

⎞⎟⎟⎟⎠
prp_6 : ∀x · (x ∈ C ⇒ itv(nxt(x), x) = C)

inv_4 : d ∈ C

inv_5 : ∀ c · (c ∈ dom(w) ⇒ w(c) = card(itv(d, c)))

Refinement and Reachability in Event_B 241

init =̂
begin

w := ∅

d := cl
end

Request_any =̂
any c where

c ∈ C \ dom(w)
then

w(c) := card(itv(d, c))
end

Serve_any =̂
any c where

c ∈ dom(w)
w(c) = min(ran(w))

then
w := {c}�− (w;
minus(w(c)))
d := nxt(c)

end

5 Conclusion

In this paper we have presented a new way of refining stuttering steps by means of
events refining (a kind of) keep statement. We have shown that this new refinement
aprroach is completely safe in that it “simulates” the more classical approach where
stuttering steps are handled by refining skip. We have also tentatively shown how to
use new events to express some reachability properties, without using special temporal
logic statement.

Acknowledgments: We would like to thank L. Mussat for his very interesting com-
ments.

References

1. J.-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University Press,
1996. ISBN 0-521-49619-5.

2. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert, editor, B’98
:Recent Advances in the Development and Use of the B Method, volume 1393 of Lecture Notes
in Computer Science. Springer Verlag, 1998.

3. J.R. Abrial. Event Based Sequential Program Development: Application to Constructing a
Pointer Program. In Dino Mandrioli Keijiro Araki, Stefania Gnesi, editor, FME 2003: Formal
Methods, volume 2805 of Lecture Notes in Computer Science, pages 51–74, Pisa, Sept 2003.

4. R. J. R. Back. Refinement calculus, part 2: Parallel and reactive systems. In J. W. De Roever,
W. P. De Roever, and G. Rozenberg, editors, Step Refinement of Distributed Systems Models,
Formalisms, Correctness REX Workshop, pages 67 – 93. EATCS, Springer Verlag, May-June
1989. LNCS 430.

5. L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 242 – 261, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Rigorous Foundation for
Pattern-Based Design Models

Soon-Kyeong Kim and David Carrington

School of Information Technology and Electrical Engineering,
The University of Queensland, St. Lucia, 4072, Australia

{soon, davec}@itee.uq.edu.au

Abstract. This paper presents a way to describe design patterns rigorously
based on role concepts. Rigorous pattern descriptions are a key aspect for pat-
terns to be used as rules for model evolution in the MDA context, for example.
We formalize the role concepts commonly used in defining design patterns as a
role metamodel using Object-Z. Given this role metamodel, individual design
patterns are specified generically as a formal pattern role model using Object-Z.
We also formalize the properties that must be captured in a class model when a
design pattern is deployed. These properties are defined generically in terms of
role bindings from a pattern role model to a class model. Our work provides a
precise but abstract approach for pattern definition and also provides a precise
basis for checking the validity of pattern usage in designs.

1 Introduction

In a model-driven development approach such as MDA [17], software systems are
developed via model evolution. A model describing a problem is evolved to a model
describing its solution from which code is generated. Problems are identified either
from the business domain or during design. Since software design patterns describe
solutions that can be used to solve general design problems [9], problems identified in
design models can be readily solved by referencing design patterns.

While design patterns can provide an effective basis for model evolution, the cur-
rent approaches to describing patterns fall short of what design patterns can offer for
model evolution in the MDA context.

A pattern is described in terms of the problem that it addresses, the solution and its
consequences. The solution component of a pattern description is often called a pat-
tern specification and describes the structural and behavioural aspects of the partici-
pants in the pattern through their roles, relationships and collaborations.

Pattern specifications are typically defined imprecisely using natural language de-
scriptions with graphical annotations. It is also common to describe patterns using a
concrete design or a specific example of a pattern use, as is done in [7, 9]. In fact, the
resulting pattern descriptions are not a pattern specification. They are particular ex-
amples of pattern use. This problem typically originates from the limitations of using
object notations for describing patterns (e.g. OMT and UML). Object notations are
basically designed to describe concrete design decisions and they are not appropriate

 A Rigorous Foundation for Pattern-Based Design Models 243

for describing patterns in an abstract manner [5, 19]. Object notations lack precision
in their notations. To enhance this situation, the following problems have to be
solved:

 Patterns must be described in a precise manner. Thus a tool applying patterns can
understand the properties of the patterns and a set of transformation rules can be
applied to the patterns for model evolution.

 To use patterns in different applications, patterns must be described in an abstract
manner focusing on their essential properties and omitting application-specific
information from the pattern description.

 For modeling to be effective, efficient ways must exist to validate whether patterns
are deployed in applications as intended.

To achieve these goals, this paper proposes a formal role-based metamodeling
approach to describe patterns. By adopting a meta-modeling and formal approach, our
work defines an innovative framework where generic pattern concepts based on roles
are precisely defined as a formal role metamodel using Object-Z [2]1, and individual
patterns are specified using these generic role concepts in terms of pattern role
models2. Patterns described in this way are abstract, separating pattern realization
information from the pattern description. Also they are sufficiently precise enough to
be interpreted by a tool or a set of transformation rules. To support effective model
evolution with design patterns, we formally define a set of properties that must be
fulfilled by a design model when it deploys a pattern in terms of role bindings from a
pattern role model to a design model. This formal definition provides a precise basis
so that the validity of pattern usage in a design model can be checked.

The structure of the rest of this paper is as follows. Section 2 provides a review of
related work. Section 3 presents a formal definition of the role concepts used in this
paper using Object-Z. Section 4 shows how to specify patterns in an abstract, but
precise manner using the role concepts defined in Section 3. Section 5 formalizes the
properties that must be satisfied in a design model when it deploys a pattern. Section
6 draws some conclusions and discusses future work.

2 Related Work

Several researchers [8, 15, 19] use role-modeling techniques to describe patterns.
Riehle [19] specifies patterns with three levels of abstraction: pattern, design template
and concrete design. At the pattern level, he uses role diagrams to describe the distri-
bution of responsibility and the interaction between objects playing specific roles in a
pattern. At the design template level, he uses class diagrams to describe how a pattern
specified by a role diagram can be made more concrete. Lastly, at the concrete design
level, the design template is instantiated in an application.

1 We use the UML Class diagram to show the model elements in our role metamodel and their

relationships, but their definitions are given in Object-Z.
2 Pattern role models can be viewed using different notations such as Object-Z and UML.

Examples are presented in Section 4.

244 S.-K. Kim and D. Carrington

Lauder et al. [15] present similar work in which three layered models in terms of
role, type and class level models are introduced as pattern specifications. A role level
model expresses the pattern purely focusing on the essential elements of the pattern, a
type level model refines the role model by adding usually-domain-specific refine-
ments to the roles, and a class level model refines the type model by adding applica-
tion-specific terms. Lauder et al. use different diagrams for different models, e.g.,
constraint diagrams for role models and modified UML-like class diagrams for both
type and class models.

These works limit the role concepts mainly to objects and do not capture other
roles played by different entities in a pattern such as classes, features of the classes
and relationships between the classes and objects. Also type models in [15] or class
templates in [19] do not reflect the full generality of patterns due to limitations of the
object notations used to present them.

France et al. [8] reduce these problems by extending the role concepts beyond ob-
jects to classes, attributes, operations, associations and generalizations. They adopt a
metamodeling approach to define a pattern generically. A pattern metamodel devel-
oped at the meta-level captures both role and type information. The properties that a
UML class model should satisfy when it realizes a pattern are defined using OCL [18]
as meta-level constraints. Nevertheless, this work discusses role concepts in the con-
text of UML. Also utilizing role concepts in any UML model constructs makes the
overall pattern description unnecessary complex. In contrast, our role-metamodel
defines only core elements that are necessary to describe patterns and is not based on
a specific modelling language. This makes our approach more flexible and extendable
to apply to different modeling languages.

Soundarajan et al. [21] present a rigorous approach to specifying patterns based on
roles and their responsibilities, but they neither formally define role concepts nor
separate pattern definitions from their usage information, which, of course is our
focus.

Not based on role concepts, but using object-notations (mainly UML), Fontoura
and Lucena [7] define stereotypes and tagged values to improve the presentation of
configuration design patterns. Dong [1] proposes annotation using tagged values to
enhance pattern presentations with UML. Similarly, Sanada and Adams [20] define a
UML profile for patterns that includes several stereotypes to support the presentation
of design patterns. However pattern descriptions presented in these works inherit the
limitations of using object notations discussed above. Another approach uses meta-
modeling to define pattern concepts in the context of the UML metamodel. Guennec
et al. [10] use meta-level collaborations to present design patterns and specify some
pattern properties as a set of constraints using OCL. Mak et al. [16] present similar
work to [10] using meta-level UML collaborations to present design patterns.

It should be also noted that there has been research to define pattern specifications
precisely. Eden et al. [5] use a higher order language called LePUS to define patterns.
Lano and Goldsack [14] formalize patterns using VDM++ and prove design patterns
as refinement transformations using the Object Calculus. Flores et al. [6] use the
RAISE Specification Language to formally specify properties of patterns. These ap-
proaches are however not role-based and do not provide an abstract view for pattern
usage, so we do not discuss them further in this paper.

 A Rigorous Foundation for Pattern-Based Design Models 245

3 A Role Metamodel for Patterns

In this section, we present a metamodel for roles that are used to define design pat-
terns. In defining the role metamodel, we first identify the underlying concepts that
are commonly used to define existing design patterns and then abstract these concepts
as meta-modeling elements in the role metamodel. Since the meta-modeling elements
conceptualize common properties in patterns, we must be able to describe a pattern in
terms of these modeling elements.

In this section, we use a UML class diagram to present the abstract syntax of our
role modeling language, but we formalize the definition using Object-Z. We assume a
basic understanding of UML and Object-Z. We have presented a preliminary over-
view of the role metamodel in [13] focusing on mainly class and their feature roles,
but not considering occurrence properties and relationships. The role metamodel pre-
sented in this paper has significant extensions.

3.1 Role Concepts in Patterns

A pattern involves a set of roles that are played by participants in the pattern. We use
roles and role models as first-class modeling concepts to define patterns. In our work,
a role is defined to describe not only objects, but also their features and relationships
with other objects or features of other objects in the context of a pattern. Fig. 1 pre-
sents a class diagram showing the role model elements defined in our work.

Fig. 1. A class diagram showing role model elements and their structure

0..1

0..n

NamedRoleElement

name : String
isAbstract : Boolean

RoleBindingProperty
occurrence [*] : Integer = {1}

RoleElement

Pattern

1..n

+owner

0..n {ordered}

AttributeRole ClassRole
0..1 0..10..n 0..n

+owner

RoleTypedElement RoleType
+type

RoleNamespace

OperationRole

ParameterRole

246 S.-K. Kim and D. Carrington

The metaclass RoleElement is the top level model element from which all role con-
cepts in our role modeling language are drawn. Inheriting from this class, we have
two metaclasses: NamedRoleElement and RoleBindingProperty. NamedRoleElement
is an abstract metaclass from which all role elements with a name are drawn. A
NamedRoleElement has a name describing its intent or responsibility and has an at-
tribute isAbstract defining whether the element is abstract or not3 (e.g. the Abstract-
Factory class role in the Abstract Factory pattern [9]). RoleBindingProperty defines
the occurrence property of a role in a single pattern realization in a design model (e.g.
the ConcreteFactory class role in the Abstract Factory pattern can occur multiple
times in a single pattern realization). A formal definition of these metaclasses is pre-
sented below.

Role Name space is an element that can own other elements (such as class roles or
operation roles). RoleTypedElement presents role elements with a type (e.g. attribute
roles and parameter roles).

By inheriting the RoleTypedElement metaclass, we define attribute roles. Since an
attribute role may occur multiple times within its owning class role in a single pattern
realization, it is also defined as a RoleBindingProperty element. Similarly we define
parameter roles.

3 At the pattern-level, it is enough to define whether a role participating in a pattern is abstract

so that there are concrete roles realizing it. Whether the role is an interface or an abstract class
is an implementation issue, which we do not consider in the pattern description.

 A Rigorous Foundation for Pattern-Based Design Models 247

An operation role owns an ordered set of parameter roles and can occur multiple
times within its owning class role in a single pattern realization. Hence it inherits from
both RoleNamespace and RoleBindingProperty.

Using attribute roles and operation roles, we now define a class role. A class role
owns feature roles such as attribute roles and operation roles, and it can occur multi-
ple times in a single pattern realization, so it inherits from both RoleNamespace and
RoleBindingProperty. A class role is a role type, so it also inherits from RoleType.
Within a class role, attribute role names and operation role names should be unique.
This property is formalized as a constraint in the Object-Z class ClassRole below.

3.2 Role Relationships in Patterns

Roles in a pattern may have relationships between them. These relationships are also
role elements in the pattern. RoleRelationship is an abstract metaclass from which all
types of relationships between role elements can be drawn (see Fig. 2).

248 S.-K. Kim and D. Carrington

RoleRelationship

OperationRelationshipKind
<<enumeration>>

RoleBindingProperty

occurrence [*] : Integer = {1}

OccurrenceDependencyOperationRoleDependency

depKind : OperationRelationshipKind

OperationRole
1

+client
1 1

+supplier
1

CreateDependency

1

+client

1

ClassRoleHierarchy

ClassRole

0..n0..1 0..n0..1
+supplier

1

+superRole

1 1

+subRole

1

ObjectRoleRelationship

sourceObjectMultiplicity : Integer
targetObjectMultiplicity : Integer

1
+source

1 1
+target

1

ClassRoleHierarchy

HierarchyOccurrenceDependency

isFamily : Boolean
dependantClassRole : ClassRole

11

+supplier

RoleDependency

isIsomorphic : Boolean

RoleElement

0..n

1

0..n

+client
1

0..n

1

0..n

+supplier
1

SimpleOccurrenceDependency

Fig. 2. A class diagram showing various role relationships in the role metamodel

One relationship often found in patterns is a hierarchical relationship between class
roles. The metaclass ClassRoleHierarchy captures this relationship. Since a hierarchy
relationship can appear several times in a single pattern realization (e.g. the hierarchy
between AbstractProduct and ConcreteProduct class roles in the Abstract Factory
pattern), it inherits from RoleBindingProperty. A hierarchy relationship has a super
class role that defines abstract role features (e.g., operation roles) and a subclass role
that realizes the abstract role features. In each class role hierarchy, the super class role
is abstract and may occur only once, but the subclass role is not abstract and may
occur multiple times, so its occurrence propriety remains undefined. A subclass role
cannot be its own super class role. This property is formalized as a constraint.

 A Rigorous Foundation for Pattern-Based Design Models 249

Patterns may capture relationships between objects (e.g. the relationship between a
Subject object and a set of Observer objects in the Observer pattern [9]). These rela-
tionships between object roles are typically realized as associations in a class model.
Most relationships between objects in patterns are a directed binary relationship be-
tween two class roles (source and target class roles). The metaclass ObjectRoleRela-
tionship is defined as a binary relationship between two class roles. It has two attrib-
utes defining the multiplicity properties of these roles.

Another type of relationship often found in patterns is a dependency relationship
between various role elements (RoleDependency). This relationship is defined as a
directed relationship from a client role to a supplier role. The relationship can be iso-
morphic (a total one-to-one relationship between the client and supplier roles).

Role dependency relationships are further classified into: BindingDependency,
CreateDependency and OperationRoleDependency and can be readily extended for
different types of dependency in new patterns.

OccurrenceDependency: An occurrence dependency defines a binding relationship
between role elements when they are realized in a design model. This property only
applies to a situation where both the client and supplier roles have a multiple occur-
rence property. Occurrence dependencies can be used to check the integrity of pattern
realizations in a design model.

A simple occurrence dependency example is drawn from the Visitor pattern [9]:
the number of Visitor operation roles defined in the AbstractVisitor class role depends
on the number of ConcreteElement class roles that exist in the Element hierarchy. For
some patterns, however, occurrence dependencies can be more complex. For exam-
ple, in the Abstract Factory pattern, two occurrence dependencies are identified:

250 S.-K. Kim and D. Carrington

 between the CreateProduct operation role defined in the AbstractFactory class role
and the AbstractProduct class role in each Product hierarchy

 between the ConcreteFactory class role and a family of the ConcreteProduct class
roles in the Product hierarchies

While the former can be readily captured by an isomorphic occurrence dependency
between the CreateProduct operation role and the AbstractProduct class role because
this relationship is between a single occurrence of the two role elements, the latter
cannot be precisely captured by an isomorphic occurrence dependency because it
involves a multiple occurrence of the role elements associated (e.g. a multiple occur-
rence of the ConcreteProduct class role in a multiple occurrence of the Product hier-
archy role). To capture different types of occurrence relationships, we further classify
the OccurrenceDependency into SimpleOccurenceDependency and HierarchyOccur-
renceDependency.

A simple occurrence relationship can be defined between any role model elements.
Each time a client role is realized in a design model, its supplier role must be realized as
well in the same pattern realization. Thus, their occurrence properties must be the same.

A hierarchy occurrence dependency is between a role element and a class role hier-
archy. The supplier of the HierarchyOccurrenceDependency is restricted to Class-
RoleHierarchy. It has two attributes, dependentClassRole and isFamily. The attribute
dependentClassRole denotes the class role in the hierarchy that is restricted by the
occurrence dependency.

When the dependent class role is the super class role of the hierarchy, the occur-

rence property of the client is the same as that of the supplier. This is because a super
class role occurs only once in a class role hierarchy, thus the client occurrence
depends on the occurrence of the hierarchy itself. In contrast, when the dependent
class role is the subclass role of the hierarchy, the occurrence property of the client is
the same as that of the dependent class role. This is because a subclass role may occur
multiple times in a class role hierarchy, thus the client occurrence depends on the

 A Rigorous Foundation for Pattern-Based Design Models 251

occurrence of the dependent class role in the hierarchy. The attribute isFamily denotes
whether the occurrence dependency applies to the family of the dependent class role.
In this case, the dependency cannot be isomorphic.

CreateDependency: A create dependency defines a create relationship between an
operation role and a class role. For example, the ConcreteProduct operation role of
the ConcreteFactory class role has a responsibility to create concrete products and
this dependency is isomorphic.

OperationRoleDependency: Operation role dependency captures various relation-
ships between operation roles. An operation role may have a responsibility to invoke
another operation role. Also an operation role may realize another operation role. By
the semantics of the ClassRoleHierarchy metaclass, operation roles defined in a sub-
class role realize the operation roles defined its super class role. The attribute depKind
defines the kind of dependency and it has an enumeration type OperationRelation-
shipKind, which is readily extended when different types of dependencies are identi-
fied between operation roles.

We initially define three values for this type: invoke, broadcast and realize.

 The invoke value defines a dependency where the client operation role invokes the
supplier operation role (e.g., the Accept operation role of the Element class role
will invoke the VisitConcreteElement operation role of the Visitor class role in the
Visitor pattern [9]).

 The broadcast value defines a dependency where triggering the client operation
role is broadcast to all interested object roles so that the supplier operation role is
triggered as a result (e.g. the Notify operation role of the Subject class role and the
Update operation role of the Observer class role in the Observer pattern [9]).

 The realize value defines a dependency between an abstract operation role and its
realizing concrete operation roles.

3.3 Patterns

Composing the Object-Z classes defined above, we define a formal description of a
pattern. A pattern has a set of role elements. We define two secondary variables
classRoles and relationshipRoles representing all class roles and all relationship roles
in the pattern respectively.

252 S.-K. Kim and D. Carrington

4 Precise Pattern Descriptions

Specifying patterns using object notation has limitations in terms of generality. We
address this problem by specifying patterns using the role concepts as defined in the
previous section using the instantiation mechanism in Object-Z. Using the role meta-
model, we can define patterns simply by assigning values for the features defined in
the metamodel. Integrity consistency between role elements (e.g. role occurrence
consistencies) are ensured by the properties defined at the meta-level. We use two
design patterns from the Gang of Four’s pattern book [9] as examples: Factory
Method and Abstract Factory.

4.1 A Formal Role Model of the Factory Method Pattern

The following Object-Z class FactoryMethod is a formal role model of the Factory
Method pattern. It is developed using the role concepts defined in the previous sec-
tion. The Factory Method pattern has two class role hierarchies: Creator and Product.

Creator role: The Creator hierarchy has two class roles: AbstractCreator and Con-
creteCreator.

 A Rigorous Foundation for Pattern-Based Design Models 253

The AbstractCreator plays a super class role for the ConcreteCreator class role.
The ConcreteCreator may occur multiple times but it depends on the occurrence of
the Product families. The AbstractCreator class role has an operation role Factory-
Method and the operation is realized in the ConcreteCreator class role. The creator
class role hierarchy and the factory method operation roles can occur only once in a
single pattern realization. However, we defer the definition of these properties to the
pattern-level so as to make the role structure reusable in different patterns that might
need to have a multiple occurrence of these roles (see the next section for composing
patterns by reusing other patterns).

Product role: The Product hierarchy has two class roles: AbstractProduct and Con-
creteProduct. The AbstractProduct plays a super class role for the ConcreteProduct.
The ConcreteProduct may occur multiple times. The product hierarchy can occur
multiple times. However, we again defer the definition of this property to the pattern-
level for the same reason.

Role relationship: There is an isomorphic occurrence dependency between conCrea-
tor and conProduct class roles (see the variable, conCreatorConProduct). Also there
is an isomorphic create dependency from the conFactoryMethod operation role to the
conProduct role (see the variable, conFactoryMethodConProduct). The invariants
formalize the occurrence properties of the class role hierarchies and operation roles
discussed above.

254 S.-K. Kim and D. Carrington

This Factory Method definition is generic and it allows parallel class hierarchies of
creator and product class roles that are demonstrated as an example of the Factory
Method pattern in [9].

4.2 Pattern Composition

Some patterns are strongly related. For example, the Abstract Factory pattern extends
the Factory Method pattern. Using the inheritance and renaming mechanism in Object-
Z, we can define patterns by composing other patterns (more precisely roles defined in
the patterns). In this section, we show how to define the Abstract Factory pattern by
composing the roles defined for the Factory Method pattern in the previous section.

Basically the Abstract Factory pattern has the same creator and product class role
hierarchies defined in the Factory Method pattern, but with different occurrence prop-
erties. For example, the Abstract Factory pattern has multiple hierarchies for the
product class roles and the creator operation role has a multiple occurrence. Also
there are complex occurrence dependencies between the roles. For example, there is
an isomorphic occurrence dependency between the abstract CreateProduct operation
role and the AbstractProduct class role (see the variable, absCreateProductAbsPro-
duct). There is also a complex occurrence dependency between the ConcreteFactory
class role and a family of the ConcreteProduct class roles in the Product hierarchy
(see the variable conFactoryConProduct).

The following Object-Z class AbstractFactory is a formal role model of the Ab-
stract Factory pattern. It inherits from the Object-Z classes Creator and Product, and
renames the variables defined in the class Creator according to those factory roles

 A Rigorous Foundation for Pattern-Based Design Models 255

defined in the Abstract Factory pattern (e.g., renaming absCreator to absFactory,
absFactoryMethod to absCreateProduct and so on). This renaming is necessary be-
cause in a pattern, role names describe the intended responsibility of each role.

Since the product hierarchy can occur multiple times, the occurrence property of
the product roles is defined as greater than or equal to 1. Also the two occurrence
dependencies explained before and a create dependency between the ConCreatePro-
duct operation role and the ConProduct class role are formalized.

Using Object-Z, we have significant power to define patterns in a compositional
manner reusing existing patterns to define new patterns. In this way, we also can
verify conflicts between patterns when their roles are combined.

4.3 A Visual Representation of the Abstract Factory Pattern

In this paper, we define the abstract syntax of a role modeling language as a meta-
model. However, we do not propose a particular concrete syntax although we present
an example pattern role model using Object-Z in the previous section. In fact, we can
describe patterns using different concrete notations (e.g., UML) based on our role
concepts as defined in the role metamodel. However, using UML we do not have the
same power that Object-Z provides for defining patterns reusing existing pattern de-
scriptions as shown in the previous section. Nevertheless, the diagrammatic presenta-
tion should enhance the readability of the pattern description.

An example of a visual representation of the Abstract Factory pattern in UML is
presented in Fig. 3. The diagram is a meta-level UML object diagram and is

Fig. 3. A UML object diagram showing Abstract Factory pattern role model

supplier

: CreateDependency

: ClassRole

name = AbstractProduct
isAbstract = true
occurrence = 1

: ClassRole

name = ConcreteProduct
isAbstract = false

: ClassRoleHierarchy
occurrence ä1

: Pattern
name = AbstractFactory

: ClassRole

name = ConcreteFactory
isAbstract = false

: ClassRoleHierarchy

occurrence = 1

: OperationRole
name = CreateProduct
isAbstract = false
occurrence ä 1

: OperationRole
name = CreateProduct
isAbstract = true
occurrence ä 1

: ClassRole

name = AbstractFactory
isAbstract = true
occurrence = 1

: SimpleOccurrenceDependency

: HierarchyOccurrence
Dependency

dependentClassRole =
 ConcreteProduct
isFamily = true

: OperationRoleDependency

depKind = realize

client

supplier

client

supplier

client

occurrence ä1 occurrence ä1

supplier

client
super supersub sub

256 S.-K. Kim and D. Carrington

developed using the same instantiation mechanism as we used for the Object-Z
representation. We can also present the role model using a class diagram at the model-
level, but we do not present this example in this paper for brevity.

5 Precise Pattern Usage Specifications

In the previous section, we introduced roles and role models as a more adequate
means to describe the essentials of patterns. Patterns described in this way are ab-
stract, separating pattern realization information from the pattern description. In this
section, we provide a precise basis to validate pattern realizations in design models.

In our work, patterns are realized in a design model via a role binding. A role bind-
ing constitutes a model capturing all binding information from role elements defined
in a pattern to class constructs defined in a design model. We can check validity of a
pattern realization by checking the binding model. This separation of role binding
information from design models has several advantages:

 It does not increase the complexity of the design model, which can occur when
pattern usage information is provided within the same model (e.g. showing col-
laboration occurrences in a UML class diagram).

 After a design model evolves, pattern deployment information remains in the bind-
ing model. Any modifications of pattern use in the design model can be achieved
by tracing the binding models at the individual pattern level, not at the whole de-
sign model level. This should help pattern-based design or refactoring approaches.

 The validity of the pattern realization can be checked using the binding model.
When a role binding model is valid, its referenced design model is also valid in the
context of the pattern.

Our role binding model is generic and does not restrict pattern usage in any par-
ticular way. Instead it defines common properties that must be preserved in pattern
usage in terms of integrity constraints on the bindings. The role binding model should
be used as a specification to develop tools that support the validation of pattern use.

Since patterns are realized mainly in class models, we restrict design models to
class models in this paper. Prior to formalising the role binding model, we present a
formal definition of a simple class model using Object-Z and use this definition to
define the integrity constraints on the bindings formally.

5.1 A Simple Class Model in Object-Z

A class model consists of a set of classes and relationships between them. It should be
noted that the class model presented in this section contains a minimum set of class
constructs that are necessary to explain role bindings. For a full formal description of
class models such as UML class diagrams, refer to [11, 12].

We assume that a given set, Name, is defined from which the names of all classes,
attributes, operations, operation parameters, and associations are drawn. We also
assume that a meta-type Type is defined from which all possible types used in a class
model can be derived.

Class: A class has a name and contains a collection of features: attributes and opera-
tions. An attribute has a name, a type, and a multiplicity. Variable multiplicity in

 A Rigorous Foundation for Pattern-Based Design Models 257

Attribute describes the possible number of values for the attribute that may be held by
an instance. An operation has a name and parameters. Each parameter of an operation
has a name and a type.

Using these types we formally define a class. Attribute names defined in a class
should be distinct and operations should have distinct signatures. The class invariant
formalizes these properties. A circled , which models a containment relationship in
Object-Z, is attached to the types of attributes and operations because an attribute or
operation instance can belong to only one class. A class can inherit from other classes
(the variable superclass and subclass capture this inheritance concept). Any circular
inheritance is prohibited. To formalize this constraint, we define two secondary vari-
able allSupers and allSubs representing all super classes and all sub classes of a class
respectively and use these variables to exclude circular inheritance.

Relationship: In a class model, relationships between classes are represented as asso-
ciations. In most cases, associations in a class model are between exactly two classes.
For this reason, only binary associations are considered in this paper. A binary asso-
ciation has an association name, two association ends (source and target) each of

258 S.-K. Kim and D. Carrington

which has a role name, a multiplicity constraint, and a class to which the end is
attached. We first formalize the concept of association ends as Object-Z class Asso-
ciationEnd. The invariant states that a multiplicity cannot be {0}.

A binary association has a name and exactly two association ends. The invariant
states the core properties of an association: each end name must be different, and the
role name at an association end must be different from the attribute names of the class
attached to the other end.

Using these definitions, we define a class model as a collection of classes and as-
sociations. Classes should have unique names within the class model. All superclasses
of a class and all classes attached to an association end should also be classes in the
class model. We also define a secondary variable allConstructs of type ClassCon-
struct to refer all class constructs defined in a class model. This variable is used when
we discuss transformations from role models to class models in Section 5.2.

5.2 Role Binding Model

We define an Object-Z class Binding to describe mappings from a role element to a
class model element. A binding has a client of type RoleElement and a supplier of
type ClassConstruct representing all class constructs. A binding is directed from a
role element to a class construct.

 A Rigorous Foundation for Pattern-Based Design Models 259

A role binding model has a role model defining a pattern and a class model realiz-
ing the pattern, and a set of role bindings between role elements and class constructs.

The properties of the role binding model are as follows:

[1] For each role in a pattern except dependencies (which will be realized by the
bindings of their associated roles), there must be an element in the class model
bound to the role. Otherwise, we assume that the role (except class role hierar-
chies) is bound to an empty element (a null value) meaning a new class construct
needs to be created as a result of the pattern deployment. The occurrence property
of each role must be preserved in the binding.

[2] When a class role is bound to a class, the feature roles of the class role must also
be bound consistently with the class role (e.g. an operation role to a behavioural
feature such as operation).

[3] When a class role hierarchy is bound to a class hierarchy, the class hierarchy in
the class model must not conflict with the class role hierarchy in the role model,
which means the class corresponding to the super class role must not appear in
the set of subclasses of the class corresponding to the sub class role.

260 S.-K. Kim and D. Carrington

[4] Simple occurrence dependencies must be consistent with the binding of their
associated roles.

[5] Hierarchy occurrence dependencies must be consistent with the binding of the
dependent class role of the dependencies.

[6] When an object role relationship is bound to an association, the multiplicity prop-
erty of the dependency must be preserved in the association.

6 Conclusion and Future Work

In this paper, we have presented a formal metamodeling approach based on roles for
pattern specification and application. We first formalized the role concepts used in our
work as a role metamodel. Given this role metamodel, patterns are defined as a pat-
tern role model in an abstract, but precise way using Object-Z and visualized using
UML. Using Object-Z, we reuse existing pattern descriptions to define other patterns
in a compositional manner. These features significantly increase the flexibility and
extendibility of our work in describing patterns.

We also provide a precise basis to validate pattern usage in design models in terms
of a role binding model. The role binding model generically defines the properties of
patterns that must be fulfilled in pattern usage at the role binding-level. This is sound
because patterns are a general solution for a well-known software problem but they
must not restrict the pattern realization in a particular way. Once the role binding is
valid satisfying all constraints on the role binding model, its design model is valid in
the context of the pattern.

The pattern role models presented in this paper may not be directly understood by a
tool. To support automatic model evolution in the MDA context, we are implement-
ing our role metamodel using the Eclipse Modeling Framework (EMF) [3], a plug-in
to the Eclipse Platform [4]. An editor of the role metamodel is automatically gener-
ated by EMF and is used to create and edit pattern role models. The pattern role mod-
els developed this way are in XMI and should be understood by MDA tools. We are
currently investigating the use of model transformation techniques [22] for pattern-
based model evolution and also checking that our techniques are consistent with
MDA standards including UML 2.0 [18].

Acknowledgments

This research is funded by an Australian Research Council Discovery grant,
DP0451830: Formalizing Software Design Pattern Concepts and Pattern Specifica-
tions using Metamodeling.

References

1. Dong, J. UML Extensions for Design Pattern Compositions. In Journal of Object Tech-
nology, Vol. 1(5), 2002, pp. 149-161.

2. Duke, R. and G. Rose. Formal Object-Oriented Specification Using Object-Z. 2000:
Macmillan.

3. Eclipse Modeling Framework. http://www.eclipse.org/emf/

 A Rigorous Foundation for Pattern-Based Design Models 261

4. Eclipse Project, Eclipse Foundation. http://www.eclipse.org/downloads/index.php
5. Eden, A., J. Gil, Y. Hirshfeld and Yehudai A. Towards a Mathematical Foundation For

Design Patterns, Technical report 1999-004, Uppsala University.
6. Flores A., L. Reynoso and R. Moore. A Formal Model of Object-Oriented Design and

GoF Patterns, UNU/IIST Report No.200, 2000.
7. Fontoura M. and C. Lucena. Extending UML to Improve the Representation of Design

Patterns, J. Object-Oriented Programming, Vol. 13(11), 2001, pp. 12-19.
8. France, R., D.-K. Kim, G. Sudipto, E. Song. A UML-Based Pattern Specification Tech-

nique. In IEEE Trans. Software Engineering, Vol. 30(3), 2004, pp. 193-206.
9. Gamma E., R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software, 1995, Addison Wesley.
10. Guennec A., G. Sunye and J. Jezequel. Precise Modeling of Design Patterns, in Proc. of

UML 2000, LNCS 1939, 2000, Springer-Verlag, pp. 482-496.
11. Kim, S. K. and D. Carrington. Formalizing the UML class diagram using Object-Z, in

Proc. UML 1999, LNCS 1723, 1999, Springer-Verlag. pp. 83-98.
12. Kim, S. K. and D. Carrington. A Formal Denotational Semantics of UML in Object-Z.

l'Objet, 2001, Vol. 7(1), pp. 323-362.
13. Kim, S. K. and D. Carrington. Using Integrated Metamodeling to Define OO Design Pat-

terns with Object-Z. Proc. APSEC 2004, 2004, pp. 257-264.
14. Lano K., S. Goldsack, and J. Bicarrehui. Formalizing Design Patterns, in Proc. the BCS-

FACS, 1996. http://www1.bcs.org.uk/DocsRepository/02700/2790/lano.pdf
15. Lauder A. and S. Kent. Precise Visual Specification of Design Patterns, in Proc. ECOOP’

98, LNCS 1445, 1998, Springer-Verlag, pp. 114-134.
16. Mak J., C. Choy, and D. Lun, Precise Modeling of Design Patterns in UML, Proc.

ICSE’04, 2004, pp. 252 – 261.
17. OMG, MDA Guide Version 1.0.1 OMG Document number omg/03-06-01, 2003.
18. OMG, UML 2.0 superstructure specification, http://www.omg.org/uml/
19. Riehle D. Describing and Composing Patterns Using Role Diagrams, in Proc. Ubilab Con-

ference’ 96, 1996, pp. 137-152.
20. Sanada Y. and R. Adams. Representing Design Patterns and Frameworks in UML – To-

wards a Comprehensive Approach, J. Object Technology, Vol. 1(2), 2002, pp. 143-154.
21. Soundarajan N. and J. Hallstrom, Responsibilities and Rewards: Specifying Design Pat-

terns, Proc. ICSE’04, 2004, pp. 666 – 675.
22. Tefkat: The EMF transformation engine. DSTC. http://www.dstc.edu.au/Research/Projects/

Pegamento/tefkat/index.html

An Object-Oriented Structuring for Z
Based on Views

Nuno Amálio, Fiona Polack, and Susan Stepney

Department of Computer Science,
University of York, York, YO10 5DD, UK
{namalio, fiona, susan}@cs.york.ac.uk

Abstract. There is significant interest in the use of Z in conjunction
with object-orientation. Here we present a new approach to structur-
ing Z specifications in an object-oriented (OO) style. Our structuring is
based on views, it uses the schema calculus, and it does not extend Z. The
resulting OO Z specifications are comprehensible, modular, and concep-
tually clear. The modularity of the new approach supports a template-
instantiation approach to expressing OO models in Z; practical formal
verification and validation of the model can be undertaken using meta-
proof, meta-lemmas, and formal snapshots.

Keywords: Z, object-orientation.

1 Introduction

For more than a decade, there has been interest in structuring Z specifications in
an object-oriented (OO) style [1]. Researchers quickly realised that Z does not
directly support object-orientation; fundamental OO concepts such as object
and class are not Z language primitives. This has resulted in extensions, such as
Object-Z [2], designed to facilitate the structuring of Z-based specifications in
an OO style. However, this more natural way of expressing OO properties comes
at a cost: a more complex language semantics, and reduced flexibility. This has
implications in the language’s proof and refinement theories, which also become
more complex.

Z is a simple language based on typed set theory and first order logic with a
simple structuring mechanism, the schema. It has a mathematical, rather than
computational, semantics. This makes it flexible and extensible, allowing struc-
turing based on different computational models.

Here we present a new approach to structuring Z specifications in an OO style,
without extending the Z language. The approach has emerged in the context of
developing a semantic model to represent abstract UML models [3, 4, 5], and the
example used to illustrate the approach here is based on a simple UML class
model. The full approach is not restricted to class models, to UML, or to any
particular variant of OO semantics.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 262–278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Object-Oriented Structuring for Z Based on Views 263

Our approach builds on existing research, reviewed in [6]. It has some novel
features that enhance the comprehensibility, abstraction and modularity of the
Z model:

– It separates concerns effectively by being based on views, following a views
structuring approach for Z [7].

– It is very modular, which is achieved by being based on the schema calculus.
This allows us to represent concepts as modules (schemas), that can be
composed with other modules to form the whole.

2 The Structuring

This section introduces our structuring, explaining how the components of OO
are represented and the views structure adopted, we also introduce our domain
toolkit of templates, which allows the generation of models following this struc-
turing by instantiating templates. In the following section, an example model is
built up following this structuring.

2.1 Objects, Classes, Associations and Systems

OO models are structured around the concept of the object. Objects are char-
acterised by an identity (distinguishing one object from all others) and observ-
able properties. The building blocks of our models are object-based structures,
namely class, which represents a set of objects; association, which represents re-
lations between classes of objects; and system, which composes classes and their
associations and represents global scope properties.

Fig. 1. The set of all object atoms
OBJ , the set of all object states
St (the class intension), and the
mapping from existing objects to
their current states (the class ex-
tension)

An OO class has a dual meaning. Class in-
tension defines a class in terms of the prop-
erties shared by the objects of that class (for
example, a class Person with properties name
and address). Class extension defines a class
in terms of the currently existing object in-
stances of that class (for example, Person is
{MrSmith,MrAnderson,MsFitzgerald}). This
duality, inspired by the definitions of a set in
set theory, is reflected in the way we represent
classes: each class has one intensional and one
extensional representation.

In our approach, Figure 1, objects are
atoms (individuals represented in Z as ele-
ments of a given set). The class intension de-
fines the set of all possible object states. A
function maps the existing object atoms to

their current states (the class extension). Representing objects as atoms ensures
the identity property necessary for objects. Separation of concerns is achieved,

264 N. Amálio, F. Polack, and S. Stepney

because objects, class intensions, and class extensions are all related, but sepa-
rately represented.

Associations express relationships between classes. An association denotes a
set of object tuples, where each tuple describes the objects being related (or
linked). In our approach, associations are represented as a Z relation between
objects.

Systems are used to assemble the local structures, classes, and associations
into more global ones; systems also include invariants (or constraints) whose
scope goes beyond local structures.

The representation of class intensions and extensions, associations and sys-
tems follows a Z state and operations style defined through the schema calculus.
Each is represented as a Z abstract data type (ADT), comprising a state, ini-
tialisation, operations, and finalisation.

2.2 Views

A view [7] is a partial specification of a program consisting of a state space and
a set of operations. A full specification is obtained by composing several views,
linking them through their states and through their operations.

We use views because not all properties of OO models fit into a single repre-
sentation. For example, we cannot capture the three representations of classes—
atoms, intension, extension—in a single view. Also, views have proved to be an
effective means of achieving clear separation of concerns in the specification.
This conceptual clarity helps not only in writing and reading the Z models, but
also in formal verification and validation. The clear separation of views allows,
among other things, a simple solution to the frame problem in system operations
(below).

Fig. 2. The views of our
structuring and dependency
relationships (arrow means
dependency)

The views that we use are closely related to our
basic OO structures. The structural view defines
sets of object atoms, and captures properties of class
structures from an atom perspective of classes. The
intensional and extensional views represent, respec-
tively, the intensional and extensional meanings of
classes. The relational view represents associations.
The global view represents systems. The structural
view is the only one that does not follow a Z state
and operations style; it is a conceptual view, en-
hancing the conceptual cohesion of the whole struc-
turing. The other views are collections of ADTs,
representing class intensions, class extensions, asso-
ciations, and systems.

Figure 2 shows the dependencies among these
views. The structural view introduces global names

that allow the relational and extensional views to be built independently whilst
sharing the same vocabulary, and then to be linked in the global view. The
intensional view defines the possible states of objects; these definitions are used

An Object-Oriented Structuring for Z Based on Views 265

in the extensional view to define the mapping between existing objects (atoms)
and their current state.

We use different mechanisms to link views. The structural view defines global
names, which are then used (directly or as a Z parent section) in the descriptions
of the extensional, relational and global views. The extensional and intensional
views are linked using Z promotion [8, 9]: a class extension includes a collection
of state intensions (as a mapping from object atom to state), the intensional
operations are then promoted to be applicable to all the objects of the class.
Finally, the link between the description of the global view and the ones from
the relational and extensional views is established through Z schema conjunction.

2.3 A Domain Toolkit of Templates

The use of views, and the resultant highly modular Z model, allows a systematic
approach to constructing the model. We use templates to capture the structure of
the Z model. Templates are pieces of instantiable Z, which we use to parameterise
all sorts of Z phrases, such as axiomatic definitions, schemas and instantiations
of Z generics. Template descriptions represent meta-level concepts, such as, class
intension, class extension, association and global constraint. Templates are in-
stantiated by reference to the labels of the equivalent concepts in conventional
OO diagrams [3, 5] (e.g. the state definition of a class intension is obtained by
instantiating the proper template with reference to the class name, and names of
composing attributes), and by other model information not expressible in terms
of diagrams (e.g. a state invariant of a class intension, which is not represented
diagrammatically).

One particular interpretation of a modelling concept is represented by a set of
templates. Alternative interpretations of a concept (e.g. association) can be de-
fined by providing another set of templates. This allows us to construct Z models
based on variant OO interpretations by selecting an appropriate alternative set
of templates.

Standard conjectures, such as an initialisation conjecture, can also be ex-
pressed in template form. In our work, various template conjectures have been
subject to formal analysis, leading to a number of meta-theorems and meta-
lemmas. For correctly-instantiated specification templates, these reduce the proof
of standard conjectures to a trivial exercise [10].

Our templates and associated meta-theorems constitute our domain toolkit
for building OO Z specifications. Like the Z mathematical toolkit, they pro-
vide generic definitions and laws to construct and reason about Z specifications.
Unlike the Z mathematical toolkit, which is based on Z generics, our toolkit is
based, essentially, on templates; the use of templates allows us to increase the
level of scope of generic definitions: we can generalise whole specifications and
be closer the application domain. The Z model given below has been constructed
and consistency-checked by using templates and meta-theorems from the domain
toolkit. This strategy of building toolkits of generic definitions is based on the
pattern application-oriented theory [11].

266 N. Amálio, F. Polack, and S. Stepney

3 Example

We illustrate our OO structuring with the specification of a trivial bank system.
The static structure is captured by a UML class diagram, figure 3.

– Customer represents the bank’s customers; the attributes record the name
of a customer, its address, and type (either company or personal).

– Account represents the accounts managed by the bank; the attributes record
the account number (accountNo), the balance, and the type of account (either
current or savings).

– The association Holds relates Customers and their Accounts; a Customer
may have zero or more accounts; an Account must have one customer.

Fig. 3. The example UML model. See text for various Z annotations

The trivial bank system has the following constraints:

1. Savings accounts cannot have negative balances.
2. The total balance of all the bank’s accounts must not be negative.
3. Customers of type company cannot hold savings accounts.

The system provides the following operations:

– Open Account : open a new account for an existing bank customer.
– Deposit : deposit some money into one account
– Withdraw : withdraw money from one account
– Get Balance : get the balance of one account
– Get Customer Accounts : get all the accounts of a certain bank customer
– Get Accounts in Debt : get all the accounts that are in debt
– Delete Account : delete one account from the system

We start the formal model of the trivial bank system by specifying the state space
of the system, and define operations on the state. Only illustrative components
are given; like components are specified in similar ways, instantiated from the
same templates.

3.1 Specifying Z State

The Z state is constructed from the five views. We use systematic naming con-
ventions, based on [12–chap. 8]. A name starting with the letter S designates
a concept from the extensional view, and a name starting with the letter A

designates a concept from the relational view.

An Object-Oriented Structuring for Z Based on Views 267

Structural View. Z does not support subtyping; we define a single Z type to
represent all object atoms, as this allows us to model OO specialisation hierar-
chies in a natural manner (not illustrated here).

[OBJECT]

Each class in the model has its own subset of object atoms. In addition, the
object sets for the classes Customer and Account are disjoint, as these classes are
not related by a specialisation relation:

CustomerOs,AccountOs : P OBJECT

disjoint〈CustomerOs,AccountOs〉

Intensional View. The state intension defines classes in terms of attributes,
attribute types, and, where required, a class invariant. Attribute types are de-
fined as appropriate. For example, for Account we define ACCID as a given set,
and ACCTYPE as a Z free type:

[ACCID] ACCTYPE ::= current | savings

The state and initialisation of Account intension is given below. The state Account
defines the state attributes, and expresses the first system constraint (savings
accounts cannot have negative balances). The initialisation makes an assignment
of values to class attributes.

Account
accountNo : ACCID
balance : N

type : ACCTYPE

type = savings ⇒ 0 ≤ balance

AccountInit
Account ′

accountNo? : ACCID
type? : ACCTYPE

accountNo′ = accountNo?
balance ′ = 0
type ′ = type?

Extensional View. A class state extension defines the set of all existing objects
(a subset of the class’ object set), and a function that maps object atoms to their
state intensions. The structure is expressed in a generic from our domain toolkit:

SGen [OSET ,OSTATE]
objs : P OSET
objSt : OSET �→ OSTATE

dom objSt = objs

Actual class state extensions are instantiations of this generic. For example, the
Account state extension instantiates the generic and expresses the second system
constraints (the total of all the account balances must not be negative):

268 N. Amálio, F. Polack, and S. Stepney

SAccount
SGen[AccountOs,Account][accounts/objs, accountSt/objSt]

0 ≤ Σ{ a : accounts • a �→ (accountSt a).balance }

(See the appendix for the definition of Σ.) The instantiation, guided by a toolkit
template, includes the renaming of generic components, to avoid name clashing
when component schemas are composed to make the system schema.

The initialisation of the extension assigns both the set of existing objects and
the set of object atoms to state mappings to the empty set; in the initial state
there are no objects.

SAccountInit == [SAccount ′ | accounts ′ = ∅ ∧ accountSt ′ = ∅]

Relational View. In the relational view we define the association state as a Z
relation between the object sets of the classes being associated.

The AHolds state definition defines the relationship between the object sets
of the classes Customer and Account. The initialisation of the relationship states
that the set of existing links is empty; in the initial state there are no objects,
hence, no links between them.

AHolds == [holds : CustomerOs ↔ AccountOs]
AHoldsInit == [AHolds ′ | holds ′ = ∅]

At this stage, we do not constrain the holds relation to reflect the multiplicity of
the association; multiplicities are defined on existing objects, which are defined
in the extensional view and are not directly accessible from the relation view.
An alternative modelling of associations that included extensions of the asso-
ciated classes in the association state schema, to allow multiplicity constraints
here, would break the separation that exists between relational and extensional
views.

Global View. In the global view we compose classes and associations, and
express properties of global scope, to form systems. The system state includes
classes and association of the system, link invariants between associations and
class extensions, and global scope constraints. The system initialisation is the
initialisation of the system’s components. In the illustration of the trivial bank
system, the system has two classes and a single association between them; in
general, however, the system is made up of subsystems comprising classes and
their linking associations; invariants are added at the appropriate scope, to a
subsystem or the full system, as appropriate.

In the global view, each association has a schema expressing the appropri-
ate association link invariant. To maintain the modular structuring, global con-
straints are expressed in separate schemas, and then added to the predicate of
the system schema (based on the Name Predicates pattern [11]).

An Object-Oriented Structuring for Z Based on Views 269

LinkAHolds expresses the link invariant of the association Holds:

LinkAHolds
SCustomer ; SAccount ; AHolds

holds ∈ Rel1,∗[customers, accounts]

The global view can use both the relational and extensional views, so the schema
can include the extensions both of the participating classes and of the associa-
tion. The predicate constrains the relation representing the association to be the
correct multiplicity, using the appropriate association multiplicity generic from
the toolkit (see Appendix); it says that the inverse of the relation must be a total
function from the set of existing accounts to the set of existing customers. This
ensures both the correct association multiplicity (∗ . . 1), and that the relation
refers to existing objects only.

The third constraint of the system (customers of type company cannot hold
savings accounts) involves concepts from multiple views. It is expressed in the
global view as ConstraintCompanyNoSavings:

ConstraintCompanyNoSavings
SCustomer ; SAccount ; AHolds

{ oC : customers | (customerSt oC).type = company }

 holds � { oA : accounts | (accountSt oA).type = savings }

= ∅

The system schema is defined by conjoining all the class extensions and associ-
ations, association link invariants, and global constraints:

System
SCustomer ; SAccount ; AHolds

LinkAHolds
ConstraintCompanyNoSavings

The initialisation of the system consists of initialising the system’s components.
This is done by conjoining the component initialisations:

SysInit == System ′ ∧ SCustomerInit ∧ SAccountInit ∧ AHoldsInit

Note that the after state of the System is included in this conjunction, so that
the constraints declared globally in System are included. This ensures that all
the constraints are taken into account in the system initialisation theorem.

3.2 Specifying Z Operations

A system operation in an OO system comprises operations on a number of
classes. In modelling system operations in our Z style, we first decompose them

270 N. Amálio, F. Polack, and S. Stepney

into constituent class operations. For example, the operation to open a new
account involves the creation of a new Account object and the addition of a link,
between the new account and its customer, to the association Holds. The system
operation is the composition of these two operations.

We specify operation components in the intensional, extensional and relational
views, and then compose them in the global view to form system operations.

We introduce naming conventions to distinguish update (change state) from
observe (do not change state) operations. Following Z conventions, names of up-
date operations include the symbol Δ subscripted, whereas observe ones include
the symbol Ξ.

Intensional View. The operations of the intensional view specify state transi-
tions or observations on the state of a single class object.

We distinguish two kinds of operations. Update operations change the state
of objects; they effect a state transition. Observe operations leave the state of
objects unchanged, performing queries on the current state of objects. We may
also need to specify the finalisation, which expresses a condition for objects of a
class to cease their existence.

The system operations Deposit and Withdraw change the state of one ac-
count object: the balance is incremented or decremented by a certain amount.
The intensional view is:

AccountΔWithdraw
ΔAccount
amount? : N

accountNo′ = accountNo
type ′ = type
balance ′ = balance − amount?

AccountΔDeposit
ΔAccount
amount? : N

accountNo′ = accountNo
type ′ = type
balance ′ = balance + amount?

The system operation GetBalance observes the state of one Account object,
specifically the Account .balance state attribute:

AccountΞGetBalance == [ΞAccount ; balance! : Z | balance! = balance]

We want to be able to delete accounts, but only only when their balance is zero.
This finalisation condition is specified on Account objects:

AccountFin == [Account | balance = 0]

Extensional View. This view defines operations that are applicable to all ex-
isting objects of a class. Most operations of this view are defined by promoting
operations from the intensional view.

Z Promotion uses framing schemas to promote local operations to a global
state. Our approach provides framing schemas customised to our class state ex-
tensions, drawing on our work on promotion patterns [9, 11]. There is one fram-
ing schema for each kind of operation, the usual new, update, and delete framing

An Object-Oriented Structuring for Z Based on Views 271

schemas; in addition we introduce an observe framing schema. For example, the
update and observe framing schemas for the class Account are:

ΦSAccountUpdate
ΔSAccount
ΔAccount
oAccount? : AccountOs

oAccount? ∈ accounts
θAccount = accountSt oAccount?
accounts ′ = accounts
accountSt ′ = accountSt ⊕
{oAccount? �→ θAccount ′}

ΦSAccountObserve
ΞSAccount
ΞAccount
oAccount? : AccountOs

oAccount? ∈ accounts
θAccount = accountSt oAccount?

The framing schemas are used to form promoted operations. For example, given
the appropriate intensional view operations and framing schemas for the Account
class, the extensional operations for initialisation, withdrawal, deposit, an ac-
count enquiry, and an account deletion are:

SΔAccountNew == ∃ Account ′ • ΦSAccountNew ∧ AccountInit
SΔAccountWithdraw ==

∃ΔAccount • ΦSAccountUpdate ∧ AccountΔWithdraw
SΔAccountDeposit == ∃ΔAccount • ΦSAccountUpdate ∧ AccountΔDeposit
SΞAccountGetBalance ==

∃ ΞAccount • ΦSAccountObserve ∧ AccountΞGetBalance
SΔAccountDelete == ∃Account • ΦSAccountDelete ∧ AccountFin

We may also have operations in the extensional view that are not promotions. For
example, the trivial bank may wish to identify all the accounts that are in debt.
This is expressed in the extensional view without promotion of an intensional
operation:

SΞAccountGetDebtAccounts
ΞSAccount
osAccount ! : P AccountOs

osAccount ! = { a : accounts | (accountSt a).balance < 0 }

Relational View. Operations in the relational view change or observe the state
of associations. Association operations add and remove pairs from the tuples of
the association relation, and perform queries on the state of associations.

In the trivial bank system, we need to associate bank customers with new
accounts. This is done by adding tuples, consisting of one existing Customer
object and one existing Account object, to the Holds association:

272 N. Amálio, F. Polack, and S. Stepney

AΔHoldsAdd
ΔAHolds
oCustomer? : CustomerOs
oAccount? : AccountOs

holds ′ = holds ∪ {oCustomer? �→ oAccount?}

When a bank account is removed, the link that exists between the account and its
customer (association Holds) must also be deleted. The deletion of tuples of the
association Holds, given a set of Account objects, is described by the operation
AΔHoldsDelAccount (below).

We also want to list all the accounts held by a customer, an observation on
the state of Holds. The operation AΞCustomerAccounts performs the required
observation:

AΔHoldsDelAccount
ΔAHolds
osAccount? : P AccountOs

holds ′ = holds −� osAccount?

AΞCustomerAccounts
ΞAHolds
oCustomer? : CustomerOs
osAccount ! : P AccountOs

osAccount ! = holds(| {oCustomer?}|)

Global View. The global view of operations defines system operations that
act on the state of the system as a whole. These operations are defined by
composition of the operations from the extensional and relational views. This
is essentially schema conjunction (except where there is a necessary order of
execution of component operations from the separate views). However, as the
following example shows, we also need to maintain global constraints, and ad-
dress the framing problem [13], by making explicit the effect of each operation
on the whole system state.

When composing system operations using conjunction, some adjustments
may be needed so that the elements of component operations relate correctly
across the conjunction. This adjustment involves relating inputs and outputs of
component operations.

These issues and their resolutions are explored using the example of a sys-
tem operation to open a new account. This involves one operation from the
extensional view (to create a new account), and one from the relational view (to
associate the new account with an existing customer):

SysOpenAccount == SΔAccountNew ∧ AΔHoldsAdd

First, we need to make an adjustment, because SΔAccountNew outputs an
oAccount ! but the AΔHoldsAdd requires an input oAccount?. This is resolved
by renaming one (here the input of AΔHoldsAdd):

SysOpenAccount == SΔAccountNew ∧ AΔHoldsAdd [oAccount !/oAccount?]

An Object-Oriented Structuring for Z Based on Views 273

This simple conjunction does not take into account the global scope constraint
of the trivial bank system, that customers of type company cannot hold savings
accounts, and the violation cannot be determined by formal analysis. To solve
this, we need to lift component operations to system operations by conjoining
ΔSystem. (This follows the principle of promotion, but since promotion in Z
refers to a concrete technical mechanism, we term this flavour of promotion
lifting.)

However, this introduces a frame problem [13]. Component operations specify
the change of state of their local components, but a system may include other
components whose states should be unchanged by the operation. In this example,
the operation should change the states of the Account extension and of Holds,
but the extension of Customer, introduced by adding ΔSystem, should remain
unchanged. However, in Z, the state of any component that is not explicitly
addressed is undetermined after the operation; any state of SCustomer would
satisfy the specification.

In our approach, we define frames for system operations. This makes explicit
what is to change and what is to remain unchanged. The names of system op-
eration frames are prefixed by Ψ (by analogy to Φ promotion frames), and are
formed by conjoining ΔSystem with the Ξ (nothing changes) of every system
component whose state is to remain unchanged. Thus, the frame for the above
example is:

ΨSysAccountHolds == ΔSystem ∧ ΞSCustomer

This simple solution is possible because views give the required separation of con-
cerns. Components (classes and associations) are specified independently from
each other; when we preceed a component with Ξ we know that we are saying
that only this component’s state is to remain unchanged and nothing else1.

The system operation to open an account can now be fully specified by schema
conjunction:

SysOpenAccount == ΨSysAccountHolds ∧ SΔAccountNew
∧ AΔHoldsAdd [oAccount !/oAccount?]

In common with the constraints added to the global view of the system state,
some operation preconditions can only be expressed in the global view. If, in our
example, we want to add a precondition that the new account is associated with
an existing bank customer, this is specified in a condition schema:

1 A version of state extension modelling that included class extensions in the associa-
tion state schema (for example, to allow the specification of association multiplicity
constraints in the relational view) would preclude this simple solution, because ΞA

would mean that neither the association nor the included class extensions could
change.

274 N. Amálio, F. Polack, and S. Stepney

CondIsCustomer
SCustomer
oCustomer? : CustomerOs

oCustomer? ∈ customers

and conjoined in the system operation:

SysOpenAccount == ΨSysAccountHolds ∧ SΔAccountNew
∧ AΔHoldsAdd [oAccount !/oAccount?] ∧ CondIsCustomer

Other system update operations are similarly defined:

ΨAccountOps == ΔSystem ∧ ΞSCustomer ∧ ΞAHolds
SysWithdraw == ΨAccountOps ∧ SΔAccountWithdraw
SysDeposit == ΨAccountOps ∧ SΔAccountDeposit

System observation operations do not require a specific frame; nothing changes
in the system, so they can be simply conjoined with ΞSystem. The system
operations get balance, get customer accounts, and get accounts in debt are:

SysGetBalance == ΞSystem ∧ SΞAccountGetBalance
SysGetCustAccounts == ΞSystem ∧ AΞCustomerAccounts
SysGetDebtAccounts == ΞSystem ∧ SΞAccountGetDebtAccounts

The system operation to delete an account is defined in a similar way, but
requires a rather more elaborate adjustment to the initial conjunction of the
operations to delete the account from the set of existing accounts (operation
SΔAccountDelete from the extensional view) and the link to its customer (op-
eration AΔHoldsDelAccount from the relational view). SΔAccountDelete takes
as input one account object, however AΔHoldsDelAccount expects a set of ob-
jects. The adjustment is made in a connector schema, ConnAccountOs, which
transforms the single output of SΔAccountDelete to a singleton set:

ConnAccountOs
osAccount? : P AccountOs
oAccount? : AccountOs

osAccount? = {oAccount?}

The connector is added to the system operation specification to form the correct
composition:

SysDeleteAccount == ΨSysAccountHolds ∧ SΔAccountDelete
∧ ConnAccountOs ∧ AΔHoldsDelAccount

We could, of course, have avoided need for a connector schema by defining
AΔHoldsDelAccount to receive one input object rather then a set. However,
the given specification is generated by instantiating our templates; we prefer
to keep our operation templates generic and then adjust the connection in the
global view; the forms of connection schema can also be provided as templates.

An Object-Oriented Structuring for Z Based on Views 275

4 Discussion

We have described and illustrated an OO structuring for Z based on views and
schema calculus. We are not aware of any other Z-only OO structuring approach
that relies entirely on the schema calculus: other approaches all resort to Z
axiomatic definitions to express state and operations in one way or another.

A consequence of exploiting the existing structuring mechanisms of Z, the
schema and the schema calculus, is that we can systematically compose OO-
structured Z specifications. In our approach, we select appropriate templates
for each OO component, instantiate these to give named schemas, and then
include or conjoin the instantiated components as appropriate to form the Z state
and operations. Z schema conjunction is key in our structuring as it allows the
propagation of system properties through the composition (a property satisfied
by one schema is also satisfied by the conjunction of schemas).

Combined with the schema approach, views provide an effective means to
separate concerns, and constituted a powerful conceptual tool. They allowed us
to apply the principle of divide and conquer to design an aspect-focused struc-
turing, where each individual aspect is conceptually clear and the collection of
aspects is cohesive. This effective separation of concerns also allows a simple and
elegant solution to the frame problem in the specification of system operations.
Because of the basis in Z schemas, we can use Z promotion in the extensional
view, to relate the class intension and extension, giving an elegant compositional
approach.

The views and the schema approach also allow us to follow a modular ap-
proach towards proof. Elsewhere, we show our modular-based approach towards
formal model analysis and validation. For example, our approach to consistency-
checking [4] takes advantage of the modular structure of our specifications, and
is based on the representation of our structures (class intensions and extensions,
associations, and systems) as ADTs. To prove the consistency of our specifica-
tions, we prove initialisation theorems for the system’s components, class inten-
sions and extensions and associations (these are often trivial), and for the whole
system; in proving the consistency of the whole system, we use the theorems
establishing the consistency of the system’s components, reducing the proof to
show that the system’s global constraints hold in the initial state [10].

To support writing Z models in our OO style, we have devised a domain
toolkit of templates [5]. The collection of templates of the toolokit constitutes
a meta-level representation of the structuring; the Z specification is created by
instantiation of the relevant templates. For example, we can use templates to
obtain formal representations, in Z, of UML diagrams; we can provide variant
templates for different semantic interpretations of the UML notations. We use
our template approach as the mechanism to support the development of mod-
elling frameworks [5]: environments to build and analyse models of sequential
software systems based on the combined use of UML and Z. In addition to the
aspects covered in this paper, our structuring also supports the expression of
specialisation (inheritance) hierarchies [5].

276 N. Amálio, F. Polack, and S. Stepney

It is, of course, possible to write a Z specification following our structuring
without instantiating our templates. However, the templates are the basis for
meta-proof [10]: a set of meta-theorems and meta-lemmas that can be used to
reduce the overhead of formal proof when consistency-checking and analysing Z
specifications. Having pre-proved key theorems at the meta- or template level,
correct instantiation of templates guarantees that the proofs will hold; further
proof effort is restricted to local constraints; conversely, if a meta-proof cannot
be discharged on an instantiated specification, then the instantiation or the
underlying OO (for example, UML) model is wrong.

5 Related Work

Our OO structuring extends that of Hall [14, 15], who introduced the dual rep-
resentation of classes, intension and extension, in the context of Z. We have
introduced views, to achieve greater separation of concerns, and to make the
structuring clearer. We have introduced the system structure, and the idea of
representing our structures (class intensions and extensions, associations and
systems) as ADTs. We have also presented an approach to compose structures:
extensions are built from intensions by using promotion, and systems are built
by composing class extensions and associations. We have eliminated the need for
axiomatic definitions in the definition of operations; extensional class operations
are defined by promoting intensional ones.

Our structuring uses the relational interpretation of associations. Alterna-
tively, a representation where associations are interpreted as properties of a
class could also be devised [6]. In this setting, a relational view would not be
required, and associations would be represented as class attributes in the inten-
sional view. We choose the relation interpretation because we consider it to be
more abstract; our aim is to represent abstract UML models.

Utting and Wang propose an OO structuring for Z [16] where state and oper-
ations are defined by axiomatic definitions. Objects are atoms, and the relation-
ship between atoms and state fields is given by axiomatically-defined functions,
with one function per state field. Operations are also defined axiomatically, as
a relation between an object and operation inputs and outputs. One problem
with axiomatic-based descriptions in Z is that it is easy to introduce acciden-
tal contradictions (especially at the level of complexity of some operations); a
contradictory description renders the whole specification unsatisfiable. We find
this approach to be cumbersome and difficult to use in practice. We argue that
the template support for specification and analysis would not be possible in this
approach. Moreover, the resulting specifications are not succinct, and lack mod-
ularity; it is not as easy to compose axiomatic definitions as it is to compose
schema-based ones.

Our model of objects can be compared to that of the formal specification
language Alloy [17], which has a similar semantic basis as Z. Alloy’s structuring
mechanism, the signature, is inspired by the Z schema. Like schemas, a signature
state definition includes the definition of state components (fields). The funda-

An Object-Oriented Structuring for Z Based on Views 277

mental difference, however, is that a signature denotes a set of atoms, its fields
are also atoms, and signature atoms and field atoms are linked through relations.
Unlike Z schemas, this effectively gives identity to signature instances; instances
of a Z schema with the same value for its fields denote the same schema object.
To overcome this in Z we represent an object atom separately from the object
state (a schema), and use a function to map object atoms to their state. In the
end, our Z object-model and the Alloy one are not so different. Alloy has one
relation between the object atom and each state field; our Z model has a function
that relates the object atoms to the entire state schema.

6 Conclusions

We present an OO structuring for Z based on views that relies entirely on the
schema calculus to describe both state and operations. The specifications result-
ing from our structuring are modular, abstract, and comprehensible, following a
style that is familiar to and adopted by most Z users.

The OO structuring facilitates traceability (between diagrammatic models
and Z models, for example), and supports template-based development and anal-
ysis. The approach is the basis for a practical framework for formal development,
facilitating verification and validation checks of both formal and informal OO
models. The approach is also flexible, as variant OO semantics can be represented
simply by selecting the appropriate templates.

Future extensions based on the OO structuring include full support for key
UML models (eg. class, state, and interaction diagrams); mutual model refine-
ment, eventually via templates; and tool support for the templates themselves.

Acknowledgements. This research was supported for Amálio by the Por-
tuguese Foundation for Science and Technology under grant 6904/2001.

References

1. Stepney, S., Barden, R., Cooper, D., eds. Object orientation in Z. Workshops in
Computing. Springer (1992)

2. Smith, G. P. The Object-Z Specification Language. Kluwer Academic Publishers
(2000)

3. Amálio, N., Stepney, S., Polack, F. Modular UML semantics: Interpretations in Z
based on templates and generics. In Van, H. D., Liu, Z., eds., FACS’03, 284, pp.
81–100. UNU/IIST Technical Report (2003)

4. Amálio, N., Stepney, S., Polack, F. Formal proof from UML models. In Davies,
J., et al., eds., ICFEM 2004, volume 3308 of LNCS, pp. 418–433. Springer (2004)

5. Amálio, N., Polack, F., Stepney, S. A modelling and analysis framework for sequen-
tial systems I: Modelling. Technical Report YCS-2005, Department of Computer
Science, University of York (2005)

6. Amálio, N., Polack, F. Comparison of formalisation approaches of UML class
constructs in Z and Object-Z. In Bert et al. [18], pp. 339–358

278 N. Amálio, F. Polack, and S. Stepney

7. Jackson, D. Structuring Z specifications with views. ACM Transactions on Soft-
ware Engineering and Methodology, 4(4):365–389 (1995)

8. Woodcock, J., Davies, J. Using Z: Specification, Refinement, and Proof. Prentice-
Hall (1996)

9. Stepney, S., Polack, F., Toyn, I. Patterns to guide practical refactoring: examples
targetting promotion in Z. In Bert et al. [18], pp. 20–39

10. Amálio, N., Stepney, S., Polack, F. Modular meta-proof for structured specifica-
tions (2004). Available at http://www.cs.york.ac.uk/˜namalio/publications.html

11. Stepney, S., Polack, F., Toyn, I. A Z patterns catalogue I, specification and refactor-
ing. Technical Report YCS-2003-349, Department of Computer Science, University
of York (2003)

12. Barden, R., Stepney, S., Cooper, D. Z In Practice. Practitioner Series. Prentice–
Hall (1994)

13. Borgida, A., Mylopoulos, J., Reiter, R. On the frame problem in procedure speci-
fications. IEEE Transactions on Software Engineering, 21(10):785–798 (1995)

14. Hall, A. Using Z as a specification calculus for object-oriented systems. In Hoare,
C. A. R., Bjørner, D., Langmaack, H., eds., VDM ’90, volume 428 of LNCS, pp.
290–318. Springer (1990)

15. Hall, A. Specifying and interpreting class hierarchies in Z. In Bowen, J., Hall,
A., eds., Z User Workshop, Cambridge, Workshops in Computing, pp. 120–138.
Springer (1994)

16. Utting, M., Wang, S. Object orientation without extending Z. In Bert et al. [18],
pp. 319–338

17. Jackson, D., Shlyakhter, I., Sridharan, M. A micromodularity mechanism. In ACM
SIGSOFT Foundation of Software Engineering/ Europoean Software Engineering
Conference (2001)

18. Bert, D., et al., eds. ZB 2003, Turku, Finland, volume 2651 of LNCS. Springer
(2003)

A OO Template Toolkit (Excerpt)

Selected Association Multiplicity Generics

Rel∗,1[X ,Y] == X → Y
Rel1,∗[X ,Y] == { r : X ↔ Y | r∼ ∈ Rel∗,1[Y ,X] }

Sum over a finite labelled set

[L]
Σ : (L � �→ Z)→ Z

Σ ∅ = 0
∀ l : L; n : Z; f : L � �→ Z | l �∈ dom f • Σ({l �→ n} ∪ f) = n + Σ f

Component Reuse in B Using ACL2

Yann Zimmermann1,2 and Diana Toma3

1 KeesDA SA, 2 av. de Vignate 38610 Gières, France
yann@keesda.com

2 LORIA, MOSEL team, 54506 Vandoeuvre-lès-Nancy Cedex, France
yann.zimmermann@loria.fr

3 TIMA, 46 av. Félix Viallet, 38031 Grenoble Cedex, France
Diana.Toma@imag.fr

Abstract. We present a new methodology that permits to reuse an ex-
isting hardware component that has not been developed within the B
framework while maintaining a correct design flow. It consists of writing
a specification of the component in B and proving that the VHDL de-
scription of the component implements the specification using the ACL2
system. This paper focuses on the translation of the B specification into
ACL2.

1 Introduction

Electronic systems are becoming more and more complex and they are now
involved in a lot of products. Malfunction of an electronic circuit may have
financial consequences or take a heavy toll in human life. Some standards, as IEC
61508 [12] or RTCA Do-254/EUROCAE ED-80 [17, 6], have been developed to
address this. Our approach using the B method may be used in the parts relating
to specifications and validations.

Formal methods are needed to ensure correctness of systems. Formal verifi-
cation of circuits is often based on model-checking that is limited by the number
of states of the system. Symbolic methods such as symbolic trajectory evalua-
tion [10] may improve the efficiency of model-checking. Theorem proving is not
limited by the size of the state space that may be sometimes unknown (or param-
eterised). Examples of successful applications of theorem provers for hardware
verification include: ACL2 [21, 18], HOL [7] or PVS [20].

The PUSSEE project [16, 15] has defined a methodology to develop electronic
systems by refinement from a very abstract model to its implementation at the
register transfer level and translation to hardware description languages (HDL).
Event-B [1, 2] is used as formal framework and BHDL�1 is an implementation
level for electronic circuits defined for B (as B0 is an implementation level for
software). An example development of a circuit in B can be found in [9]. One

1 BHDL is a registered trademark of KeesDA.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 279–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

280 Y. Zimmermann and D. Toma

?
equivalence

equivalence
?

BHDL

B to ACL2

use

B Method

IP

VHDL
to ACL2

VHDL

System

IP specification

ACL2

Fig. 1. Using ALC2 for IP reuse in B

issue of this development process is that it does not allow IP2 reuse. To ensure
correctness, components must be fully developed inside the B method and cor-
rectly translated into a HDL formalism. Reuse of existing components requires
the opposite direction to be integrated into a formal B development. It is possi-
ble to translate the HDL description of the component in B, and perform proofs
on the B model [4], but this is not the usual direction in B.

In this paper, we suggest using an intermediate approach (see figure 1) by
specifying the circuit in B (actually in the sub-language BHDL) at a level of
abstraction where the interface of the circuit corresponds to the interface of
the IP. Then, this model is translated into ACL2. At the same time, the VHDL
description of the IP is also translated into ACL2 [22] and we use ACL2 to prove
the equivalence between both models.

This paper describes the translation from B to ACL2. The main step is to
flatten the B model. It consists in building a B model where the evolution of
each variable is specified using only references to inputs and registers of the
circuit, without using any intermediate variable. This allows the construction of
a compact model similar to the ACL2 model for a VHDL design. The advantage
of doing this transformation in B and not in ACL2 is that we have proved that
the flattening process is a B refinement (actually the flat model is equivalent to
the original B model).

In the remainder of this paper, we first give a short introduction to cir-
cuits and to the three formalisms (VHDL, ACL2 and BHDL) of interest. The
translation itself is presented in the next section by defining the notion of flat
substitution, and flattening rules are explained. A sketch of the correctness of
the transformation is given. We finish by summing up results obtained with case
studies before the conclusion. Throughout the paper, we use the example of a
simple counter to illustrate the theory.

2 Introduction to Synchronous Circuits

An electronic circuit is an assembly of elementary electronic components con-
nected by wires. Wires carry electronic signals that can generally be in two

2 Intellectual Property, this term refers to hardware sold by design companies. Usually
a VHDL description is provided.

Component Reuse in B Using ACL2 281

R
E

G
IS

T
E

R
S

cyclerising edge

Part
CombinatorialClock signal

Clock

Reset

Outputs

Inputs

Fig. 2. The Clock signal and a schematic view of a synchonous circuit

states: low-level or high-level. In this case, a signal can be modelled by Boolean
values. When a signal may have more than two states, we use other logics. Elec-
tronic signals propagate in one direction on a wire; regarding the circuit as a
black box, some signals enter the circuit, they are the inputs and some signals
go out, they are the outputs of the circuit. Inputs and outputs taking boolean
values, the circuit is modelled by a Boolean function that relates inputs to the
outputs. According to the function that it defines, a circuit can be combinatorial
(outputs are entirely defined by inputs at the same instant) or sequential (out-
puts may depends on the history of inputs). Sequential circuits include memory
elements, and are called synchronous or asynchronous according to the kind of
memories being used.

We only address synchronous circuits (or combinatorial circuits if there is
no memory at all). A synchronous circuit is a circuit where memory elements
are flip/flops. There are several kinds of flip/flop, the common principle is that
they are driven by a clock signal. We call registers flip/flops that are sensitive to
the rising edge of the clock: the stored value changes only when the clock signal
changes from low-level to high-level. Between two rising edges of the clock, the
register output does not change, and modifications on the input of the registers
are not taken into account until a rising edge occurs. The clock signal is cyclic:
the time interval between two rising edges is constant (see figure 2).

All registers are supposed to be loaded under to the same clock condition and
so they all evolve at the same time, in a synchronous way. Some flip/flops can also
have another input, called asynchronous reset that permits to reset the stored
value independently of the clock signal. This signal is set by the environment
of the circuit. It must be set to high-level to initialise the circuit when the
whole system starts. When initialisation of the system is finished, it must remain
indefinitely at low-level (unless the system needs to be reinitialised).

3 VHDL

One of the most used Hardware Description Language is VHDL[11]. We focus on
the subset of VHDL that models hardware components at the register transfer
level, this means the level where circuits are described using registers and signals.

A VHDL description consists of a list of concurrent processes. The basic
process is the signal assignment s⇐ E, s is the name of the signal and E is the

282 Y. Zimmermann and D. Toma

-- component interface
entity counter is

port (
clock : in std logic;
reset : in std logic;
rst : in std logic;
alm3 : out std logic);

end;
-- component architecture
architecture tab of counter is
-- type of the register

type tc type is
array (0 to 7) of std logic;

-- declarations of signals
signal gd : std logic;
signal tc 0 : tc type; ...

begin
-- process that models registers
process (clock, reset) begin

if reset = ’1’ then
tc 0 ⇐ “1000 0000”

elsif clock’EVENT and clock=’1’ then
tc 0 ⇐ tc 1;

end if;
end process;

-- Combinatorial part

-- the output alm3 is connected to
-- the last cell of the register tc 0

alm3 ⇐ tc 0(7);

-- the first bit of tc 6 is ’1’, other bits ’0’
tc 6(0) ⇐ ’1’;

GEN1 : for k in 1 to 7 generate
tc 6(k) ⇐ ’0’;

end generate;

-- gd is ’1’ if the maximum not reached
gd ⇐ not (tc 0(7));

-- tc 10 is tc 0 right-shifted
tc 10(0) ⇐ ’0’;

GEN2 : for k in 1 to 7 generate
tc 10(k) ⇐ tc 0(k - 1);

end generate;

-- tc 8 is tc 10 unless maximum reached
tc 8 ⇐ tc 10 when gd=’1’

else tc 0;
-- the register is
-- reinitialised (tc 6) if rst=’1’
-- right-shifted if maximum not reached
-- unchanged otherwise

tc 1 ⇐ tc 6 when rst=’1’
else tc 8;

end;

Fig. 3. A VHDL description of a counter

expression that is assigned to the signal. The semicolon “;” denotes concurrent
composition: t ⇐ s; s ⇐ E is the concurrent assignment of s to t and of E to
s. Compared to B, “;” has neither the same semantics as in B, nor the same
semantics as ‖ in B. It means that t is connected to s and s is connected to E:
so t is also, indirectly, connected to E. Writting “A;B” or “B;A” is equivalent.

A more complex process is a block of sequential statements. Inside each pro-
cess, statements are executed sequentially and it is possible to use local variables.
Processes and signal assignments are concurrent. The semantics of concurrency
are usually given using delta-delay (see [8] for example). The principle consists
of applying assignments repeatedly until a fixed point is reached.

Notice that variables must not be confused with signals, they are two different
kinds of objects. Signals usually correspond to wires in a circuit whereas variables
are used in processes as a means of programming functionality. When a variable
is assigned, its value changes immediately (as is usually the case in programming
languages). When a signal is assigned, its value is not modified immediately, only

Component Reuse in B Using ACL2 283

the future value of the signal is modified. For example, we can write s⇐ ’1’ after
10ns, ’0’ after 30ns that means the value of the signal will be set to ′1′ (high-
level) after a delay of 10ns, then set to ′0′ after 30ns (this means 20ns later).
The modification of a signal may also depend on an event, for example we can
write s ⇐ ’1’ when t=’0’ else ’0’ that means the signal s will be set to ′1′ each
time the signal t is equal to ′0′ and s is set to ′0′ in other cases.

The combinatorial part of the circuit is given by a list of concurrent signal
assignments and a register is modelled by two signals and a process that is
sensitive to clock and reset signals. One of these signals carries the current value
of the register and the other one carries the next value of the register as specified
by the combinatorial part.

As example, we give in Fig. 3 the VHDL code for a counter. The entity part is
the interface of the circuit, the process corresponds to registers, and the part on
the right corresponds to the combinatorial part of the circuit. In addition to the
clock and reset signals, it has one input rst and one output alm3. The signal rst
can be used to reinitialise the counter. If rst is ′0′, the counter is incremented
by 1 at each cycle. Here the counter is not implemented as an integer and an
adder to increment it. We use a vector of bits (tc) that contains one token. At
each cycle (unless rst is set to ’1’), the token moves to the next cell (GEN2 and
tc 10(0)⇐ ’0’). When the last cell is reached, it does not move anymore until the
rst signal is set to ’1’. In this case, the token moves to the first cell (tc 6(0) ⇐
’1’ and GEN1). Signals tc 0 and tc 1 are respectively the output and the input
of the register. Other signals tc x are intermediate signals.

When the asynchronous reset is set to ’1’, the process specifies that the token
moves to the first cell. The output alm3 is an alarm set to ′1′ when the counter
has finished to count, that is why alm3 is connected to the last cell of tc 0.

4 ACL2

ACL2 is a theorem prover based on a first order logic with equality and in-
duction. We chose this theorem prover for its high degree of automation, and
reusable libraries of function definitions and theorem proofs [13]. ACL2 is also
a programming language based on Common Lisp. Therefore ACL2 models are
both executable and provable. Before investing human time in a proof, it is thus
possible to check the model on test vectors, a common simulation activity in de-
sign verification which helps debugging the formal model and gaining designer’s
confidence in it. ACL2 has already been used successfully for digital systems
verification [14].

ACL2 Model of VHDL. The VHDL is automatically translated into a func-
tional model using a method based on symbolic simulation developed by the
VDS group, TIMA Laboratory [22]. The model is simulated symbolically for
one clock cycle, actually corresponding to several VHDL simulation cycles, to
extract the transition function for each output and state variable of the design.
The body of a transition function is a conditional expression, an arithmetic or a

284 Y. Zimmermann and D. Toma

Boolean expression. The functions are translated into Lisp and used to define the
Moore machine for the initial VHDL description. Standard VHDL operations on
Boolean and bit vectors are replaced with corresponding operations defined and
proved correct in ACL2.

Along with the functions above, information about inputs and state variables
are translated to Lisp and two predicates are created: hyp-input (input), which
states the type for each input element of the design, and hyp-st (st), which states
the type for each state variable of the design.

A state of the Moore machine is the set of all internal memories and all the
outputs of the design. A step is modeled as a function sim-step which takes as
parameters the inputs of the design and the state of the machine at clock cycle k,
and which produces the state of the machine at clock cycle k+1 (k is a natural
number). The body of sim-step is the composition of the transition functions
obtained by symbolic simulation.

Below, the corresponding sim-step function for the VHDL design implement-
ing a counter.

(defun vhdl-sim-step (in st)
...

(list (nextsig tc 0 reset tc 1)
(nextsig tc 1 reset rst tc 1)
(nextsig tc 6)
(nextsig tc 8 reset tc 1)
(nextsig tc 10 reset tc 1)
(nextsig gd reset tc 1)
(nextsig alm3 reset tc 1))))

The nextsig X function describes the behaviour of signal X during a clock
cycle. For instance, here is the body of nextsig alm3

(defun nextsig alm3 (reset tc 1)
(nth 7 (if (equal reset 1) (list 1 0 0 0 0 0 0 0)

tc 1)))

The general state machine is defined as a recursive function system that takes
a sequence of inputs l-input and an initial state st and returns the state obtained
after consuming all inputs. l-input represents the list of symbolic or numeric
values for the design’s input ports at each clock cycle:

(inputs cycle-1 inputs cycle-2 ... inputs cycle-k)

If the inputs list is empty (verified by the ACL2 function atom), the com-
putation is finished and the function returns the state st. Otherwise, the next
state is computed, and st is updated, by calling the step function sim-step. As
we mentioned before, the model is also executable.

The funtion vhdl counter below models the state machine function for the
same VHDL design, over a time-sequence of inputs.

Component Reuse in B Using ACL2 285

(defun vhdl-counter (l-input st)
(if (atom l-input) st

(vhdl-counter (cdr l-input) (vhdl-sim-step (car l-input) st))))

5 BHDL

The language BHDL [15–chapter 7] was defined during the PUSSEE project
[16]. The goal of the project was to develop a methodology to elaborate systems
(including electronic hardware) in B. Based on the same language of substitu-
tions as B, BHDL can be used as a B implementation level for hardware, similar
to B0 for software. During the project translators to SystemC and VHDL were
also implemented using the logic solver of AtelierB.

We have extended the notion of frame introduced by Dunne [5] by defining
for any substitution S a write frame (denoted by WS) and a read frame (denoted
by RS). They are respectively the sets of variables that are written and read by
the substitution.

5.1 Development of Circuits in EventB

For developing a circuit in B, one may use refinement and formal verification of
a system from a very abstract model to the implementation level. The develop-
ment process is summed up on figure 4. Classically, the initial specification is
provided in natural language. Since such a specification is not formal, it may be
incomplete, inconsistent on some points or ambiguous. A first step consists in
developing a B model that corresponds to this specification. This formal specifi-
cation is not made in one shot but using the refinement process provided by B.
A first abstract model specifies the more general view of the system, then details
are added to the specification by refinement. Each element of the specification is
introduced at the most abstract level possible, because it is easier to understand
for the designer (there is less details) and proofs are easier to handle.

Particularly, abstraction permits to prove algorithms and protocols (see [3]
for example) of the design before being overflowed by the details of a hardware
implementation level.

When cycle accuracy is needed (as late as possible), it is modelled in an
abstract way by synchronising components of the system. Synchronisation mod-
els the chain of cycles, concurrency and communications between components.
The system is refined again to obtain an implementable model. Requirements
of the implementation level are: implementable data types, each component is
modelled separately and works only with its own state and input/output ports.
Cycle accuracy is needed at the end of the development, it is the basis of the
semantics of BHDL.

Once an implementable model is reached, the B model is translated in BHDL.
An implementable model is fully deterministic, it uses only select guards. The
substitution while is not used in BHDL, an implicit global loop corresponds to
the succession of cycles. From an eventB model, the BHDL model is obtained by

286 Y. Zimmermann and D. Toma

recomposing events of each components, implementing the synchronisation and
specifying which variables are input and outputs ports.

Recomposition is based on two rules. The first one merges two events into
one when their guards are complementary. The second one creates a sequential
composition of two events when the first one establishes the guard of the second
one.

select P ∧ Q then S end
select P ∧ ¬Q then T end
select P then

if Q then S else T end
end

select P then S post Q end
select Q then T end
select P then S; T end

The BHDL model has formal semantics3 and can be translated to other
formalisms. For example it can be translated to a hardware description language
for simulation and synthesis or into a formalism that provides a better support
than B for some verification activities, such as for temporal properties.

5.2 The BHDL Language

A BHDL design is an event-B model composed of only one event has no guard.
An intuitive behaviour a BHDL design consists of:

– apply once the substitution of initialisation, when the system starts
– then the substitution of the operation clause is applied repeatedly

Relating this to synchronous circuits, the initialisation clause specifies the
initialisation of registers and the event specifies the combinatorial part of the
circuit. Particularly, outputs of the circuit are specified by the operation clause
even at the starting of the system: this means that the state between the initial-
isation and the first occurrence of the event is not observable. This corresponds
to the fact that in a circuit, signals propagates inside the combinatorial part also
during initialisation. Both signals clock and reset are not explicit in BHDL. The
sequence of cycles is modelled by the repetitive application of the event.

Two kinds of objects carry values in a circuit: signals and registers. In a BHDL
model, they are both modelled by variables. The distinction signal/register is not
made explicitly, it is computed automatically using frames.

Synthesis

Specification

Natural Language Event−B Model BHDL Model Other Formalisms

Verification

Simulation

Recomposition TranslationRefinement

Fig. 4. Development Process

3 Formal BHDL semantics are not yet published. They are based on before-after pred-
icates: as a sub-language of B, BHDL inherits its semantics. These semantics has
been used to ensure correctness of translations from BHDL to SystemC and VHDL.

Component Reuse in B Using ACL2 287

BHDL uses a subset of B substitutions that is implementable by circuit at
the RTL level. Below is a short grammar of substitutions used in this paper. The
non-deterministic assignment (x :∈ Const) is allowed only in the initialisation
clause and only constant set (Const) is allowed for this substitution. The term
BExp refers to B expression and BoolExp to Boolean expressions.

Subst← x := BExp | x :∈ Const | Subst ‖ Subst | Subst ; Subst ‖
if BoolExp then Subst else Subst end ‖
if BoolExp then Subst end

5.3 Example of BHDL Design

We give the BHDL description of the counter (Fig. 5a). It has the same spec-
ification as the VHDL but the implementation differs. A register compt stores
the current value of the counter. The output alm is set to true when the counter
reaches 7. In this case, the counter remains at 7 until the rst input is set to true.

In the example of the counter, the register compt is initialised to 0.

(a) (b)

initialisation
compt := 0‖
rst :∈ BOOL‖alm :∈ BOOL

operations
alm := bool(compt = 7)
;
if rst = true then

compt := 0
else

if alm = false then
compt := compt + 1

end
end

if reset = true then
compt := 0

end
;
alm := bool(compt = 7)
;
if rst = true then

compt := 0
else

if alm = false then
compt := compt + 1

end
end

Fig. 5. (a) BHDL model of a 3-bit counter; (b) merging of initialisation and operation
clauses

6 Translation from BHDL to ACL2

A BHDL design has two important parts, the initialisation clause that spec-
ifies how registers are initialised when the reset signal of the circuit is set, and
the operation clause that specifies the combinatorial part of the circuit.

The ACL2 circuit description used in our approach consists of one func-
tion per signal that computes the value of the signal at the end of a clock
cycle. A function is also dedicated to simulate a clock cycle by calling all signal
functions.

The translation process from BHDL to ACL2 is the following:

288 Y. Zimmermann and D. Toma

1. Convert the design into a design where the initialisation clause and the oper-
ation clause are merged into one substitution. A design with an initialisation
clause Init and an operation clause Op is transformed into the substitution
below. Moreover, the non-deterministic substitutions of Init are removed.

if reset = true then Init end ; Op

The input signal reset is introduced explicitly: if the signal reset is set
then Init and Op are applied. In the other case, only Op is applied. This
corresponds to the semantics of a BHDL model: the state between Init and
the first application of Op is not observable. We give in Fig. 5b the event
that corresponds to the BHDL description of Fig. 5a: the reset signal is made
explicit and the initialisation is directly introduced inside the event.
Notice that a requirement is that the signal reset is set to true when the
system starts and then remains at false.

2. Flatten the resulting substitution
3. Translation of the flat substitution into ACL2.

6.1 Flat Form of a Substitution

The sequential substitution makes intermediate results available for reuse in
some expressions. The ACL2 model is functional and, in our approach, the out-
puts are functions of inputs and registers, without any intermediate variables.
To generate the ACL2 model, we first flatten the BHDL model to remove se-
quential substitutions. For example, the substitution x := in + z; out := x + 1 is
first transformed into x := in + z‖out := in + z + 1.

In the definition of a flatten substitution, we only refer here to substitutions
used in BHDL. A substitution is flat when :

– it contains no sequential composition,
– it is a parallel composition of substitutions, each one writing only one vari-

able. Two of these substitutions cannot write the same variable and all vari-
ables must be written.

Notice that none of the composed substitutions can contain a parallel composi-
tion (because only one variable may be written), nor a sequential composition.
So, according to the BHDL language, it can only be a tree of nested if statements
with simple substitutions of the form v := E as leaves.

We can formalise this by giving the following grammar where BoolExp is the
grammar of predicates, Exp of expressions and var of identifiers. The predicate
card(WS) = 1 is a well-formedness side-condition to ensure that each substitu-
tion of the parallel composition only writes one variable. In particular, in the
conditional substitution, S(1) and S(2) must write the same variable. The re-
quirement that two substitutions cannot write the same variable is ensured by
well-formedness of the parallel composition.

Component Reuse in B Using ACL2 289

FlatS← S card(WS) = 1
| FlatS ‖ FlatS

S← if BoolExp then S(1) else S(2) end
| var := Exp.

Example of Flat Substitution. To illustrate how a BHDL model is trans-
formed, we give on figure 6 the flat form of the counter given in section 5.3.
It consists of two substitutions composed in parallel. The first one specifies the
evolution of the variable alm and the second one the variable compt. Each one
depends only on inputs (reset and rst) and registers (compt). In particular, the
expression of compt not longer depends on the variable alm.

if reset = true then
alm := bool(0 = 7)

else
alm := bool(compt = 7)

end

‖
if reset = true then

if rst = true then
compt := 0

else
if bool(0 = 7) = false then

compt := 0 + 1
else

compt := 0
end

end

else

if rst = true then
compt := 0

else
if bool(compt = 7) = false then

compt := compt + 1
else

compt := compt
end

end
end

Fig. 6. Flat substitution of the counter

6.2 Translation of the Flat Substitution into ACL2

The third step is easy after flattening, it just consists of rewriting the sub-
stitution using the ACL2 syntax. The syntax of the substitution respects the
grammar given in previous section. Translation into ACL2 is done in this simple
way by the operator acl2 defined below. This operator applies on flattened sub-
stitutions. Substitutions S1 ... Sn, S and T stand for substitutions that do not
contain any parallel composition. They are simple substitutions or (flattened)
conditional substitutions. We use uk to denote the name of the variable written
by the substitution Sk, it is used to give a name to the ACL2 created function
(B uk).

290 Y. Zimmermann and D. Toma

acl2(S1‖...‖Sn) =
for each substitution Sk, this ACL2 function is created:

(defun B uk acl2(Sk))
where {uk} = WS , uk is the variable written by Sk

acl2(if C then S else T end) = (if acl2(C) acl2(S) acl2(T))
acl2(v := E) = (acl2exp(E))
where acl2exp is the translation of a B expression into an ACL2 expression.
The translation of the counter given in sections 5.3 and 6.1 producesthe

following ACL2 functions.

(defun B alm (compt reset)
(if (equal reset 1)

(if (equal 0 7) 1 0)
(if (equal compt 7) 1 0))

(defun B compt (compt rst reset)
(if (equal reset 1)

(if (equal rst 1)
0
(if (equal (equal 0 7) nil) (+ 0 1) 0)

)
(if (equal rst 1)

0
(if (equal (equal compt 7) nil) (+ compt 1) compt)

)))

7 Flattening

Flattening a substitution S builds another substitution that has the same effect
as S but that is flat. The main transformation consists of removing sequential
compositions (S; T) by propagating effects of the first substitution (S) inside the
second one (T). After the definitions of flattening rules, we give a sketch of the
proof that the flattening process constructs a substitution that is equivalent to
the original one.

7.1 Flattening Rules

The process is based on three operators. The main operator flat flattens a substi-
tution. It uses operators extract and integrate. The operator extract(v, S) gives a
substitution that has the same effect as S on the variable v but that has exactly
{v} as the write frame. The operator integrate(S, T) integrates the substitution
S inside the substitution T : if T reads a variable v that is written by S, it reads
v as it is after the application of S.

In this section, we use the notation ‖v∈ES(v) to denote the parallel com-
position of substitutions S(v) for each variable v in the set of variables E. If
E = {v1, ..., vk} then ‖v∈ES(v) = S(v1)‖...‖S(vk).

Component Reuse in B Using ACL2 291

Flattening of a Substitution. A simple substitution v := E is already flat
and a parallel composition is flat if both composed substitutions are flat.

flat(v := E) = v := E
flat(A‖B) = flat(A)‖flat(B)

In a conditional substitution, both alternative substitutions may write sev-
eral variables. A flat conditional substitution writes only one variable. In con-
sequence, the transformation rule creates one conditional substitution for each
written variable and composes them in parallel (‖v∈WA∪WB

). In the expression
extract(v, flat(A))), flat(A) is flat, it is a parallel composition of substitutions,
each one writing only one variable. The operator extract select the one that
writes the variable v.

flat(if C then A else B end) =
‖v∈WA∪WB

if C then extract(v, flat(A)) else extract(v, flat(B)) end
flat(if C then A end) =
‖v∈WA∪WB

if C then extract(v, flat(A)) else v := v end

Sequential composition does not exists in the flat form. It must be trans-
formed into an equivalent flat substitution. This is achieved by propagation of
transformations specified by the first substitution inside the second substitution.

The principle for flattening the substitution S; T is the following. For any
variable v written by S and read by T , the value of v used by T is the value of v
after applying S, i.e. v is substituted in T by the expression specified by S. For
example x := E; x := x + 1 is transformed into x := E + 1.

This transformation is achieved by the operator integrate, which is defined
in the remainder of this section. It returns a flat substitution that has the same
write frame as T . This means that variables that are written by S but not by T
are not written by the result of the integration. So, we add the flat substitution
S/WS−WT

that have the same behaviour as flat(S) on WS −WT and for which
the write frame is exactly WS −WT (see operator extract below).

flat(S; T) = S/WS−WT
‖integrate(flat(S), f lat(T))

Extraction from a Substitution. The operator extract(v, S) gives a substi-
tution that has the same effect as S on the variable v and for which the write
frame is exactly {v}. The operator extract is defined here only on flat substitu-
tions. This simplifies definitions because in a flat substitution, each substitution
of the parallel composition writes only one variable. So, extraction simply con-
sists of looking for the substitution that corresponds to the variable we want to
extract.

extract(v, S) = v := v if v �∈WS

extract(v, S1‖...‖Sn) = Sk where WSk
= {v}

Integration. The operator integrate(S, T) propagates the effects of S inside
T : if a variable is modified by S and used by T , T is transformed and uses the

292 Y. Zimmermann and D. Toma

new value of this variable as specified by S. The operator integrate is defined
here only for flat substitutions, this allows some simplifications in the definition.

Integrate a simple substitution x := E consists of applying this substitution
on all expressions. For example, propagate the substitution x := 2 inside x :=
x + 1 leads to the substitution x := 2 + 1.

integrate(x := E, y := F) = y := [x := E]F
integrate(x := E, if P then S else T end) =

if [x := E]P then integrate(x := E, S) else integrate(x := E, T) end

If we integrate a substitution that writes some variables v inside a substitution
that does not use v at all, the integration has no effect. For example, integrate
x := 2 inside x := y produces the substitution x := y.

integrate(S, T) = T if WS ∩RT = ∅

Integrate a substitution S in a substitution that is a parallel composition
consists of integrating S in all composed substitutions. For example, integration
of x := 2 inside x := x + 1||y := x− 2 produces x := 2 + 1‖y := 2− 2.

integrate(S, A‖B) = integrate(S, A)‖integrate(S, B)

Integration of a parallel substitution A‖B into a substitution T consists of
integrating A and B. Since some variables modified by B may be used by A and
vice versa, we cannot first integrate A and then B. For example, if B contains
x := E and A contains y := x, integrating A‖B in z := y+x produces z := x+E.
If we first integrate A, we obtain z := x + x that produces z := E + E after
integrating B.

For confidentiality reasons, we do not give the exact rule we used to imple-
ment the integration of the parallel substitution. A possibility is to use transfor-
mation rules of the B Book [1] page 310 to transform A‖B into a substitution
in which only simple substitutions are composed in parallel (x := E‖y := F).
The resulting substitution can be integrated using above rules (the case of the
simple substitution can be easily generalised to multiple simple substitutions
x, y := E, F).

For example, the integration of S ≡ x := y + 1‖if x = y then y := x +
2 else y := 1 end inside T ≡ x := x + y produces the substitution if x =
y then x := y + 1 + x + 2 else x := y + 1 + 1 end.

Simplifications. Flattening rules creates a lot of useless nested if statements.
This is because in B, except in the flat form, an if substitution may contain
several simple substitutions (v := E). The operator flat splits them into several
ifs and integrate spreads and nests them. The result is a substitution that grows
exponentially.

To simplify these substitutions, useless branches of an if tree are cut and
if substitutions are simplified when both branches are equal. Substitution Ss

(resp. T s) is the result of the simplification of S (resp. T).

Component Reuse in B Using ACL2 293

simpl(C, NC, if P then S else T end) =
if P ∈ C then simpl(C, NC, S)
else if P ∈ NC then simpl(C, NC, T)
else
let Ss = simpl(C ∪ {P}, NC, S) and T s = simpl(C, NC ∪ {P}, T) in

if Ss = T s then Ss

else if P then Ss else T s end

The parameter C is the set of conditions known to be true and NC the set
of conditions known to be false. They come from the fact that the substitution
under simplification takes place in a branch of an if tree. Initially C = NC = ∅.

Implementation. Flattening has been implemented in Prolog. Experiments
have shown the usefulness of simplifications. Without it, constructed substi-
tutions become larger and larger during the flattening process. To be useful,
simplifications must be applied regularly during the flattening process, or be
directly integrated inside the flattening rules.

Without any simplification, flattening of a design of about 200 lines, needs
more that 100MB of RAM and the process takes several hours to complete. With
simplifications, flattening of the same design takes about 1 second.

7.2 Flattening Is a Refinement

Flattening is an automatic refinement. Actually, the result of the flattening is a
substitution that is equivalent to the original substitution. For any substitution
S, and any predicate Q

[flat(S)]Q⇔ [S]Q

For reasons of space, we cannot give the entire proof of this property here.
However we give below a sketch of the proof for the interesting case flat(S; T),
based on the operator integrate.

Intuitively, the meaning of integrate(S, T) is to produce a substitution that
is consistent with S; T but with the same write frame as T. With respect to the
variables written by T , integrate(S, T) is equivalent to S; T , but for the variables
that are not written by T , integrate(S, T) is equivalent to skip.

Let S and T be two flat substitutions. Let xt be a variable written neither
by S nor by T (xt is a fresh variable) and wt a variable written by T (possibly
also written by S). We can prove the following property.

[S; T](xt = wt)⇔ [integrate(S, T)](xt = wt) (1)

The proof cannot be given here, it is based on a double recurrence on both
arguments (on the structure of substitutions) of integrate.

Suppose there exists some variables written by S but not by T , we choose
a variable ws−t. Let xs−t be a variable written neither by S nor by T . The
property below holds.

[S; T](xs−t = ws−t)⇔ [S](xs−t = ws−t) (2)

294 Y. Zimmermann and D. Toma

Let Q be a predicate on variables written by S or T , we denote it by
Q(wt, ws−t) where wt is a variable written by T and ws−t is a variable written by
S but not by T (we make the assumption it exists). The predicate Q(wt, ws−t)
may be rewritten xt = wt ∧ xs−t = ws−t ∧ Q(xt, xs−t), where xt and xs−t are
two fresh variables. There is an implicit existential quantifier ∃(xt, xs−t).(...) .

We know that

[S; T]Q(wt, ws−t)⇔ [S; T](xt = wt) ∧ [S; T](xs−t = ws−t) ∧ [S; T]Q(xt, xs−t)
(3)

Suppose we have a substitution S′ such that its write frame is WS −WT and
that, for any predicate P on the same frame,

[S′]P ⇔ [S]P (4)

For any substitution A that has a disjoint frame from S′ (WT for example),
we can say that [S′‖A](xt = wt) ⇔ [A](xt = wt) because neither xt nor wt is
written by S′. In particular, the following property holds.

[S′‖integrate(S, T)](xt = wt)⇔ [integrate(S, T)](xt = wt) (5)

In the same way, because variables xs−t and ws−t are not in the write frame
of the substitution integrate(S, T), we have to property below.

[S′‖integrate(S, T)](xs−t = ws−t)⇔ [S′](xs−t = ws−t) (6)

From (1) and (5), we deduce (7), and from (2), (4) and (6) we deduce (8).

[S; T](xt = wt)⇔ [S′‖integrate(S, T)](xt = wt) (7)

[S; T](xs−t = ws−t)⇔ [S′‖integrate(S, T)](xs−t = ws−t) (8)

Finally, from (3), (7), (8) and because there is no variable written by S′‖inte-
grate(S, T) in Q(xt, xs−t), we deduce the property (9).

[S; T]Q(wt, ws−t)⇔

⎧⎨⎩[S′‖integrate(S, T)](xt = wt) ∧
[S′‖integrate(S, T)](xs−t = ws−t) ∧
[S′‖integrate(S, T)]Q(xt, xs−t)

(9)

From (9), we can recompose Q to obtain the property below.

[S; T]Q(wt, ws−t)⇔ [S′‖integrate(S, T)]Q(wt, ws−t) (10)

The predicate Q is on frame of S; T (that is the same frame as S′‖inte-
grate(S, T)). We can generalise to any predicate Q because S; T and S′‖inte-
grate(S, T) have no effect on other variables. The reasoning above uses a predi-
cate Q on two variables wt and ws−t, it can be generalised to two sets of variables.
We made the assumption that WS −WT is not empty, the case where all vari-
ables written by S are also written by T is a simpler case that leads to the same
result.

Component Reuse in B Using ACL2 295

We also made the assumption of the existence of S′ that has WS −WT as
write frame and such that [S′]P ⇔ [S]P for any predicate P on the same frame.
These requirements are met by S/WS−WT

used in the definition of flat(S; T). In
consequence, with S′ ≡ S/WS−WT

and (10), we can conclude that flat(S; T) is
equivalent to S; T .

[S; T]Q⇔ [flat(S; T)]Q

8 Case Studies

We present two case studies. The first one illustrates the methodology on a non
trivial example. The second one uses the example of the counter to explain how
the verification is done in ACL2.

8.1 Controller for a Serial Bus

The first case study concerns a controller for a serial bus (standard SAE J1708
[19]): several components linked by a serial bus may send messages to other
components using the bus. Each component has a controller that is responsible
for sending messages bit by bit on the bus and for dealing with contentions
(when two controllers attempt to send a message at the same time).

The B development [23] consisted of first modelling the whole system at
a very abstract level to specify important properties. Refinement was used to
derive a model of the protocol (so, proved by refinement) and finally the system
was refined again to obtain the description of controllers at the register transfer
level. This is the level of BHDL. From BHDL, the circuit was translated to
VHDL, simulated and synthesised.

The goal of this case study is not to validate the VHDL description of the
circuit but to confirm the methodology with a non trivial example that we know
to be correct. It is also a chance to associate three translators developed sepa-
rately. We started from the BHDL description of the circuit validated in B. This
description was translated twice: into ACL2 (as described in this paper) and in
VHDL (using the translator developed by KeesDA). The VHDL description has
around 400 lines and uses 140 internal signals. Then, this VHDL description was
translated to ACL2 using the translator developed by TIMA.

At this point we have two ACL2 descriptions of the same circuit and we want
to verify that they are equivalent. Equivalence is expected because both ACL2
descriptions come from the same BHDL description. The three translators are
based on three different approaches and they have been validated separately.

BHDLEventB
VHDL ACL2

ACL2
Refinement Translation

Verification

Fig. 7. Connection of translators

296 Y. Zimmermann and D. Toma

The fact that proof of equivalence can be done easily gives confidence in the
implementation of these translators and confirms the methodology consisting of
using ACL2 as an intermediary between B and VHDL.

The ACL2 model of the VHDL design has 148 functions and the ACL2 model
of the BHDL description has 21 functions. For the equivalence proof we defined
65 theorems, and we used an already defined library about bit vectors and op-
erations on bit vectors. The proof process was not difficult, it only took several
hours of human time to complete it (against several weeks for the original B
development). The proof itself is done in 17.23 minutes on a processor Ultra
Sparc 3, 1.28 GHz, with 8GB memory.

Models were modified by hand to introduce some errors, particularly on types
and arithmetic expressions. This permits one to check that not only purely func-
tional errors are detected but also errors due to incompatible implementation of
data (for example, an integer that may be valued to 8 cannot be implemented
by a 3-bits vector). Errors were detected because some conjectures were shown
to be false by ACL2.

8.2 Counter

We applied the ACL2 verification to the example of the counter. After the trans-
lation of the BHDL model to ACL2, the corresponding sim-step, system, hyp-
input and hyp-st functions are defined.

We give below the sim-step and system functions for the BHDL model of the
counter.

(defun b-sim-step (in st)
(let ((reset (nth *b-reset* in)) (rst (nth *b-rst* in)) (compt (nth *b-compt* st)))

(list (B compt compt rst reset)
(B alm compt reset))))

(defun b-counter (input st)
(if (atom input) st (b-counter (cdr input) (b-sim-step (car input) st))))

At this point, there are two ACL2 models : one corresponding to the VHDL
design, and the other one to the BHDL model. Both models are cycle accurate.

To prove the bisimulation relation between the two models, a relation Sim ⊆
STV HDL × STBHDL is first defined, where STV HDL is the set of VHDL design
states, and STBHDL is the set of BHDL model states. The proof that Sim is a
simulation relation is done in two steps: (1) starting from arbitrary states, after
a clock cycle, when reset is 1, both models are in similar states, conform to Sim;
(2) starting from similar states, st-b and st-vhdl, where (st-vhdl, st-b) ∈ Sim,
after consuming the same inputs (taking into considerations the necessary type
conversions), the two models are in similar states :

(vhdl-system(inputs, st-vhdl), b-system(inputs, st-b)) ∈ Sim

This is proved by induction on the number of clock cycles, i.e. the length
of the list of inputs. The base case states that sim-step functions preserve the
similarity.

Component Reuse in B Using ACL2 297

A second relation Sim−1 ⊆ STBHDL × STV HDL is defined and proved to
be the inverse of Sim. Likewise, Sim−1 is proved to be a simulation relation
between the BHDL model and the VHDL model.

Finally, Sim is proved to be a bisimulation relation between the BHDL model
and the VHDL design.

For the counter, Sim is defined as follows:

(st-vhdl, st-b) ∈ Sim⇔ ((alm3 = alm) ∧ (get-1-pos(tc 1) = compt))

Where st-vhdl = (tc 0, tc 1, tc 6, tc 8, tc 10, gd, rst, alm3) and st-b = (compt,
alm). The function get-1-pos takes a bit-vector as input and returns the position
of 1 in the vector. For example, get-1-pos((00100)) = 2

Sim−1 is defined as follows:

(st-b, st-vhdl) ∈ Sim−1 ⇔
((alm = alm3) ∧ (tc 1 = construct-table(compt)))

The function construct-table takes a natural n as input and returns a bit
vector of size 8 with bit 1 on the n-th position, all other bits being 0.

The proof uses ACL2 libraries about naturals and lists included in the public
distribution of the theorem prover. It also uses a library about bit-vectors that
was previously developped for hardware verification.

9 Conclusion

We have presented a new methodology to reuse existing components that have
not been developed within the B framework.

The principle consists of writing a specification of the component in B and
proving that this specification corresponds to the component using ACL2. To
achieve this, both BHDL and VHDL descriptions of the component are trans-
lated into ACL2. ACL2 is used to prove that both models are equivalent.

Translation of the BHDL into ACL2 needs to flatten the BHDL model. Trans-
lation rules have been explained and we have proved that this transformation
leads to a model that is equivalent to the original one.

The methodology has been applied to a non trivial case study to verify its
efficiency. It was also a chance to combine three translators that have been
developed separately and with different approaches. Experiments have shown
that non equivalence of models is detected by this methodology.

References

[1] J.-R. Abrial. The B-Book – Assigning programs to meanings. CUP, 1996.
[2] J.-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In D. Bert,

editor, B’98: Recent Advances in the Development and Use of the B-Method,
volume 1393 of LNCS, pages 83–128, 1998.

298 Y. Zimmermann and D. Toma

[3] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically
proved and incremental development of ieee 1394 tree identify protocol. Formal
Aspects of Computing, 14(3):215–227, Apr 2003.

[4] Ammar Aljer, Philippe Devienne, Sophie Tison, Jean-Louis Boulanger, and
Georges Mariano. B-HDL: Circuit Design in B. In ACSD 2003, International
conference on Application of Concurrency to System Design, pages 241–242, 2003.

[5] Steve Dunne. A Theory of Generalised Substitutions. In D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, editors, ZB 2002, volume 2272 of LNCS, pages
270–290, 2002.

[6] European Organisation for Civil Aviation Equipment. , http://www.eurocae.org/.
[7] A.C.J Fox. Formal specification and verification of ARM6. In D. Basin and

B. Wolff, editors, TPHOLs ’03, volume 2758 of LNCS, pages 25–40. Springer,
2003.

[8] Max Fuchs and Michael Mendler. A Functional Semantics for Delta-Delay VHDL
Based on FOCUS. In C. D. Kloos and P. T. Breuer, editors, Formal Semantics
for VHDL, pages 9–42. Kluwer Academic Publishers, 1995.

[9] Stefan Hallerstede and Yann Zimmermann. Circuit Design by refinement in
EventB. In Proc. of FDL’04, 2004.

[10] Scott Hazelhurst and Carl-Johan H. Seger. Symbolic Trajectory Evaluation. In
T. Kropf, editor, Formal Hardware Verification: Methods and Systems in Com-
parison, volume 1287 of LNCS, pages 3–78. Springer-Verlag, 1997.

[11] IEEE, editor. Standard VHDL - Language Reference Manual. IEEE Computer
Society Press, USA, 1988.

[12] International Electrotechnical Commission. , http://www.iec.ch/61508/.
[13] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided reasoning: ACL2

An approach, volume 1. Kluwer Academic Press, 2000.
[14] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided reasoning: ACL2

Case Studies, volume 2. Kluwer Academic Press, 2000.
[15] J. Mermet, editor. UML-B - Specification for Proven Embedded Systems Design.

Kluwer Academic Publishers, 2004. ISBN 1-4020-2866-0.
[16] PUSSEE project IST-2000-30103. http://www.keesda.com/pussee/, 2004.
[17] Radio Technical Commission for Aeronautics. , http://www.rtca.org/.
[18] D. M. Russinoff. A Case Study in Formal Verification of Register-Transfer Logic

with ACL2: The Floating Point Adder of the AMD Athlon Processor. In FMCAD
2000, 2000.

[19] SAE International. SAE J1708 revised OCT93, serial data communication be-
tween microcomputer systems in heavy-duty vehicule applications, www.sae.org,
1993.

[20] M. Srivas, H. Rueß, and D. Cyrluk. Hardware Verification Using PVS. In T. Kropf,
editor, Formal Hardware Verification: Methods and Systems in Comparison, vol-
ume 1287 of LNCS, pages 156–205. Springer-Verlag, 1997.

[21] D. Toma and D. Borrione. SHA formalization. In ACL2 Workshop, USA, 2003.
[22] D. Toma, D. Borrione, and G. Al-Sammane. Combining several paradigms for

circuit validation and verification. In CASSIS, 2004.
[23] Yann Zimmermann, Stefan Hallerstede, and Dominique Cansell. Formal modelling

of electronic circuits using event-B, case study : SAE J708 serial communication
link. In Jean Mermet, editor, UML-B - Specification for Proven Embedded Systems
Design. Kluwer Academic Publishers, 2004.

GeneSyst: A Tool to Reason About
Behavioral Aspects of B Event Specifications.

Application to Security Properties�

Didier Bert, Marie-Laure Potet, and Nicolas Stouls

Laboratoire Logiciels Systèmes Réseaux - LSR-IMAG - Grenoble, France
{Didier.Bert, Marie-Laure.Potet, Nicolas.Stouls}@imag.fr

Abstract. In this paper, we present a method and a tool to build sym-
bolic labelled transition systems from B specifications. The tool, called
GeneSyst, can take into account refinement levels and can visualize the
decomposition of abstract states in concrete hierarchical states. The re-
sulting symbolic transition system represents all the behaviors of the
initial B event system. So, it can be used to reason about them. We il-
lustrate the use of GeneSyst to check security properties on a model of
electronic purse.

1 Introduction

Formal methods, such as the B method [1], ensure that the development of an
application is reliable and that properties expressed in the model are satisfied by
the final program. However, they do not guarantee that this program fulfills the
informal requirements, nor the needs of the customer. So, it is useful to propose
several views about the specifications, in order to be sure that the initial model
is suitable for the customer and that the development can continue on this basis.
One of these important insights is the representation of the behavior of programs
by means of diagrams (statecharts). Moreover, some particular views, if they are
themselves formal, can provide new means to prove properties that cannot easily
be checked in the first model.

In this paper, we present a method and a tool to extract a labelled transition
system from a model written in event-B. The transition system gives a graphical
view and represents symbolically all the behaviors of the B model. The method
is able to take into account refinement levels and to show the correspondence
between abstract and concrete systems, by means of hierarchical states.

We present also an application of this tool, namely, the verification of secu-
rity properties. The security properties assert the occurrence or the absence of
some particular events in some situation. They are a case of atomicity property

� This work was done in the GECCOO project of program “ACI : Sécurité Informa-
tique” supported by the French Ministry of Research and New Technologies. It is
also suported by CNRS and ST-Microelectronics by the way of a doctoral grant.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 299–318, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

300 D. Bert, M.-L. Potet, and N. Stouls

of transactions. This is illustrated by an example of specification of an elec-
tronic purse, called Demoney[16, 15], developed in the SecSafe project [19]. This
case study, written in Java Card [21], is an applet that has all the facilities
required by a real electronic purse. Indeed, the purse can be debited from a
terminal in a shop, credited by cash or from a bank account with a terminal in
a bank or managed from special terminal in bank restricted area. Transactions
are encrypted if needed and different levels of security are used depending on
the actions. Demoney also supports to communicate with another applet on the
card, for example, to manage award points on a loyalty plan. The specification
of Demoney is public in version 0.8 [16], but the source code is copyrighted by
Trusted Logic S.A.1.

In Section 2, we recall the main features of event-B systems and refinements.
We introduce a notion of behavioral semantics by the way of sequences of events.
In Section 3, we define symbolic labelled transition systems (SLTS) and the
links between SLTS and event-B systems are stated. In Section 4, we present
the GeneSyst tool and an example of generation of SLTS dealing with the error
cases in the Demoney case study. Section 5 presents security properties required
in the application and shows how the GeneSyst diagrams can be used to check
these properties. Then, we review related works, and we conclude the paper with
some research perspectives in Section 6.

2 Event-B

2.1 General Presentation

Event-B was introduced by J.-R. Abrial [2, 3]. It is a formal development method
as well as a specification language. In event-B, components are composed of con-
stant declarations (sets, constants, properties), state specification (vari-
ables, invariant), initialisation and set of events. The events are defined by
e =̂ eBody where e is the name of the event and eBody is a guarded generalized
substitution [1]. The events do not take parameters and do not return result
values. They do not get preconditions and do terminate. Their effect is only to
modify the internal state. If S is a component, then we denote by Interface(S)
the set of its events.

A well-typed and well-defined component is consistent if initialization Init es-
tablishes the invariant of the component and if each event preserves the invariant.
So, using the notation [S]R as the weakest precondition of R for substitution S,
the consistency of a component is expressed by the proof obligations: [Init]I and
I ⇒ [eBody]I for each event.

In the paper, we use the notions of before-after predicate of substitution
T for variables x (prdx(T)) and the feasability predicate of a substitution as
defined in the B-Book: fis(T)⇔ ¬[T]false [1]. Finally, the notation 〈T 〉R means
¬[T]¬R, that is to say, there exists a computation of T which terminates in a
state verifying R.

1 http://www.trusted-logic.fr/

GeneSyst: A Tool to Reason About Event-B Specifications 301

2.2 Events and Traces

The events have the form “e =̂ G =⇒ T” where G is a predicate, T is a
generalized substitution such that I ∧ G ⇒ fis(T). Predicate G is called the
guard of e and T is its action. They are respectively denoted by Guard(e) and
Action(e). If the syntactic definition of an event e =̂ S does not fulfill this
form, it can be built by computing e =̂ fis(S) =⇒ S. Following the so-called
event-based approach [10], the semantics of event-B systems can be chosen to be
the set of all the valid sequences of event executions.

Definition 1 (Traces of Event-B systems). A finite sequence of event oc-
currences e0.e1.e2 . . . en is a trace of system S if and only if e0 is the initialisation
of S, {e1, e2, . . . , en} ⊆ Interface(S) and fis(e0 ; e1 ; e2 ; . . . ; en)⇔ true.

The set of all the finite traces of a system S is called Traces(S). For the initial-
isation, one can notice that prdx(Init) does not depend on the initial values of
the variables and that Guard(Init)⇔ true. The following property characterizes
traces by the existence of intermediary states xi in which the guard of ei holds
and where the pair (xi, xi+1) is in the before-after predicate of event ei:

Property 1 (Trace characterization). Let x be the variable space of system
S, then: e0.e1. . . . en ∈ Traces(S) ⇔
∃x0, . . . , xn+1 ·

∧n
i=0([x := xi]Guard(ei) ∧ [x, x′ := xi, xi+1]prdx(Action(ei))).

2.3 Event-B Refinement

In the event-B method, a refinement is a component called refinement. The
variables can be refined (i.e. made more concrete) and a gluing invariant de-
scribes the relationship between the variables of the refinement and those of the
abstraction. The events of refinement R must at least contain those of the ab-
straction S (i.e. Interface(S) ⊆ Interface(R)). The other events are called new
events.

We recall here the proof obligations of system refinements. Let I be the invari-
ant of the abstraction S and J be the invariant of refinement R, then the gluing
invariant is the conjunction I∧J . The refinement is performed elementwise, that
is to say, the abstract initialisation is refined by the concrete initialisation and
each abstract event is refined by its concrete counterpart. Proof obligations that
establish the consistency of refinements are :

For initialisation Init : [InitR]〈InitS〉J
For events e of Interface(S) : I ∧ J ⇒ [eR]〈eS〉J
For the new events neR : I ∧ J ⇒ [neR]〈skip〉J

New events cannot indefinitely take the control, i.e. the refined system cannot
diverge more often that the abstract one. So, a variant V is declared in the refined
system, as an expression on a well-founded set (usually the natural numbers),
and the new events must satisfy (v is a fresh variable) :

V is a natural expression : I ∧ J ⇒ V ∈ N

New events neR decrease the variant : I ∧ J ⇒ [v := V][neR](V < v)

302 D. Bert, M.-L. Potet, and N. Stouls

Finally, a proof obligation of liveness preservation is usually required. If S con-
tains m events and R contains p new events, then:

I ∧ J ⇒ (
∨m

i=1 Guard(eS
i)⇒ (

∨m
i=1 Guard(eR

i) ∨
∨p

i=1 Guard(neR
i)))

Traces associated to refinements are defined as for the systems.

3 Symbolic Labelled Transition Systems Associated to B
Systems

3.1 Symbolic Transition Systems

We define symbolic labelled transition systems:

Definition 2 (Symbolic Labelled Transition System). A symbolic labelled
transition system (SLTS) is a 4-uple (N, Init , U, W) where

- N is a set of states, and Init is the initial state (Init ∈ N)
- U is a set of labels of the form (D, A, e), where D and A are predicates and

e is an event name
- W is a transition relation W ⊆ P(N × U ×N).

A transition (E, (D, A, e), F) means that, in state E, the event e is enabled
if D holds and, starting from state E, if event e is enabled, then it reaches state
F if A holds. Predicate D is called the enabledness predicate and A is called the
reachability predicate.

States N are interpreted as subsets of variable spaces on variables x. So, the
interpretation of N is given by a function I such that I(E) is a predicate on free
variables x which characterizes the subset represented by E. In the next defini-
tion, we determine the actual conditions to cross a transition from a particular
state value x1 of E1 to x2 of E2 by an event e which is defined in an event-B
system S. For that, e must be enabled in x1, x2 must be reachable from x1 by
e, and (x1, x2) must belong to the before-after predicate of e:

Definition 3 (Transition Crossing). Let (E1, (D, A, e), E2) be a transition of
a SLTS T on a system S, and given x1 and x2 some values of the state variables
x which satisfy the invariant of S, then a crossing from x1 to x2 by this transition
is legal if and only if : 1. [x := x1](I(E1) ∧D ∧A)

2. [x, x′ := x1, x2] prdx(Action(e))
3. [x := x2]I(E2)

Such a legal transition crossing is denoted by :

(E1, x1) �(D,A,e)� (E2, x2)

Now, we introduce the notion of path in a symbolic labelled transition system.
A path is a sequence of event occurrences, starting from the initial state, which
goes over a transition system through legal transition crossings.

GeneSyst: A Tool to Reason About Event-B Specifications 303

Definition 4 (Paths). Given a symbolic labelled transition system T on a
system S, a sequence of event occurrences e0.en+1 is a path in T if there
exists a list of states E0, . . . , En+1 of N , with E0 = InitT , and a list of transitions
(Di, Ai, ei), i ∈ 0..n, such that :

∃x0, . . . , xn+1 · (
∧n

i=0((Ei, xi) �(Di,Ai,ei)� (Ei+1, xi+1)))

The set of all the finite paths of T is called Paths(T).

3.2 Construction of States and Transitions

The aim of this section is to show how to compute a SLTS, from an event-B
system S and given a set of states N . First, to build the states N , consider a
list of predicates {P1, . . . , Pn} on the variable space. We require that this set is
complete with respect to the invariant, i.e. all the states specified by the invariant
are included in the states determined by the Pi predicates, i.e.

I ⇒
n∨

i=1

Pi

Then, the states of the SLTS are N = {InitS , E1, . . . , En} with the interpretation
defined by:

I(InitS) = true I(Ei) = Pi ∧ I, i ∈ 1..n

We denote by N1 the set N − {InitS}. From the completeness property above
and the definition of N , we get: I ⇔

∨n
i=1 I(Ei).

Now, we express the conditions to ensure that a symbolic labelled transition
system T represents the same set of behaviors as the associated system S. For
that, in a starting state E, the enabledness condition must be equivalent to the
guard of the event e, and if the target state is F , the reachability condition must
be equivalent to the possibility to reach F through e, when the enabledness
predicate holds, so the condition:

Condition 1 (Valid Transitions). Let S be a system, E and F two states in
N as defined above, and e an event, then the transition (E,(D,A,e),F) is valid if
and only if predicates D and A satisfy :

a) I(E) ⇒ (D ⇔ Guard(e))
b) I(E) ∧Guard(e) ⇒ (A⇔ 〈Action(e)〉I(F))

Notice that, by applying the definition of the conjugate weakest precondition,
condition b) is equivalent to :

I(E) ∧Guard(e) ⇒ (A⇔ ∃x′ · (prdx(Action(e)) ∧ [x := x′]I(F)))

A SLTS with all the transitions valid with respect to a system S is called a valid
symbolic labelled transition system.

304 D. Bert, M.-L. Potet, and N. Stouls

Theorem 1 (Traces and Paths Equality). Let S be an event-B system with
invariant I and events Ev and let T be a valid symbolic labelled transition
system built from S, then:

Traces(S) = Paths(T)

Proof: We prove that, for all t, t ∈ Paths(T)⇔ t ∈ Traces(S).
The path t =̂ e0.e1.en is a path for the state sequence E0, E1, . . . , En+1

(Definition 4): ∃x0, . . . , xn+1 ·
∧n

i=0((Ei, xi) �(Di,Ai,ei)� (Ei+1, xi+1)).
By using Definition 3, we get:

∃x0, . . . , xn+1 ·
∧n

i=0([x := xi](I(Ei) ∧Di ∧Ai)
∧ [x, x′ := xi, xi+1]prdx(Action(ei)) ∧ [x := xi+1]I(Ei+1))

By Condition 1, one can replace Di by Guard(ei) and Ai by ∃x′·(prdx(Action(ei))
∧ [x := x′]I(Ei+1)). The formula above is simplified and becomes:

(1) ∃x0, . . . , xn+1 ·
∧n

i=0([x := xi](I(Ei) ∧Guard(ei))
∧ [x, x′ := xi, xi+1]prdx(Action(ei)) ∧ [x := xi+1]I(Ei+1))

We must prove that this formula is equivalent to the characterization of the
traces (Property 1):

(2) ∃x0, . . . , xn+1 ·
∧n

i=0([x := xi]Guard(ei)
∧ [x, x′ := xi, xi+1]prdx(Action(ei)) ∧ [x := xi+1]I)

Implication (1)⇒ (2) is verified because states Ei are such that I(Ei)⇒ I (Sec-
tion 3.2). To prove (2) ⇒ (1), we must exhibit a list of states E0, E1, . . . , En+1
such that these states satisfy (1). This follows from the fact that I(E0) = true
and from I ⇒

∨n
i=1 I(Ei), which ensures that one of the states I(Ei) necessarily

holds when I hold. "#

3.3 Labelled Transition Systems for the Refinements

We propose now the construction of a symbolic labelled transition system for
the refinements. Our aim is to highlight the links between abstract and concrete
transition systems, while preserving the overall structure of the abstract system.
One aspect of the refinement is the change of the variable representation and
redefinition of the events of the abstraction, according to the new representation.
The point is taken into account by the notion of state projection.

In the following, S is a specification, R is its refinement with gluing invariant
L, and T S is a symbolic labelled transition system for S. States ES and FS

are states in T S . We assume that the variable set xS of S is disjoint to the
variable set xR of the refinement. If some variables of the specification are kept
in the refinement, they can be renamed and an equality between both variables
is added to the invariant.

Definition 5 (State Projection). Let S be a system with variables xS and
R be the refinement of S according to L. A state ER of T R, ER �= InitR is the
projection of ES of T S , denoted by ER = ProjL(ES), iff:

iff

GeneSyst: A Tool to Reason About Event-B Specifications 305

I(ER)⇔ ∃xS · (L ∧ I(ES))

We propose to build a SLTS, called ProjL(T S), in which states are automat-
ically deduced from abstract states and gluing invariant. The SLTS projection
ProjL(T S) of the refinement R of system S with gluing invariant L is such
that:the initial state is any q0 with I(q0) = true; the other states of the projec-
tion are the projections of abstract states, i.e. N1R = {ProjL(q) | q ∈ N1S}. The
transitions are (ER, (D′, A′, eR), FR) where eR ∈ R and D′, A′ are such that
Condition 1 is satisfied. A transition (ER, (D′, A′, eR), FR) is said a projection of
transition (ES , (D, A, eS), FS) iff ER = ProjL(ES), FR = ProjL(FS) and event
eR is the refinement of eS . By construction, Paths(ProjL(T S)) = Traces(R).
This equality can be proved in the same way as in Theorem 1.

Property 2 (Transition Projection). With the definitions above,
(ER, (D′, A′, eR), FR) be the projection of transition (ES , (D, A, eS), FS),

then we have:
I(ES) ∧ L ∧ D′ ⇒ D

This property says that any transition enabled from a state ProjL(ES) in a
refinement R actually must be enabled in specification S (if the refinement is
proved correct). Property 2 can make the computation of the transitions sim-
pler. Indeed, if e ∈ Interface(S), then, for all the transitions (ES , e, FS) of the
abstraction, it is only necessary to examine the transitions (ProjL(ES), e, E′)
with E′ ∈ N1R. No other transition can be labelled by e from this state.

Another key aspect of refinement is the refinement of behaviors. New events
may be introduced that make the actions more detailed. These new events are
not observable at the abstract level, as the stuttering in TLA [11]. Very often,
new variables are introduced. Thus, it is useful to visualize the states referring
to these variable changes. In order to preserve the structure of the abstract
system, we choose to refine each abstract state in an independent way. So, the
transitions, relative to events which belong to Interface(S), are preserved by the
introduction of hierarchical states.

Definition 6 (Hierarchical States). A set of sub-states {ER
1 , . . . , ER

m} can
be associated to a super-state ProjL(ES) of R if and only if

m∨
i=1

I(ER
i)⇔ I(ProjL(ES))

In a refined system, the user must decide what projections of abstract states
are decomposed and s/he must provide the predicates of the decomposition.
If the abstract states are disjoint, then the transitions associated to the new
events appear only between the sub-states of a hierarchical state. An example
of refinement with decomposition of states is given in Section 4.4.

let

306 D. Bert, M.-L. Potet, and N. Stouls

4 The GeneSyst Tool

4.1 Presentation

The GeneSyst tool is intended to generate a symbolic labelled transition system
T from an event-B system S and a set of states N . Such a generated SLTS
will be denoted by T (S, N). The input of the tool is a B component, where
the assertions clause contains the formula P1 ∨ . . . ∨ Pn, which characterizes
the list of predicates {P1, . . . , Pn}. By this way, the condition of completeness
(section 3.2) is generated as proof obligation.

We give a sketch of the algorithm which computes the transitions of T (S, N):
it uses three main variables: the set of visited states, visited, the set of processed
states, processed, and the set of computed transitions tr. First, the initial state
is put in the visited set. Then each state E in the visited set is processed: this
consists in computing the transitions (E, (D, A, e), F) with all events e to all
non-initial states F of the system. Predicates D and A are determined following
the algorithm defined in the following section. If D or A are not false then the
transition (E, (D, A, e), F) is added to tr, and if F has not been processed, it
is put in the visited set. After the processing of state E, E is removed from
visited and put in set processed. When visited is empty, then tr contains all
the computed transitions of T (S, N) and processed contains the set of reachable
states. The algorithm terminates, because the set of states to be visited is finite
(bounded by the cardinal of N). This algorithm guarantees that the resulting
SLTS is a valid transition system for S, with given states N .

4.2 Proof Obligations

A subprocedure of the algorithm is to determine effectively the enabledness
predicate and the reachability predicate, given a triple (E, e, F). For sake of
usability of the resulting transition system, it is interesting to examine three
cases: predicates are true, false or other. This information can be obtained by
proof obligations. In Fig. 1, we give the conditions for the calculus of these
predicates. Obviously, if D and/or A is false, then the transition is not possible.

In practice, the GeneSyst tool computes the proof obligations (POs) above
and interacts with AtelierB to discharge the POs. For each triple (E, e, F):

Proof obligations D for (E, e, F)
(1) ∀x · (I(E) ⇒ Guard(e)) true
(2) ∀x · (I(E) ⇒ ¬Guard(e)) false
(3) ∃x · (I(E) ∧ Guard(e)) Guard(e)

Proof obligations A for (E, e, F)
(4) ∀x · (I(E) ∧ Guard(e) ⇒ 〈Action(e)〉I(F)) true
(5) ∀x · (I(E) ∧ Guard(e) ⇒ [Action(e)]¬I(F)) false
(6) ∃x · (I(E) ∧ Guard(e) ∧ 〈Action(e)〉I(F)) 〈Action(e)〉I(F)

Fig. 1. Proof obligations for enabledness and reachability

GeneSyst: A Tool to Reason About Event-B Specifications 307

1. if proof obligation (1) is automatically discharged then D is true.
2. if proof obligation (2) is automatically discharged then D is false and tran-

sition (E, e, F) does not occur in the resulting T (S, N).
3. otherwise, D is Guard(e) by default.

Then, after cases 1. and 3., GeneSyst computes the proof obligations for deter-
mining the reachability predicate A.

4. if proof obligation (4) is automatically discharged then A is true.
5. if proof obligation (5) is automatically discharged then A is false and tran-

sition (E, e, F) does not occur in the resulting T (S, N).
6. otherwise, the transition is kept with 〈Action(e)〉 I(F) as A, by default.

We can notice that Condition 1 about the validity of the transitions is well
satisfied by construction. The by default cases in 3. and 6. correspond to several
possibilities. Either there exist values in state E for which the transition is cross-
able (guard of e is true and state F is reachable), or there are not (the guard
is false or state F is not reachable). However, in both possibilities, these tran-
sitions are included in the resulting transition system. To manage this feature,
we define the notion of minimal symbolic labelled transition system.

Definition 7 (Minimal SLTS). A minimal SLTS is a SLTS where all the
transitions are valid, i.e. satisfy a) and b) of Condition 1, and also satisfy:
c) D �⇔ false and A �⇔ false

A SLTS built by GeneSyst is minimal if all the proof obligations of D and A
have been effectively discharged in step 1. or 2. and step 4. or 5. in the algorithm
above. To minimize the number of by-default transitionss, we have designed two
variants of the algorithm. The first optional alternative of the algorithm is to
change cases 3. and 6. into:

3’. if proof obligation (3) is automatically discharged, then D is Guard(e) by
proof, otherwise, D is Guard(e) by default.

6’. if proof obligation (6) is automatically discharged, then A is 〈Action(e)〉 I(F)
by proof, otherwise, the transition is kept with 〈Action(e)〉 I(F) as A by
default.

Another option of the tool allows the user to get the POs which have not been
automatically discharged. Then, s/he can do an interactive proof to complete
the work and return the information that the PO is discharged or not. However,
the interactive mode is not very practicable when there are a great number of
proof obligations that are not automatically discharged. It becomes useful to
check actually the absence of some critical transitions (cases 2. and 4.).

4.3 Transition Systems Associated to the Demoney Case Study

In Fig. 2, we give an example of transition system generated from a subset of
the abstract specification of the Demoney case study. The B machine is provided

308 D. Bert, M.-L. Potet, and N. Stouls

QInit

[] [] InitializeTransaction
[] [] CompleteTransaction [] [] Init

Error = TRUE Error = FALSE

[] [] GetData
[] [] Reset

[] [G] GetData

[] [G] GetData
[] [] Reset

[] [] InitializeTransaction

[] [G] CompleteTransaction
[] [] InitializeTransaction

[] [G] InitializeTransaction
[] [G] CompleteTransaction

Fig. 2. Transition system associated to the error detection in the Demoney specification

in appendix. We just have represented four methods imposed by the Demoney
specification [16]: InitializeTransaction, CompleteTransaction, Reset and Get-
Data. The two methods InitializeTransaction and CompleteTransaction have to
be executed in sequence. If they are called in the wrong order then an error must
be returned. Moreover, any other methods cannot be invoked between them, ex-
cept the method Reset which models the extraction of the card from the terminal.
If it is called during a transaction, all the internal variables must be restored at
their initial values. Finally, method GetData has been defined to represent any
other method which plays a neutral rôle with respect to transactions.

Let us notice that our model has been expressed with events. In the applet De-
money, methods have neither parameters nor result, because they communicate
through a global variable, named APDU, which allows the information transfert
between the card and the terminal. An error can be returned by means of the
same variable. Finally, methods have no precondition, because they are callable
at any time. So the transformation of methods in events is straightforward.

In the diagrams generated by GeneSyst, transitions are prefixed by the infor-
mation about predicates D and A. A predicate denoted by “[]” means true, while
“[G]” means that the transition is computed by cases 3. or 6. (see section 4.2).

Fig. 2 points out cases in which errors can occur. Transitions have no enabled-
ness condition, because all the guards are true in the model. Some reachability
conditions do not reduce to true, as for the event GetData, which is defined by:

GetData = if EngagedTrans = TRUE then
Error := TRUE || EngagedTrans := FALSE

else Error := FALSE end;

From state Error = FALSE, event GetData can reach the state Error = TRUE with
the condition EngagedTrans = TRUE and stays in Error = FALSE otherwise. Let us
remark also that GetData is enabled in state Error = TRUE and always reaches
state Error = FALSE because of the invariant Error = TRUE ⇒ EngagedTrans =
FALSE.

4.4 Transition System Associated to a Refinement of Demoney

In our refinement of Demoney, the boolean variable Error is changed into a value
of a given set StatusType, which intends to describe error codes, as imposed by

GeneSyst: A Tool to Reason About Event-B Specifications 309

[] [] Reset
[] [] GetData

[] [] CompleteTransaction
[] [] Reset

[] [] GetData
[] [] InitializeTransaction

[] [] GetData
[] [] Reset

(StatusWord = ISO_Ok &

(StatusWord = ISO_Ok &

[] [] InitializeTransaction
[] [] CompleteTransaction

QInit

Error = FALSE

≠StatusWord ISO_Ok
[] [G] InitializeTransaction

[] [G] InitializeTransaction

[] [] CompleteTransaction

 CurTransaction = None)

≠CurTransaction None)

Error = TRUE

[] [] Init

[] [] InitializeTransaction

Fig. 3. Transition system associated to the refinement of the error detection

the specification [16]. In the same way, the boolean variable EngagedTrans is
refined into a value of a given set TransactionType, which indicates the exact
type of the current transaction. Finally, we have introduced the channel with
two levels of security (FALSE and TRUE). All this information is declared in the
invariant below (see also the refinement in appendix):

invariant
StatusWord ∈ StatusType ∧ CurTransaction ∈ TransactionType ∧
ChannelIsSecured ∈ BOOL ∧
((Error = FALSE) ⇔ (StatusWord = ISO Ok)) ∧
((EngagedTrans = FALSE) ⇔ (CurTransaction = None)) ∧
((CurTransaction �= None) ⇒ (ChannelIsSecured = TRUE)) ∧
((StatusWord �= ISO Ok) ⇒ (CurTransaction = None))

Fig. 3 is built from this refinement. State Error = FALSE, which corresponds
to StatusWord = ISO Ok, is split into two states according to that a transaction
is engaged or not.

As expressed in Definition 6, the predicate given to GeneSyst to describe the
states has to be a conjonction of equivalences between an abstract state and a
disjonction of refined states. This predicate is written in the assertion clause.
For example, the assertion below has been used to generate Fig. 3.

((Error = TRUE) ⇔ ((StatusWord �= ISO Ok ∧ CurTransaction = None)
∨ (StatusWord �= ISO Ok ∧ CurTransaction �= None)))

∧
((Error = FALSE) ⇔ ((StatusWord = ISO Ok ∧ CurTransaction = None)

∨ (StatusWord = ISO Ok ∧ CurTransaction �= None)))

With the splitting of the state Error = FALSE, transition conditions are
simplified in true or false or, in the worst case, are unchanged. For example,
in Fig. 2, the transition labelled by [][G]CompleteTransaction and going from

310 D. Bert, M.-L. Potet, and N. Stouls

Error = FALSE to Error = TRUE is, in Fig. 3, going from StatusWord = ISO Ok∧
CurTransaction = None to StatusWord �= ISO Ok ∧ CurTransaction = None with
the label [][]CompleteTransaction. So, its reachability has been made more pre-
cise. The same effect occurs on transition [][G]CompleteTransaction going from
Error = FALSE to Error = FALSE, which is refined by [][]CompleteTransaction

going from CurTransaction �= None to CurTransaction = None in the super-state
Error = FALSE. These two specializations are directly due to the introduction of
the CurTransaction variable.

5 Verification of Security Properties on Demoney

In this section we propose a formalism to express properties relative to security
aspects and we show how GeneSyst can be used to verify these properties. We
will next give a concrete example relative to the Demoney case study.

5.1 Properties

Generally, security is designed and implemented through different levels of ab-
straction. Security policies are defined by a set of rules according to which the
system can be regulated, in order to guarantee expected properties, as confi-
dentiality or integrity. Security policies are then implemented through software
and hardware functions, called security mechanisms. Such an approach has been
adopted by the Common Criteria norm [8] which proposes, through the notion
of assurance requirements, a catalogue of security policies and a hierarchy of
mechanisms.

In this paper we focus on security properties relative to constraints on the
global behavior of the system, as authentication procedures or access control. In
this case, security requirements can be seen as constraints on the execution order
of atomic actions, as operation calls. F. Schneider claims in [18] that automata
are a well-adapted formalism which can, both, be used to specify some forms of
security policies and to control implementations during their execution. On the
other hand, K. Trentelman and M. Huisman [22] propose a logic that can be
used also to express some forms of security properties, as temporal properties
on JML specifications.

We adopt a formalism based on logic formulas, which allows us to point
out expected behaviors either in specifying correct executions, or in specifying
security violations. That offers a good flexibility and is suitable to describe as well
open policies as closed policies, respectively relative to negative authorizations
and positive authorizations [17].

5.2 Predicates of Security Properties

Security properties are often represented as a list of first order logic formulas that
have to be verified. We want to define some predicates to make the expression
of these formulas easier. Predicates that we introduce express the ability of an

GeneSyst: A Tool to Reason About Event-B Specifications 311

event to start from a state (Enabled and AlwaysEnabled) and the existence of a
transition between two states (Crossable and AlwaysCrossable).

Definition 8 (Enabled , AlwaysEnabled , Crossable and AlwaysCrossable).
Given p1 and p2 two state predicates and an event ev from a system S with
variables x, then:

Enabled(p1, ev) =̂ ∃x · (p1 ∧ Guard(ev))
AlwaysEnabled(p1, ev) =̂ ∀x · (p1 ⇒ Guard(ev))
Crossable(p1, ev, p2) =̂ ∃x · (p1 ∧ 〈ev〉p2)
AlwaysCrossable(p1, ev, p2) =̂ ∀x · (p1 ⇒ [ev]p2)

Let us note that if Enabled(p1, ev) ⇔ false, then, for each predicate p2,
AlwaysCrossable(p1, ev, p2) will be true instead of false, which is the intuitive
value expected. In the same way, if p1 is equivalent to false then AlwaysEnabled
and AlwaysCrossable are always true. Moreover, we can notice that:

Crossable(p1, ev, p2)⇒ Enabled(p1, ev)
From this definition we can deduce the properties below, relative to the impli-
cation:

Property 3. Given p1, p2 and p3 three predicates and an event ev then:

– if p1 ⇒ p3 and Enabled(p1, ev) then Enabled(p3, ev)
– if p3 ⇒ p1 and AlwaysEnabled(p1, ev) then AlwaysEnabled(p3, ev)
– if p1 ⇒ p3 and Crossable(p1, ev, p2) then Crossable(p3, ev, p2)
– if p2 ⇒ p3 and Crossable(p1, ev, p2) then Crossable(p1, ev, p3)
– if p3 ⇒ p1 and AlwaysCrossable(p1, ev, p2) then AlwaysCrossable(p3, ev, p2)
– if p2 ⇒ p3 and AlwaysCrossable(p1, ev, p2) then AlwaysCrossable(p1, ev, p3)

Here are two examples:

Reactivity of a System. The JavaCard specification imposes that any APDU
instruction is callable at any time. Given S a system and I its invariant, then
this formula can be expressed as follows:

∀ev · (ev ∈ Interface(S)⇒ AlwaysEnabled(I, ev))

Unicity of the Ways to Reach a State. In some cases, like access control, we
want to impose that the only way to reach a state P is to execute a particular
event Begin. If I is the invariant of S, then this property can be expressed as
follows:

∀ev · (ev ∈ Interface(S) ∧ ev �= Begin⇒ AlwaysCrossable(I, ev,¬P)).

5.3 Property Checking Using GeneSyst SLTS

Security properties could be verified on B specifications, using definition 8. Nev-
ertheless, in some cases, the SLTS produced by GeneSyst can be directly ex-
ploited. Then, the verification consists in using syntactic information relative to

312 D. Bert, M.-L. Potet, and N. Stouls

enabledness and reachability of transitions. Properties 4–7 list the different cases
where the predicates above can be directly established from a symbolic labelled
transition system.

Properties 4–7 share the following hypothesis: Given an event e and q1, q2
two states from a SLTS T , such as I(q1) �⇔ false and (q1, (D, A, e), q2) ∈ WT ,
then predicates Enabled, AlwaysEnabled, Crossable and AlwaysCrossable can be
determined as follows:.

Property 4 (Enabledness Condition - General Case).

1. D ≡ true ⇒ Enabled(q1, e)
2. D ≡ false ⇒ ¬Enabled(q1, e)
3. D ≡ true ⇒ AlwaysEnabled(q1, e)
4. D ≡ false ⇒ ¬AlwaysEnabled(q1, e)

If the SLTS used to verify the property is minimal, then Property 4 can be
enlarged: the conditions are necessary (and sufficient) and conditions 1 and 4
are refined.

Property 5 (Enabledness for Minimal SLTS).

1. D �≡ false ⇔ Enabled(q1, e)
2. D ≡ false ⇔ ¬Enabled(q1, e)
3. D ≡ true ⇔ AlwaysEnabled(q1, e)
4. D �≡ true ⇔ ¬AlwaysEnabled(q1, e)

In the same way, syntactic conditions to check Crossable and AlwaysCrossable
predicates are:

Property 6 (Reachability Condition - General Case).

5. A ≡ true ⇒ Crossable(q1, e, q2)
6. A ≡ false ∨ D ≡ false ⇒ ¬Crossable(q1, e, q2)
7. A ≡ true ∧
∀qi · (q2 �≡ qi ⇒ (q1, (D, A2, e), qi) �∈WT) ⇒ AlwaysCrossable(q1, e, q2)

8. A ≡ false ⇒ ¬AlwaysCrossable(q1, e, q2)

Cases 7 and 8 are not symetric, as it would be expected, because, syntacticaly,
we can just compare names of states, not the intersection of their interpretation.
Just as for enabledness, the conditions can be enlarged, when the SLTS is min-
imal, as follow:

Property 7 (Reachability for Minimal SLTS).

5. A �≡ false ⇔ Crossable(q1, e, q2)
6. A ≡ false ∨ D ≡ false ⇔ ¬Crossable(q1, e, q2)
8. A �≡ true ⇒ ¬AlwaysCrossable(q1, e, q2)

Cases 7 and 8 are just sufficient conditions because of the limitation of the
syntactic verification. Case 7 is not present in Property 7 because it is the same
as in Property 6 Finally, Property 3 allows the deduction of derived properties
from the four properties above, by weakening or strenghtening the states.

GeneSyst: A Tool to Reason About Event-B Specifications 313

5.4 Example of a Property Checking

In this section, we develop a real example of Demoney property and we do its
verification by using the SLTS given in Figure 3. In the Demoney specification
[16], the two APDU instructions InitializeTransaction and CompleteTransaction
have to be executed in sequence, without any other instructions between them
and without reaching any error state, to make a transaction. However, the card
can be withdrawn at any time (modelled by the Reset event) without generating
any error. Transaction atomicity property can be decomposed in five formulas
given below, where I stands for the invariant of the Demoney specification. More-
over, SLTS of Figure 3 is minimal and events are always enabled from all state
of the SLTS. Finally, note than the invariant I is equivalent to the union of all
state predicates (Section 3.2).

Formula 1: There exists at least a value in I such that the event Initialize-
Transaction can reach CurTransaction �= None:

Crossable(I, InitializeTransaction,CurTransaction �= None)

Predicate CurTransaction �= None directly corresponds to a state predicate.
Since there exists a transition from CurTransaction = None ∧ StatusWord =
ISO Ok to CurTransaction �= None, labelled with [][G]InitializeTransaction,
then we can use case 5 of Property 7 and conclude that the Formula 1 is true.

Formula 2: For all values, the event InitializeTransaction goes into the state
CurTransaction �= None or into an error state:

AlwaysCrossable(I, InitializeTransaction,
CurTransaction �= None ∨ StatusWord �= ISO Ok)

CurTransaction �= None and StatusWord �= ISO Ok are two state predicates,
and all the transitions labelled with InitializeTransaction go only in one of these
states. Then, due to case 7 of property 6, this formula is true.

Formula 3: From CurTransaction �=None, all events, but CompleteTransaction
and Reset, go to an error state:

∀e · (e ∈ Interface(S) ∧ e �= CompleteTransaction ∧ e �= Reset⇒
AlwaysCrossable(CurTransaction �= None, e,StatusWord �= ISO Ok)

The two predicates correspond to state predicates and the only events which
go elsewhere than StatusWord �= ISO Ok from CurTransaction �= None are
CompleteTransaction and Reset. Thus Formula 4 is true (case 7 of Property 6).

Formula 4: eXCEPT InitializeTransaction, no event can reach CurTransaction
�= None:

∀e · (e ∈ Interface(S) ∧ e �= InitializeTransaction⇒
AlwaysCrossable(I, e,CurTransaction = None))

314 D. Bert, M.-L. Potet, and N. Stouls

Predicate CurTransaction = None is the union of two existing state predicates.
So, we have to check if there exists an event, different from InitializeTransaction,
that can reach CurTransaction �= None. Since it is not the case, this formula is
true (case 7 of Property 6).

Formula 5: No transition labelled by CompleteTransaction or Reset is reflexive
on state CurTransaction �= None:

¬Crossable(CurTransaction �= None, CompleteTransaction,
CurTransaction �= None)

and ¬Crossable(CurTransaction �= None, Reset,CurTransaction �= None)
CurTransaction �= None corresponds to a state predicate and no Complete-
Transaction or Reset reflexive transition occurs. Thus this formula is true (case 5
of Property 7).

The model of Demoney is thus correct relatively to the atomicity security
property of transactions. However, during the realisation of this example, which
is a simplified Demoney applet, we found three errors due to an erroneous sim-
plification of our complete model of Demoney.

The originality of this approach is to have brought back, under some hypothe-
ses, the verification of security properties to a syntactic checking. However, it
is important to be careful about the real value of the crossing conditions gen-
erated by GeneSyst. Indeed, if some proof obligations are not (automatically)
discharged, the transitions system will have by-default transitions. Then, to
properly exploit the information, we have to be sure that the property to be
verify can be checked on a non-minimal SLTS.

6 Related Works and Conclusion

The work presented here is in line with the ideas presented in [5], itself inspired by
[9]. In [5], the authorspropose the constructionof a labelled transition systemwhich
is a finite state abstraction of the behavior of an event-B system. The existence of
transitions is determined by proof obligations, as here, but the resulting transition
system does not contain any information about transition crossing. Moreover, the
paper does not consider the refinement step in the diagram representation.

Other work is devoted to the translation of dynamic aspects described by stat-
echarts in the B formalism (for instance [13, 20]). These approaches are inverse
of ours, because they go from a diagrammatic representation to an encoding in
a formal text. Their objective is to build a B model from UML descriptions. On
our side, we suppose that the model has been stated and we are interested in rep-
resenting the precise behavior of the system with respect to (a part of) variables,
in order to check properties, or to validate the model against the requirements.

A similar approach has been envisaged for TLA [12] and extended in [6, 7]
to take in account liveness properties and refinement. As in [5], the generated
diagrams are abstractions of the system behavior.

GeneSyst: A Tool to Reason About Event-B Specifications 315

Several tools are dedicated to the analysis of the behavior of B components by
the way of the animation of machines [4] or by local exhaustive model checking
[14]. Even if some of them allow the generation of symbolic traces, these tools can
be considered as “testing” tools. They provide particular execution sequences of
the system, not a static representation of all the behaviors. In [23], the authors
describe the generation of statecharts from event-B systems, but their approach
suffers from several restrictions and their diagrams are not symbolic.

In this paper, we have presented the GeneSyst tool, its logical foundations and
its application to the verification of security properties. In the first part, we intro-
duced the definition of traces of event-B systems and refinements. We formalized
the notion of symbolic labelled transition systems, with transitions decorated by
enabledness and reachability predicates. This gives a complete and precise view
of the behavior of the system, which can be exploited for various objectives.

We described the algorithm that is implemented to generate a SLTS from a B
systemanda set of states, characterizedbypredicates.The computationof effective
transitions between states is performed by proving proof obligations. Due to the
indecidability of the proof process, we have the choice between two kinds of (non
exclusive) results: the generation is automatic, butwe cangetmore transitions than
in the real system, or the user completes interactively the non-conclusive proofs
and then, the resulting automaton reflects exactly the behavior of the system.

The user can take profit of the freedom degree achieved by the choice of the
states, to obtain the best analyses useful for him/her purpose. Non classical ver-
ification techniques can be designed and implemented at this stage, to assess or
to validate the model, as it was shown in the last part of the paper. This opens
a large field of research in the domains of security properties, confidentiality,
access control, validation of models with respect to the requirements, automatic
documentation of specifications, etc. Our present research work is to develop
a set of techniques in the GECCOO2 project to express and to check security
properties, as it was sketched in the paper. We want to investigate the extrac-
tion of states from the specification of property automata, the use of refinement
to split states and achieve a suitable level of decomposition in order to check a
property. Another work is to deal with complex B models (several refinement
chains together with composition clauses sees, includes, etc.), either by com-
posing partial labelled transition systems, or by flattening a structured model
before computing the whole associated SLTS.

References

1. J.-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, August 1996.

2. J.-R. Abrial. Extending B without Changing it (for Developing Distributed Sys-
tems). In H. Habrias, editor, First B conference, Putting into Practice Methods
and Tools for Information System Design, IRIN, pages 169–191, 1996.

2 “Génération de Code Certifié Orienté Objet”. Project of Program “ACI Sécurité
Informatique”, 2003.

316 D. Bert, M.-L. Potet, and N. Stouls

3. J.R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In D. Bert,
editor, B’98: Recent Advances in the Development and Use of the B Method, LNCS
1393, pages 83–128. Springer-Verlag, 1998.

4. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Ut-
ting, and N. Vacelet. BZ-testing tools: A tool-set for test generation from Z and B
using constraint logic programming. In Formal Approaches to Testing of Software
(FATES’02), pages 105–120. INRIA, 2002.

5. D. Bert and F. Cave. Construction of Finite Labelled Transition Systems from B
Abstract Systems. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Inte-
grated Formal Methods, LNCS 1945, pages 235–254. Springer-Verlag, 2000.

6. D. Cansell, D. Méry, and S. Merz. Predicate Diagrams for the Verification of
Reactive Systems. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated
Formal Methods, LNCS 1945, pages 380–397. Springer-Verlag, 2000.

7. D. Cansell, D. Méry, and S. Merz. Diagram Refinements for the Design of Reactive
Systems. Journal of Universal Computer Science, 7(2), 2001.

8. Common Criteria. Common Criteria for Information Technology Security Evalu-
ation, Norme ISO 15408 - version 2.1, Aout 1999.

9. S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In
Computer-Aided Verification (CAV’97), LNCS 1254. Springer-Verlag, 1997.

10. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
11. L. Lamport. A Temporal Logic of Actions. ACM Transactions on Programming

Languages and Systems, 16(3):872–923, may 1994.
12. L. Lamport. TLA in Pictures. Software Engineering, 21(9):768–775, 1995.
13. H. Ledang and J. Souquières. Contributions for Modelling UML State-charts in

B. In M. Butler, L. Petre, and K. Sere, editors, IFM, LNCS 2335, pages 109–127.
Springer-Verlag, 2002.

14. M. Leuschel and M. Butler. ProB: A Model Checker for B. In K. Akari, S. Gnesi,
and D Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 1997.

15. R. Marlet. DEMONEY: Java Card Implementation. Public technical report, SEC-
SAFE project, 11 2002.

16. R. Marlet and C. Mesnil. DEMONEY : A demonstrative Electronic Purse - Card
Specification -. Public technical report, SECSAFE project, 11 2002.

17. P. Samarati and S. De Capitani di Vimercati. Access Control: Policies, Models,
and Mechanisms. In Revised versions of lectures given during the IFIP WG 1.7 In-
ternational School on Foundations of Security Analysis and Design on Foundations
of Security Analysis and Design, pages 137–196. Springer-Verlag, 2001.

18. F. B. Schneider. Enforceable security policies. Information and System Security,
3(1):30–50, 2000.

19. SecSafe. SecSafe Porject Home Page. http://www.doc.ic.ac.uk/ siveroni/secsafe/.
20. E. Sekerinski and R. Zurob. Translating Statecharts to B. In M. Butler, L. Petre,

and K. Sere, editors, IFM, LNCS 2335, pages 128–144. Springer-Verlag, 2002.
21. SUN. Java Card 2.1 Platform Specifications.

http://java.sun.com/products/javacard/specs.html.
22. K. Trentelman and M. Huisman. Extending JML Specifications with Temporal

Logic. In Algebraic Methodology And Software Technology (AMAST ’02), LNCS
2422, pages 334–348. Springer-Verlag, 2002.

23. J.-C. Voisinet and B. Tatibouet. Generating Statecharts from B Specifications. In
16th Int Conf. on Software and System Engineering and their applications (ISCEA
2003), volume 1, 2003.

GeneSyst: A Tool to Reason About Event-B Specifications 317

Appendix

Machine of the Demoney specification (diagram in Fig. 2, Section 4.3):

machine Demoney
variables

Error ,EngagedTrans
invariant

Error ∈ BOOL ∧ EngagedTrans ∈ BOOL ∧
(Error = TRUE ⇒ EngagedTrans = FALSE) ∧
(EngagedTrans = TRUE ⇒ Error = FALSE)

assertions
/* The assertion provides the states for tool GeneSyst */
/* Here, only two states are considered according to the Error values */
Error = FALSE ∨ Error = TRUE

initialisation
Error := FALSE || EngagedTrans := FALSE

operations
= begin EngagedTrans := FALSE || Error := FALSE end;
GetData =

if EngagedTrans = TRUE then
Error := TRUE || EngagedTrans := FALSE

else Error := FALSE
end;

InitializeTransaction =
if EngagedTrans = TRUE then

Error := TRUE || EngagedTrans := FALSE
else

any SW where SW ∈ BOOL then
Error := SW || EngagedTrans := bool(SW = FALSE)

end
end;

CompleteTransaction =
if EngagedTrans = FALSE then

Error := TRUE
else Error := FALSE || EngagedTrans := FALSE
end

end

Refinement of the Demoney specification (diagram in Fig. 3, Section 4.4):

refinement Demoney R1
refines Demoney
sets

TransactionType = {Credit, Debit, None};
StatusType = {ISO Error, ISO Ok}

variables
StatusWord ,CurTransaction,ChannelIsSecured

318 D. Bert, M.-L. Potet, and N. Stouls

invariant
StatusWord ∈ StatusType ∧ CurTransaction ∈ TransactionType ∧
ChannelIsSecured ∈ BOOL ∧
((StatusWord = ISO Ok) ⇔ (Error = FALSE)) ∧
((EngagedTrans = TRUE) ⇔ (CurTransaction �= None)) ∧
((CurTransaction �= None) ⇒ ChannelIsSecured = TRUE) ∧
((StatusWord �= ISO Ok) ⇒ (CurTransaction = None))

assertions
/* Each abstract state is decomposed in two concrete states */
/* One of these states is not reachable */
((Error = TRUE) ⇔

((StatusWord �= ISO Ok ∧ CurTransaction = None)
∨ (StatusWord �= ISO Ok ∧ CurTransaction �= None)))

∧
((Error = FALSE) ⇔

((StatusWord = ISO Ok ∧ CurTransaction = None)
∨ (StatusWord = ISO Ok ∧ CurTransaction �= None)))

initialisation
StatusWord := ISO Ok || ChannelIsSecured := FALSE ||
CurTransaction := None

operations
Reset = begin

StatusWord := ISO Ok || ChannelIsSecured := FALSE ||
CurTransaction := None

end;
GetData =

if CurTransaction �= None then
StatusWord := ISO Error || CurTransaction := None

else
StatusWord := ISO Ok

end;
InitializeTransaction =

if CurTransaction �= None ∨ ChannelIsSecured = FALSE then
StatusWord := ISO Error || CurTransaction := None

else
StatusWord :∈ StatusType;
if StatusWord = ISO Ok then

CurTransaction :∈ {Debit, Credit}
end

end;
CompleteTransaction =

if CurTransaction = None then
StatusWord := ISO Error

else
CurTransaction := None || StatusWord := ISO Ok

end
end

Formal Verification of a Type Flaw Attack on a
Security Protocol Using Object-Z

Benjamin W. Long

School of Information Technology and Electrical Engineering,
The University of Queensland,
Brisbane, Qld 4072, Australia

benl@itee.uq.edu.au

Abstract. We have identified a type flaw attack on the Amended Need-
ham Schroeder Protocol with Conventional Keys due to a potential over-
sight at the presentation layer of the network architecture. Using Object-
Z, a formal specification of the protocol is presented allowing us to state
the assumed properties of the presentation layer explicitly. Object-Z’s
schema calculus is used to verify the attack we have found and the weak-
nesses upon which the attack depends, thus enabling us to minimise the
effort required to prevent the attack and to specify this as part of the
model accordingly.

1 Introduction

We have discovered a type flaw attack on the Amended Needham Schroeder
Protocol with Conventional Keys [7]. Unfortunately, protocol analysis tools are
not good at finding type flaw attacks [13]. For example, such tools have failed
to reveal the type flaw attack we have discovered [7, 9, 4].

This is because security protocols are often specified purely at the application
layer of the network architecture — the level at which the content of messages is
determined — thus restricting the level of the corresponding analysis. However,
the confusion that leads to a type flaw attack is due to the particular design
decisions made at the presentation layer — the level at which the low-level
representation of messages is determined.1

More specifically, type flaw attacks [1] result from misinterpretation of the
bit strings used to encode messages. For example, a type flaw attack can occur
when a message segment of one type is confused with a segment of another type,
or when a message segment of one type is confused with the concatenation of
two or more other segments of varying types.

In practice, simple type flaw attacks can be prevented by the use of ‘tags’ at a
lower level of implementation [11], although, Meadows [13] has recently spoken of
more complex type flaw attacks in which tags will not suffice. Nevertheless, it is

1 We use terminology from the ISO OSI network architecture model as described by
Tanenbaum [19].

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 319–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

320 B.W. Long

never wise to apply countermeasures that may not even be required; in security-
critical systems, we seek to find the necessary and not merely the sufficient.
Hence, for a particular attack we want to prove the specific weaknesses upon
which an attack depends in order to minimise the effort required to prevent it.

Over-protective tagging schemes can unnecessarily increase message sizes,
complexity and other communication overheads. Battery-powered embedded sys-
tems such as PDAs, cell phones, networked sensors and smart cards require such
overheads to be minimal [16]. In these systems, minimising the resources needed
to prevent potential attacks is clearly beneficial.

We are in an age that requires us to follow rigorous development processes.
For example, the Common Criteria [6], a standard for the development and
evaluation of security systems, requires formal methods to be used in order to
obtain the highest level of assurance (EAL7).

Our research aims to promote this level of assurance by providing a framework
for

– formally specifying security protocols at the application layer with the ca-
pability to reason with message structures at the presentation layer; and

– deriving and proving the particular weaknesses upon which a given attack
depends so we can minimise the effort required in order to prevent the attack.

In this paper we demonstrate our approach using the Object-Z specification
language and its schema calculus for the specification of the Amended Needham
Schroeder Protocol with Conventional Keys and verification of the attack we
have discovered.

2 Related Work

Analyses of protocols susceptible to type flaw attacks have been attempted using
various formalisms [9, 3, 2, 20, 18]. The attacks considered generally involve sim-
ple ‘type confusion’, in which message segments of one type are confused with
segments of another type, or in the more advanced models, in which a segment
of one type is confused with the concatenation of two or more other segments of
varying types [13]. For instance, Figure 1 shows two identical bit string repre-
sentations of a message at the presentation layer consisting of an agent identifier
and a nonce, and for each, an alternative way of interpreting the message at the
application layer.

Meadows [13] highlighted the further possibility of attacks in which sub-
segments of one type may be confused with sub-segments of another type. This

agent id︷ ︸︸ ︷
0001 0011

nonce︷ ︸︸ ︷
0111 11110001 0011︸ ︷︷ ︸

agent id

0111 1111︸ ︷︷ ︸
key

agent id︷ ︸︸ ︷
0001 0011

nonce︷ ︸︸ ︷
0111 11110001 0011 0111 1111︸ ︷︷ ︸

key

Fig. 1. Misinterpretation of message segments

Formal Verification of a Type Flaw Attack on a Security Protocol 321

agent id︷ ︸︸ ︷
0001 0011

nonce︷ ︸︸ ︷
0111 11110001 0011 0111︸ ︷︷ ︸

nonce
1111︸ ︷︷ ︸
key

Fig. 2. Misinterpretation among message sub-segments

is particularly imaginable in the case where agents use different parsing algo-
rithms for different protocols. In Figure 2, for instance, not only is the message
interpreted at the application layer to consist of different types, but the segment
lengths are not even the same. In response to this concern, Meadows devised a
procedure specifically for determining whether or not type confusions of any kind
are possible for a given protocol. Given two protocol messages of equal bit-string
value, her approach involves an exhaustive search for all potential misinterpreta-
tions of those messages. A probability is then assigned to each misinterpretation
to assess its likelihood.

Complementing this research, we devised a generic set of Z data structures
to model messages at the presentation layer for reasoning with all such attacks,
enabling us to determine whether potential type flaw attacks are, or are not,
actually possible for a given specification of a protocol [12].

Based on our previous work, here we use Object-Z to formally specify and
verify a type flaw attack we have recently discovered on the Amended Need-
ham Schroeder Protocol with Conventional Keys. The object-oriented approach
allows us to model protocol roles as individual classes, giving us the flexibility
to assemble interesting scenarios from various roles played by agents for our
analysis.

3 The Protocol

The original Needham Schroeder Protocol with Conventional Keys [14] uses
conventional symmetric key encryption to establish a secure means of commu-
nication (establish a shared key) between two agents via a trusted third party.
Denning and Sacco [8] found a vulnerability due to a lack of freshness in the
third protocol message. They presented a solution based on timestamps that
was rejected by Needham and Schroeder [15] on the grounds that “it required
a good-quality time value to be universally available.” Needham and Schroeder
proposed an alternative amendment making use of an additional nonce. The re-
sultant protocol as given by Clark and Jacob [7] is described in Figure 3 using the
standard notation [5] with Alice A playing the part of the initiator, Bob B play-
ing the part of the responder, and Sam S playing the part of the trusted server.

Alice initiates the protocol by sending message 1 to Bob containing her iden-
tity A. Once Bob has received message 1, he replies with message 2 confirming
his participation in the protocol. The message consists of Alice’s identity and a
nonce NB to let Bob identify future messages belonging to the current protocol

322 B.W. Long

1. A −→ B : A
2. B −→ A : {A,NB}KBS

3. A −→ S : A,B ,NA, {A,NB}KBS

4. S −→ A : {NA,B ,KAB , {KAB ,NB ,A}KBS }KAS

5. A −→ B : {KAB ,NB ,A}KBS

6. B −→ A : {N0}KAB

7. A −→ B : {N0 − 1}KAB

Fig. 3. The Amended Needham Schroeder Protocol with Conventional Keys

instance, and it is encrypted with the key KBS previously shared between Bob
and Sam.

After receiving Bob’s reply, Alice sends message 3 to Sam requesting a session
key for herself and Bob. She also includes a nonce NA in order to identify that
the next message she receives is fresh. Sam receives message 3 and decrypts
the message using the key KBS shared between Bob and Sam. He responds by
sending the new session key KAB encrypted for Alice with KAS in message 4
including a segment encrypted for Bob containing the key also.

On receipt of the session key in message 4, Alice checks the value of the nonce
NA to ensure the key is fresh (that is, that it has not been replayed). Then she
forwards the encrypted segment for Bob in message 5. Bob receives the session
key and he also checks the nonce NB to ensure the key is fresh. However, as Bob
is yet to authenticate Alice, he challenges Alice with a nonce N0 encrypted using
the new session key. Alice receives the challenge in message 6 and responds by
sending this value decremented by one, in message 7. Finally, Bob checks this
value received in message 7 and the protocol is complete.

4 A Type Flaw Attack on the Protocol

We have discovered a type flaw attack on the protocol (see Figure 4), requiring
Alice A to play the parts of both an initiator and a responder simultaneously
in two concurrent instances of the protocol: she is the initiator of a protocol
with an agent whom she thinks is Bob (but in fact is the intruder), and also the
responder to a protocol initiated by the same intruder.

After Alice attempts to initiate a protocol with Bob (message 2.1), the in-
truder intercepts this message and sends an arbitrary encrypted segment X to
Alice (message 2.2). Alice will assume this message is from Bob as she cannot
normally make sense of message 2, and she will generate message 2.3 according
to the protocol using X instead of {A,NB}KBS .

Meanwhile, the intruder initiates a second protocol (message 2.1′) with Al-
ice. He uses the composition of plaintext segments NA and B sent by Alice in
message 2.3, and a key chosen by him KAB , as his identity (I = NA,B ,KAB).
Alice attempts to contact Sam accordingly in message 2.2′ not realising that the
intruder’s identity I can be perceived as an alternate meaningful message.

Formal Verification of a Type Flaw Attack on a Security Protocol 323

2.1. A −→ I (B) : A
2.2. I (B) −→ A : X
2.3. A −→ I (S) : A,B ,NA,X
2.1′. I −→ A : I (I = NA,B ,KAB)
2.2′. A −→ I : {I ,NA2}KAS

2.4. I (S) −→ A : {NA,B ,KAB ,NA2}KAS

2.5. A −→ I (B) : NA2

2.6. I (B) −→ A : {N0}KAB

2.7. A −→ I (B) : {N0 − 1}KAB

Fig. 4. A type flaw attack on the protocol

In fact, the intruder sends message 2.2′ straight back to Alice in message 2.4
without modification, continuing the original protocol. Now, as Alice is expecting
a message of a particular form, she will not recognise the intruder’s identity I .
Instead Alice will identify the nonce NA she sent in message 2.3, Bob’s identity
B , the key KAB , and a forth segment NA2 assumed to be the encrypted segment
({KAB ,NB ,A}KBS) also expected in message 4. As Alice encrypted this message
with the shared key KAS she will now believe that this message was sent to her
by Sam, when it was actually redirected from herself via the intruder. It is at this
point that Alice has been fooled by the intruder into accepting the intruder’s
chosen key as a key for secure communication between herself and Bob.

Following the protocol, Alice attempts to send the forth segment from mes-
sage 2.4 to Bob in message 2.5. The intruder intercepts this message and proceeds
to initiate a challenge (message 2.6) and response (message 2.7) with Alice whilst
pretending to be Bob in order to finalise the protocol.

5 Modelling Messages

In previous work [12], we devised generic Z data structures for modelling mes-
sages at the presentation layer to reason about type flaw attacks. We can reuse
these structures for the foundation of this verification.

We assume a given set of ‘atoms’ from which all messages and message parts
are constructed at the presentation layer (for example, bits or bytes).

[ATOM]

The set of all messages or streams STR is the set of all possible sequences of
atoms.

STR == seqATOM

Then we declare four subsets of STR for the different types of data segments
that exist at the application layer:

324 B.W. Long

AID : P STR [agent identifiers]
NON : P STR [nonces]
KEY : P STR [keys]
ENC : P STR [encrypted segments]

The subsets are not necessarily disjoint which means that individual segments
may belong to one or more subsets of STR. Other segment types may also be
added as required.

This is a detailed yet flexible specification of protocol messages allowing us to
specify protocols at the application layer and yet reason with protocol messages
at the presentation layer. Stronger constraints and assumptions can be intro-
duced for the specification of a particular protocol as is shown in the following
section.

6 Specification of the Protocol

In this section we specify the protocol using the data structures introduced in
Section 5. We begin by adding assumptions regarding properties and functions
of messages suitable for our particular analysis.

To allow for analyses of type flaw attacks, our data structures let different
agents interpret the same message as consisting of different sequences of typed
segments. However, when two agents ‘speak the same language’ or agree on the
type structure of the message, there should be no ambiguity.

Instead of enforcing a specific correlation between the application and pre-
sentation layers, we assume the following global axiom which says that if two
agents both interpret the initial part of a message to be an agent identifier, then
the values they associate with this segment are identical.

(∀m,n : AID ; o, p : STR • m � o = n � p ⇒ m = n)

Thus, if two identical message streams ‘m�o’ and ‘n�p’ begin with segments m
and n, both of which are interpreted to be of type AID , then m and n must be
the same identifier. The same applies to the other segment types (NON , KEY
and ENC), however, we have omitted the corresponding predicates from this
paper for brevity.

Our approach relies on unifying messages encrypted with the same key. To
enable this, we specify a simple property of the encrypt function enc. This func-
tion maps every key to a function that will produce a unique encrypted segment
for any given message stream.

enc : KEY → (STR � ENC)

Message 7 of the protocol was originally stated by Needham and Schroeder
to be a reply related to message 6. They suggest the reply could be the value re-
ceived in message 6 decremented by one, however, for our analysis we don’t need

Formal Verification of a Type Flaw Attack on a Security Protocol 325

to be this specific and choose to introduce a function auth to determine the re-
lated reply. Given a stream s, auth(s) will produce a different and unique stream.

auth : STR � STR

∀ s : STR • auth(s) �= s

6.1 Modelling Protocol Roles

The protocol describes three roles for interaction between three network agents:
initiator, responder and server. For example, agent Alice may take on initiator
roles, responder roles and depending on the topology of the network, even server
roles, all at the same time.

Like Ryan et al. [17], we choose to model the protocol in terms of these roles
and interactions between them, rather than modelling the behaviour of a given
set of network agents. In doing this, we have the flexibility to assemble scenarios
from various roles played by agents for the particular analyses we are interested
in. Furthermore, our model is simplified because we can focus on one instance
of the protocol at a time. For example, for a given instance, we only need to
model the existence of one message in transit, and we can declare random val-
ues such as session keys and nonces as static variables for the lifetime of the
roles.

Each role is captured within a single Object-Z class specification. Each class
specification contains information and operations available to the role it is mod-
elling. Instantiations of these classes, or role objects, may then interact with each
other to simulate the protocol to which the roles belong. These interactions are
specified within another class at a higher level. We do this in Sections 7 and 8
in order to perform our proofs.

The first class we model corresponds to the initiator role. Each role refers
to the initiating agent as A, the responder as B and the server as S. A class
representing the initiator will keep values for only those items used by that role.
For example, in the protocol description, the initiator makes reference to A’s
identity A, B’s identity B , A’s nonce NA, the final authentication nonce N0,
the key KAS shared between A and the server S, the new session key KAB , and
the current message msg in transit. These values are declared accordingly in the
class state schema. (We assume that upon creation, keys and nonces are assigned
a ‘random’ value from the corresponding sets KEY and NON .)

Initiator

A,B : AID
NA,N0 : NON
KAS ,KAB : KEY
msg : STR

326 B.W. Long

begin
Δ(msg)

msg ′ = A

requestKey
Δ(msg)

msg ∈ ENC ∧msg ′ = A � B � NA
� msg

forwardKey
Δ(msg ,KAB)

msg = enc(KAS)(NA
� B � KAB

′ � msg ′)∧msg ′ ∈ ENC

respond
Δ(msg ,N0)

msg = enc(KAB)(N0
′)∧msg ′ = enc(KAB)(auth(N0

′))

Operation begin corresponds to the sending of message 1 in the standard
notation description of the protocol shown in Section 3. Pre-state variables are
undecorated and hold the value of the variables before execution of the oper-
ation, whereas post-state variables are decorated with a prime ‘′’ and denote
the value of the variables after execution of the operation. The Object-Z symbol
‘Δ’ declares pre-state and post-state variables for each of the named variables,
indicating that these variables may be changed by the operation. The post-state
variable msg ′ updates the value of the message currently in transit. For this
operation it holds the value of A’s identity.

Operation requestKey corresponds to both A receiving message 2 from B
and sending the request for a key to S (message 3). (We assume that intruders
cannot interfere with operations internal to an agent.) The predicate msg ∈ ENC
requires that the incoming message is an encrypted segment, and the value of
the outgoing message msg ′ is the value of the incoming message prepended by
A, B and NA.

Operation forwardKey corresponds to A receiving message 4 from S and
forwarding the key to B (message 5). We use the post-state variable KAB

′ in the
description of the incoming message to indicate that A is learning and updating
this variable. The precondition on this operation is that the incoming message
msg is a segment encrypted with the key KAS shared between A and S, consisting
of A’s nonce NA, B’s identity B , the new session key KAB

′ and a remaining
stream msg ′ that becomes the value of the outgoing message.

Operation respond corresponds to A receiving message 6 and sending a re-
lated reply in message 7 using the function auth defined in Section 5.

A class for the responder role is constructed below in a similar way with three
operations corresponding to the messages described in the standard notation

Formal Verification of a Type Flaw Attack on a Security Protocol 327

description: reply corresponds to B receiving message 1 and responding to A’s
request in message 2; challenge corresponds to B receiving the key from A in
message 5 and challenging A in message 6; and check corresponds to B receiving
message 7 from A and checking the value for authentication purposes.

Responder

A,B : AID ; N0,NB : NON
KBS ,KAB : KEY ; msg : STR

reply
Δ(msg ,A)

msg = A′ ∧msg ′ = enc(KBS)(A′ � NB)

challenge
Δ(msg ,KAB)

msg = enc(KBS)(KAB
′ � NB

� A)∧msg ′ = enc(KAB
′)(N0)

check
msg = enc(KAB)(auth(N0))

An agent in the server role determines which keys to use for decryption based
on the identities of the agents received in the message. To capture this behaviour,
the server requires a function key associating agent identifiers with keys. The
server only requires one operation giveKey that corresponds to the receipt of
message 3 and subsequent distribution of the session key in message 4.

Server

A,B : AID ; NA,NB : NON
key : AID �→ KEY
KAB : KEY
msg : STR

giveKey
Δ(msg ,A,B ,NA,NB)

msg = A′ � B ′ � NA
′ � enc(key(B ′))(A′ � NB

′)
msg ′ = enc(key(A′),NA

′ � B ′ � KAB
�

enc(key(B ′),KAB
� NB

′ � A′))

The intruder class Intruder specifies the operations required by the intruder
to perform the type flaw attack described in Section 4.

328 B.W. Long

Intruder

A,B : AID ; NA,NA2 ,N0 : NON
X : ENC
KAB : KEY
msg : STR

intercept
Δ(msg ,A)

msg = A′ ∧msg ′ = X

new
Δ(msg ,B ,NA)

msg = A � B ′ � NA
′ � X ∧msg ′ = NA

′ � B ′ � KAB

challenge
Δ(msg ,NA2)

msg = NA2
′ ∧msg ′ = enc(KAB)(N0)

check
msg = enc(KAB)(auth(N0))

Operation intercept corresponds to the intruder intercepting message 2.1 and
sending a nonsense message consisting of an abitrary encrypted segment X to
A (message 2.2). The second operation new corresponds to the intruder inter-
cepting message 2.3, and beginning a new protocol by sending message 2.1′ to
A consisting of the learned values NA

′ and B ′, and a session key KAB chosen by
the intruder. The third operation challenge corresponds to the intruder sending
a challenge to A according to the protocol (message 2.6). The final operation
check corresponds to the intruder checking that the value received in message
2.7 matches the value he sent previously in message 2.6. (We do not model the
operation corresponding to the intruder’s forwarding of message 2.2′ in message
2.4 as this operation does not change the state in our model.)

7 Verification of the Protocol Model

Before verifying the attack, we need to confirm the correctness of our model by
proving that under normal operation, the protocol achieves its desired goal. In
order to do this, we first need to know how the operations specified in Section 6
relate to each other.

We define a class Instance1 to simulate an instance of the protocol. There are
three roles required: the initiator played by Alice (alice : Initiator), the responder
played by Bob (bob : Responder), and the server played by Sam (sam : Server).

Formal Verification of a Type Flaw Attack on a Security Protocol 329

We use a single communications medium for simplicity, specified by a state
invariant that the agents’ messages msg are always equal.

Initially, Alice must have the correct value for Bob’s identity and Sam must
have each agent’s identity mapped to their corresponding key. These are reason-
able assumptions and are specified within the initialisation schema INIT . (We
also found that these were the minimal set of assumptions required for the proof
to work.)

Instance1

alice : Initiator
bob : Responder
sam : Server

alice.msg = bob.msg = sam.msg

INIT
alice.B = bob.B
sam.key(alice.A) = alice.KAS ∧ sam.key(bob.B) = bob.KBS

protocol =̂ alice.begin o
9 bob.reply o

9 alice.requestKey o
9 sam.giveKey o

9

alice.forwardKey o
9 bob.challenge o

9 alice.respond o
9 bob.check

Operation protocol specifies a complete instance of the protocol by appropri-
ate composition of the agents’ operations using Object-Z’s schema composition
‘o9’ operator [10]. Simplification of schema composition is achieved by equating
the post-state variables of each operation with the pre-state variables of the next,
resulting in an operation schema equivalent to application of the operations one
after the other. For example, composition of alice.begin with bob.reply gives the
following predicate:

∃ alice.msg ′′, bob.msg ′′ : STR •
alice.msg ′′ = alice.A∧ bob.msg ′′ = bob.A′

bob.msg ′ = enc(bob.KBS , bob.A′ � bob.NB)

Knowing that the invariant ensures alice.msg ′′ = bob.msg ′′ this predicate sim-
plifies to:

bob.A′ = alice.A∧ bob.msg ′ = enc(bob.KBS , bob.A′ � bob.NB)

The goal of the protocol is for agents Alice and Bob to receive the new key
KAB from Sam, i.e., to have their values (alice.KAB and bob.KAB) of the new
key equal to the value of the key sam.KAB sent by Sam.

goal
alice.KAB = sam.KAB
bob.KAB = sam.KAB

330 B.W. Long

We can verify that the protocol actually achieves this goal by proving that
the result of protocol implies the goal:

protocol ⇒ goal ′ .

Assuming initialisation of Instance1, composition of the operations defining
protocol results in the below schema.

protocol
Δ(alice.msg , bob.msg , sam.msg , sam.A, sam.B , sam.NA, sam.NB ,

bob.A, alice.KAB , bob.KAB , alice.N0)

alice.KAB
′ = sam.KAB ∧ alice.N0

′ = bob.N0

bob.KAB
′ = sam.KAB ∧ bob.A′ = alice.A

sam.A′ = alice.A∧ sam.B ′ = alice.B ∧ sam.N ′
A = alice.NA

sam.NB
′ = bob.NB

We find that various of the agents’ variables are updated, including Alice’s
and Bob’s value of the session key KAB . From the equalities alice.KAB

′ =
sam.KAB and bob.KAB

′ = sam.KAB , we can conclude that the intended se-
quence of protocol operations implies the goal.

8 Verification of the Type Flaw Attack

In order to perform verification of the attack, we need to specify another instance
Instance2, this time including only the agents and trace of operations required
to simulate the attack described in Section 4.

There are three roles: an initiator played by Alice (aliceA : Initiator), a
reponder also played by Alice (aliceB : Responder), and the intruder. Note that
Alice’s identity is aliceA.A when she is playing the initiator role, whereas her
identity is aliceB .B when she is playing the responder role. Initially, the key
aliceA.KAS shared by the server and Alice in role A is equal to the key aliceB .KBS
shared by the server and Alice in role B.

Instance2

aliceA : Initiator
aliceB : Responder
intruder : Intruder

aliceA.msg = aliceB .msg = intruder .msg

INIT
aliceA.KAS = aliceB .KBS

attack =̂ aliceA.begin o
9 intruder .intercept o

9 aliceA.requestKey o
9

intruder .new o
9 aliceB .reply o

9 aliceA.forwardKey o
9

intruder .challenge o
9 aliceA.respond o

9 intruder .check

Formal Verification of a Type Flaw Attack on a Security Protocol 331

A desirable secrecy property secrectKey of the protocol is that Alice and the
intruder do not share a session key meant for Alice and Bob, i.e., the intruder’s
value of the key intruder .KAB is not the same as the value Alice has for the key
aliceA.KAB . This property is expressed by the following schema.

secretKey
aliceA.KAB �= intruder .KAB

Assuming that this secrecy property holds initially, insecurity of the protocol
is proven by demonstrating that after the intrusion, the negation of the property
holds:

(secretKey ∧ attack)⇒ ¬ secretKey ′ .

Assuming initialisation of Instance2, we evaluate the attack operation, again
by simplification of the composition.

attack
Δ(aliceA.msg , aliceB .msg , intruder .msg , intruder .A, intruder .B ,

intruder .NA, aliceB .A, aliceA.KAB , intruder .NA2 , aliceA.N0)

intruder .A′ = aliceA.A∧ intruder .B ′ = aliceA.B
intruder .NA

′ = aliceA.NA ∧ intruder .NA2
′ = aliceB .NB

aliceB .A′ = aliceA.NA
� aliceA.B � intruder .KAB

aliceB .NB ∈ ENC
aliceA.N0

′ = intruder .N0
aliceA.KAB

′ = intruder .KAB

Since the intruder’s value for the key is unchanged by the attack opera-
tion (i.e., intruder .KAB

′ = intruder .KAB), it is evident that aliceA.KAB
′ =

intruder .KAB
′. So we can conclude that the attack implies the negation of the

secrecy property, thus verifying the insecurity of the protocol.

9 Preventing the Attack

The predicate formed in the attack operation also reveals the following two
application layer requirements in the precondition that must be preserved by
the presentation layer for the attack to succeed:

∃ aliceB .A′ : AID • aliceB .A′ = aliceA.NA
� aliceA.B � intruder .KAB

aliceB .NB ∈ ENC

Therefore, we know that the attack can be prevented by avoiding at least one of
these conditions through implementable restrictions placed on the protocol.

332 B.W. Long

The first condition states that an agent identity can be constructed from the
concatenation of segments aliceA.NA, aliceA.B and intruder .KAB . If this condi-
tion is not met, Alice will not accept message 2.1′ from the intruder and the pro-
tocol will be aborted. The first condition can be avoided by disallowing the multi-
ple segments from being interpreted as the one. For example, each message could
be prefixed with a tag identifying the number of segments contained within the
message; a single reserved tag could identify the beginning of each message seg-
ment; or more simply, agent identifiers could have a single predetermined length.

The second condition states that Alice’s nonce aliceB .NB can be interpreted
as an encrypted segment. If this condition is not met, she will not accept mes-
sage 2.4 and again the protocol will be aborted. The second condition can be
avoided if agents are unable to confuse a nonce with an encrypted segment. For
example, two tags could be introduced to uniquely identify nonces and encrypted
segments only.

A specification of the protocol, secure against the type flaw attack we have
presented, would simply include the negation of the precondition above as a
special requirement as follows:

¬(∃ aliceB .A′ : AID • aliceB .A′ = aliceA.NA
� aliceA.B � intruder .KAB) ∨

aliceB .NB �∈ ENC .

10 Conclusion

We have formally verified a type flaw attack we discovered on the Amended
Needham Schroeder Protocol with Conventional Keys.

First, we used Object-Z to model the behaviour of the protocol at the appli-
cation layer and verified the correctness of our model by proving that normal op-
eration of the protocol satisfied its expected goal. Then we modelled the attack,
verified its success, and in particular, the specific weaknesses at the presentation
layer upon which the attack depends.

Knowing these weaknesses, we can derive minimal tagging options or other
less expensive implementable restrictions that will secure the protocol without
having to rely on over-protective tagging schemes.

Acknowledgments

I would like to thank Colin Fidge for helpful discussions and comments on a
draft of this paper, Peter Robinson and Graeme Smith for guidance with Z and
Object-Z, and Brad Long, Philippa Hopcroft and the anonymous referees for
useful feedback.

References

1. C. Boyd. Hidden assumptions in cryptographic protocols. IEE Proceedings, Part
E, pages 433–436, November 1990.

Formal Verification of a Type Flaw Attack on a Security Protocol 333

2. M. Bozzano. A Logic-Based Approach to Model Checking of Parameterized and
Infinite-State Systems. PhD thesis, DISI, University of Genova, June 2002. http:/
/www.disi.unige.it/person/BozzanoM/publications.html.

3. M. Bozzano and G. Delzanno. Automated protocol verification in linear logic. In
Proceedings of the Fourth ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, pages 38–49. ACM Press, October 2002.

4. S. H. Brackin. Evaluating and improving protocol analysis by automatic proof. In
Proceedings of 11th IEEE Computer Security Foundations Workshop (CSFW’98),
pages 138–152. IEEE Computer Society Press, 1998.

5. U. Carlsen. Generating formal cryptographic protocol specifications. In Proceed-
ings of the 1994 IEEE Computer Society Symposium on Research in Security and
Privacy, pages 137–146. IEEE Computer Society Press, 1994.

6. 1999. Common Criteria for Information Technology Security Evaluation. August,
1999. Version 2.1. CCIMB-99-031. http://csrc.nist.gov/cc/.

7. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0,
1997. http://www.cs.york.ac.uk/∼jac/papers/drareviewps.ps. Accessed May 2003.

8. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
munications of the ACM, 24(8):533–536, 1981.

9. B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols
using Casper and FDR. In Proceedings of the Workshop on Formal Methods and
Security Protocols, Trento, Italy, 1999.

10. R. Duke and G. Rose. Formal Object-Oriented Specification Using Object-Z. Cor-
nerstones of Computing. Macmillan Press Limited, UK, 2000.

11. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. In Proceedings of 13th IEEE Computer Security Foundations Workshop
(CSFW’00), pages 32–43. IEEE Computer Society Press, 2000.

12. B. W. Long. Formal verification of type flaw attacks in security protocols. In
Proceedings of the 10th Asia-Pacific Software Engineering Conference (APSEC)
2003, pages 415–424. IEEE Computer Society, 2003.

13. C. Meadows. Identifying potential type confusion in authenticated messages. In
Proceedings of Workshop on Foundation of Computer Security (FCS’02), pages
75–84, 2002. Published as a joint DIKU technical report, http://www.diku.dk/.

14. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(12):993–999, 1978.

15. R. Needham and M. Schroeder. Authentication revisited. Operating Systems Re-
view, 21(1):7, 1987.

16. N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. Analyzing the en-
ergy consumption of security protocols. In Proceedings of the 2003 international
symposium on Low power electronics and design, pages 30–35. ACM Press, 2003.

17. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and
Analysis of Security Protocols: The CSP Approach. Addison-Wesley, 2000.

18. P. Syverson and C. Meadows. Formal requirements for key distribution protocols.
In A. De Santis, editor, Advances in Cryptology — EUROCRYPT ’94, volume 950
of Lecture Notes in Computer Science, pages 320–331. Springer-Verlag, 1994.

19. A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, USA, 4th edition,
2003.

20. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security
protocol correct? In Proceedings of the 1998 IEEE Symposium on Security and
Privacy, pages 160–171. IEEE Computer Society Press, May 1998.

Using B as a High Level Programming Language in an
Industrial Project: Roissy VAL

Frédéric Badeau1 and Arnaud Amelot2

1 ClearSy, Europarc de Pichaury bat. C1 13856 Aix-en-Provence, France
frederic.badeau@clearsy.com

2 Siemens Transportation Systems, 48-56 rue Barbès 92120 Montrouge, France
arnaud.amelot@siemens.com

Abstract. In this article we would like to go back on B used to design software,
by presenting the industrial process established through years by Siemens Trans-
portation Systems on a real project: the VAL shuttle for Roissy Charles de Gaulle
airport. In this project, the logical core of an equipment located along the tracks
and driving the shuttles is designed with B.

By confronting this B software development, with the historical context, we
show that B can be used as a high-level programming language offering the fea-
ture of proving properties. We show how this process is used to build, by con-
struction, a large size software with very few design errors ever since its first
release, and for a predefined cost.

1 Introduction

Historically, the B Method was introduced in the late 80s’ to design correctly safe soft-
ware (see [BBook96]). A wider scope use of B appeared in the mid 90s’, called Event B,
to analyze, study and specify, not only software, but also whole systems (see [Abr96]).
This article presents the results of using B in an industrial context, to produce the safety
critical software WCU1 for the Roissy VAL2 system. The whole system is developed
by Siemens Transportation Systems (formerly Matra Transport). The B development
of the WCU, has been subcontracted to ClearSy, who applied Siemens B Method to
produce software. This method has been first established for the development of Paris
underground metro Line 14, called “Météor”, and has been enhanced ever since (see
[Behm99]). It consists in using B as a high-level programming language, including the
feature of proving properties.

Controlling the development of safety critical software is a main concern for Siemens.
They have to guatantee that the software complies to its requirements, and especially its
safety requirements. They also need to control development costs and delays, especially
for the development of a large project, where the size factor is a key issue.

To achieve this goal, Siemens designed a process for using B efficiently to build a
correct piece of software by construction. That means that the first software release has
already very few design errors. In this process Unit Tests are not performed, since more

1 Wayside Control Unit.
2 Véhicule Automatique Léger (Light Automated Train).

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 334–354, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Using B as a High Level Programming Language in an Industrial Project 335

effort is directed to the early specification phases, to build directly correct software.
The next development steps remain basically the same: the software produced with B
is integrated with the rest of the software and goes through host tests (simulation tests
on a workstation). Then software is integrated in the hardware of the WCU and goes
through target tests, and so on.

This article focuses on this process.

– Section 2 presents the Roissy VAL system.
– Section 3 introduces the principles of the B Method. This method is decomposed

into two phases: formalizing detailed specification documents into a B Abstract
Model, and then implementing this model into a Concrete Model.

– Section 4 details the Abstract Model.
– Section 5 details the Concrete Model.
– Section 6 analyzes the project statistics.
– Section 7 presents the maintenance of such a project.
– Section 8 concludes.

2 Roissy VAL Shuttle Presentation

A new VAL shuttle system is being developed by Siemens Transportation Systems to
equip Roissy Charles de Gaulle airport for ADP (Aéroports De Paris). The first line,
due in 2006, will connect Roissy terminal 1 to Roissy terminal 2, through Roissy Pole
and two car parks. The VAL system is a driverless light train. Line 1, as shown in figure
1, is made up of 5 sections from CDG-1 to CDG-2, plus 2 technical sections to park
and maintain trains. The line has two tracks. VAL trains usually drive on the right track,
however they may drive on any direction and change direction at any time.

The Roissy VAL system is based on the VAL system of Chicago O’Hare airport.
This system differs from the other VAL metros, like Orly-VAL (see [Dol03]). It of-
fers higher functionalities thanks to a digital equipment called Wayside Control Unit
(WCU). A WCU drives trains on a line section. Actually, a section has two redun-
dant WCUs for availability issue. All the WCUs are linked by a safe Ethernet network,
which also connects the Control Center. The Control Center manages traffic on the line
by sending route orders to the WCUs. A WCU receives these orders and then safely
commands and controls automatic trains on its section.

As shuttles are light trains, they are commanded by discrete speed programs. Every
speed program is physically associated to an electric current loop located between the
rails and covering some continuous part of the tracks. When it is powered, a speed
program gives at any point of the loop a fixed speed order. Several speed programs may
coexist at a certain point of the track. Examples of speed programs are cruise speed, low
speed, departure speed and arrival speed. WCUs drive trains by selecting and powering
the right loops. When the on-board train system detects a speed order, it adjusts the train
speed according the order.

Before sending orders to trains, WCUs should be able to localize safely trains on the
line. To do so, every section is decomposed into fixed blocks, which give the localization
granularity. With the help of different sensors, WCUs should safely establish whether
or not a train occupies a block.

336 F. Badeau and A. Amelot

WCU

WCU
WCU

WCU

WCU

WCU WCU

CDG−1

CDG−2

Fig. 1. Roissy VAL - Line 1

Those logical treatments are performed by a piece of software. The software is split
into low-level modules that take care of input/output, task scheduling, as described
into [Behm99], and into high-level modules, which handle the logical and functional
treatments. The core of high-level modules, which contains Safety Critical Software, is
called WCU-SCS3. It is designed in B and then translated into Digisafe-ADA. The rest
of the software is directly designed in Digisafe-ADA. The Digisafe technique intends
to insure safe runtime with only one processor and replaces architectures with redun-
dant processors. It is complementary with the B Method, which avoids design software
errors.

All the WCUs does not share the exact same ADA code, as configuration data
are specific to each WCU. However, the core part designed in B is the same for all
WCUs.

3 Principles of the B Method Used

We shall now introduce the principles of the B Method used in the project. This B
Method is part of Siemens software development process. It describes step by step how
to use B to build a piece of software. The whole process is made up of guidelines, of B

3 Wayside Control Unit - Safety Critical Software

Using B as a High Level Programming Language in an Industrial Project 337

generic elements (which should be instantiated at each use in the project) and of tools
also developed by Siemens.

The starting point of a project is low-level software specification documents, written
in natural language and possibly using any formalism to help describing the system.

This method suits software mainly based on a discrete logic description, where basic
types are Booleans, finite sets, integers or integers regarded as decimal numbers. It does
not suit software based on continuous calculus or based on floating point numbers that
cannot be regarded as decimal numbers.

The development process is split into two phases called Abstract Model and Con-
crete Model. These phases are named after the part of the B model they produce.

During the first phase, every functional piece of information or every requirement
from the informal software specifications should be formalized into the Abstract Model.
To make sure that the Abstract Model indeed matches its formal specification, we use
inspections. A key feature of this Method is to offer the possibility of strengthening the
abstract model by proving that some properties are established on the whole model.

Abstract Model data have abstract types since they are based on sets, relations and
functions of scalars. Abstract data types make the Abstract Model compact and close
from informal specifications. However, these data and their treatments cannot be di-
rectly implemented.

The goal of the second phase is to build the Concrete Model starting from the not
implementable parts of the Abstract Model. This task is completely systematic and
does not require any knowledge on the informal specifications. We have to prove that
the Concrete Model is a correct implementation of the abstract model.

These two B development phases are now detailed in the next two sections.

4 The Abstract Model Phase

4.1 Informal Specifications

Informal software specification documents come as an output of the system develop-
ment phase, performed by Siemens: system analysis. During system analysis, choices
are made to design the system, so that it should meet its functional requirements, and
more important, that it should meet them safely. System design produces an equipment
architecture broken down into hardware and software specification documents. Soft-
ware is also broken down into a safe part, where safety is concerned, and a part where it
is not. In the case of the WCU equipment, the safe software part commands and controls
driverless trains on a given line section.

The Safety Critical Software part (called WCU-SCS) is designed in B and will pro-
duce as an output Digisafe-Ada code. In order to ensure safety for the whole system,
detailed choices have to be made for the safe software during this early phase. Actually
the safe software requirements produced at the end of system analysis are very de-
tailed. They describe a functional breakdown of the software into elementary functions
with data flow charts. Most elementary functions are precisely specified in terms of in-
put, output and pseudo-code to specify output computation. Sequencing of elementary
functions is also specified.

338 F. Badeau and A. Amelot

Documents

Software
Specification

Abstract
Model

Concrete
Model

safety properties
proof

well−implementation
proof

Formalization

Digisafe−ADA

Translation

B Model

Inspections

Fig. 2. Abstract and Concrete Models

In the case of the Roissy WCU-SCS project, informal specifications come as a col-
lection of various, more or less old, documents. Three documents were written more
than ten years ago for the Chicago VAL system, before B was used at Siemens. They
describe the specification of the three main modules of the system (Block Logic, Route
Logic, Mode Logic). They use functional breakdown, data flow charts and treatments
are specified by pseudo-code. The top document is more recent. It was written just be-
fore the beginning of the B development. It uses a functional breakdown. It describes
data directly in B and makes references to treatments covered by the three main mod-
ules documents. It also defines new treatments with the same kind of pseudo-code than
the other documents.

We can point here, that having a specification document as close as possible from
the B model is a key issue. Since no formal proof can be done between the informal
specifications and the Abstract B Model, the closest the two are, the less formalization
errors or misunderstanding of informal specifications are likely to appear.

In this project data were already described in B, which minimize the risk of errors
when specifying data into the Abstract Model. Siemens made all the abstract data mod-
elling choices. Sometimes choices are just mathematical or methodological choices, for
example, a relation A↔ B can be used instead of a function of sets A �→ P(B). But
most of the time choices come from knowledge of the system. For example, to model a
relation between sets A and B, should we use A↔ B, A �→ B or A→ B? It depends
on the system properties.

Initializations and sequencing substitutions, which are quite simple, were also spec-
ified in B. Other operations were described by pseudo-code or in B. As they may lead
to long B operations, their formalization requires to pay extra attention, to avoid any
possible pitfall.

Formalizing software specifications into an abstract model is error prone since this
cannot be covered by a formal proof. Informal specification are by nature liable to be
incomplete, ambiguous and open to different understanding, especially when they are

Using B as a High Level Programming Language in an Industrial Project 339

part of a 200-page document that has to be written in a reasonable time. Although they
have flaws, informal specifications remain the best way to communicate specification.
However, to handle this issue, a question/answer database on the software specification
has been used to keep a trace of questions asked by ClearSy and answers provided by
Siemens. This activity has been a key issue for ClearSy to understand every detail of the
requirements. Sometimes questions led to explanations from Siemens and sometimes
they led to precisions or adjustments of the specification documents. We can note here
that updating regularly specification documents helped building a B model consistent
with its informal specifications.

In order to check B models against the natural language specifications, we used
inspections. Every B Language element of the model is read by a member of the mod-
elling team who did not write it. Inspections should be as precise as possible. Every B
symbol of the model should be checked. The reader has to be convinced that the related
informal specification is correctly and completely formalized. Traceability between B
models and specifications is achieved by giving explicit references, inside the quality-
assurance comment at the beginning of each abstract operation. When a question arises
during inspection, the B model may be changed, or the question might be forwarded to
the project question/answer database.

4.2 Abstract Data

Data used to build the Abstract Model are abstract data. We are now going to detail
those abstract data.

Basic Types. The basic types used are: Boolean (the BOOL predefined set), enumer-
ated sets or deferred sets (declared in the SETS clause) and implementable integers
(predefined B sets INT and NAT).

The Boolean set is used every time a data has two possible values.
An enumerated set is used when a data has strictly more than two possible values

and when we need to name explicitly all the values. For example, a section, managed
by a wayside control unit, is divided into fixed blocks. A block can be a normal block,
a switch block or a station block. So we define:

SETS
t_block_type = {c_normal_block, c_switch_block, c_station_block}

A deferred set is used when a variable can take a finite number of values and we do
not want to name explicitly the values in order to be generic. Most data of the project are
typed with deferred sets. For example, all the blocks accessed by a WCU are gathered
into the type t_block. In the VAL system, beam sensors are used to detect the presence
of a train at a certain point of a track. A train is detected when it cuts the beam. All the
beam sensors are gathered into the type t_beam_sensor. So we define:

SETS
t_block;
t_beam_sensor

The only integer variables needed for the abstract model are delays. We define a
concrete constant t_time, as a renaming of NAT to declare delays regarded as decimal

340 F. Badeau and A. Amelot

numbers. They express in milliseconds the time remaining before the delay expires. We
define:

CONCRETE_CONSTANTS t_time PROPERTIES t_time = NAT

Those types bring strong typing, just like in a programming language such as ADA.
This makes an efficient use of the type checking constraints of the B language, since,
for example, wherever a block is expected, we cannot use anything else instead, like a
beam sensor.

Those scalar data types are either used alone or they are combined with type con-
structors as shown in the following examples.

Subsets of Scalar Types. This type constructor was the most commonly used to type
abstract data. For example, blocks accessed by a WCU are either occupied by a train
or free. This information should be safely computed by the functional module “Block
Logic”. It is formalized by the abstract variable occupied_blocks, which is a subset of
t_block.

occupied_blocks ⊆ t_block

A block belongs to occupied_blocks if and only if it is considered to be occupied.
We can point here, that another modelling choice could have been to use a total func-
tion from t_block to BOOL, associating to a block the value TRUE when the block is
occupied and FALSE when it is not.

occupied_blocks ∈ t_block→ BOOL

Actually this second choice suits less the proposed B Method, since it is more an
encoding of the former (i.e., the use of a set characteristic function instead of the set
directly). In this case using a subset of blocks is more abstract. Expressions, predicates
and substitutions concerning this set are also more abstract and closest from informal
specifications.

We also need to formalize block sensors, which are sensors detecting a train inside a
block. We could have used a special deferred set to type the occupied_block_sensors
abstract variable. However, as there is a strict mapping from one block to one block
sensor, we typed it as we did for occupied_blocks.

occupied_block_sensors ⊆ t_block

Relations and Functions. Let t_a, t_b and t_c be scalar types. We also use the follow-
ing relations, partial functions and total functions to type abstract data.

t_a↔ t_bt_a �→ t_bt_a→ t_bt_a→ P(t_b)t_a→ (t_b �→ t_c)

For example, the abstract constant ctx_next_block_up associates to a block its next
upward block. A block has at most one next block located in the upward direction. A
terminal block in the upward direction has no next upward block. So next_block_up is
a partial function from t_block to t_block.

ctx_next_block_up ∈ t_block �→ t_block

Sequences. We use sequences of a scalar type when we need to formalize a sequence
of elements. For example, the abstract constant ctx_block_occ_aut_up gives in what

Using B as a High Level Programming Language in an Industrial Project 341

order blocks have to be treated to compute block occupancy authorization in the upward
direction. This abstract constant is formalized as a sequence of blocks.

ctx_block_occ_aut_up ∈ seq(t_block)

Read Operations. The data types described above are used to type abstract data. How-
ever, in the end, concrete code should be produced, so in order to interface abstract
data with concrete code, read operations are provided with abstract data. For example,
to read the abstract variable occupied_blocks, we define the read_occupied_blocks,
which returns as a Boolean value the fact that some block given as an input value is
occupied.

p_bool← read_occupied_blocks(p_block) =̂
PRE

p_block ∈ t_block
THEN

p_bool := bool(p_block ∈ occupied_blocks)
END

Read operations are defined for every variable that has an abstract data type. Some-
times, more than one read operation is given for a given variable. This is the case with
partial functions where, before reading the value associated to some input value, one
needs to know if the input value belongs to the domain of the partial function. All these
read operations are defined as generic pieces of B model. A tool was used to generate
automatically read operations for a given abstract machine, by instantiating the generic
operations.

All the abstract data types presented here represent the basic elements of B regarded
as a high-level language. During abstract modelling, only those types are used. Further-
more, after an abstract variable is defined in the abstract model, the variable will not
be refined wherein. Abstract data will only be refined in the concrete model for imple-
mentation purpose. Actually in other B software projects we may refine some abstract
variables with other abstract variables, but this was not used for Roissy WCU-SCS.

4.3 Abstract Model Architecture

The abstract model architecture is based on the functional breakdown provided by the
informal specification documents. The B modules written at this stage are entirely part
of the final B model. If we regard the final model as an importation tree (IMPORTS
clause), then the abstract model is some higher part of this tree. The abstract model
architecture looks like this.

The architecture is a tree of B modules. Two kinds of modules are used: modules
with an abstract machine and an implementation and modules with only an abstract ma-
chine. Modules with an abstract machine and an implementation are called sequencing
modules. They are used to specify sequencing of treatments inside operations imple-
mentation. An implementation imports modules defining the operations called by the
implementation. Modules with only an abstract machine, named final modules, rep-
resent the leaves of the abstract model. They are used to specify data and to specify
operations.

342 F. Badeau and A. Amelot

input Block
Logic

Route
Logic

Mode
Logic

Output

B module

imports

main

functional module

(...) (...) (...) (...)

context

Fig. 3. Abstract Model Architecture

In the architecture, we recognize the main functional modules from the informal
specifications:

Main. This is the starting point of the project. The main B module, which is the root
of the import tree, contains an entry operation called run_cycle which is called at a
regular pace, and which, as a sequencing operation, calls indirectly every operation of
the B project.

Input. This functional module acquires input messages and filters them. Retrieving
input data is carried on through basic machines, which have an abstract machine and
handwritten ADA code to call low-level input procedures. Due to basic machines, the
abstract model of this functional module differs slightly from the core functional mod-
ules. It will not be detailed any further in this paper.

Block Logic. This functional module computes, in a safe way, the occupation of blocks
by trains.

Route Logic. This functional module establishes elementary routes, commands and
controls switches positions on the tracks. It also contains a sub-function (command of
route turnaround cycles) which is not classified as safety critical, but which is neverthe-
less specified in B as it is a high level function.

Mode Logic. This functional module manages train anti-collision. It computes, com-
mands and controls selection and powers discrete train speed programs.

Output. This module gathers information computed by the previous modules to pre-
pare the creation of output messages by basic machines.

Using B as a High Level Programming Language in an Industrial Project 343

Context. There is also on the far left a subpart called context, specific to the B project.
The context defines enumerated and deferred sets (from the SETS clause), concrete and
abstract constants. All these constants data are gathered, since they are highly shared
inside the B project.

Abstract constants are used to make the final program independent from configura-
tion data. Let’s consider again the example of the abstract constant ctx_next_block_up
that associates to a block its next upward block. The value of this constant may differ
from one WCU to the other. But the properties describing the abstract constant in the
PROPERTIES clause remain the same for all WCU. As the B model represents the core
of the WCU software, it remains the same for all WCU. The constant values are thus
given in ADA. They are specific to each WCU. As their valuation is performed outside
the scope of the B process, a specific mechanism has to be used to check that actual
constant values fulfill their B properties.

Architecture. In the abstract Model architecture, we may have columns of sequencing
modules (one sequencing module importing another sequencing module and so on), to
reflect that in specifications a treatment calls another treatment and so on. To avoid too
many sequencing modules, we use local operations (see [MRefB02]
LOCAL_OPERATIONS clause).

The abstract model importation tree is presented such that B modules are allowed
to see (SEES clause) other modules located on their left. This rule corresponds to a
data flow from the left to the right. Thus, input data are seen by the block logic whose
results are seen by the route logic and so on. Context modules may be seen by any other
module. Applying this rule makes this architecture valid as regards the constraints of
the SEES clause (see [MRefB02]).

An abstract module with only an abstract machine contains abstract variables, their
initialization and operations that formalize pseudo-code specifications. As discussed
before, operation specifications are deterministic and feasible. Here is an example of a
substitution inside an operation body where set-theoretical notation is useful.

occupied_blocks := occupied_blocks∪
(ctx_b2b_up ∪ ctx_b2b_down)−1[obd]∪
otd

Actually due to the size factor, an operation specification may be much larger.
When a functional module is modelled into a too large B module, we try to break

it down since the tools are much more efficient on treating many small modules than
few large ones, especially when it comes to proof and automatic refinement. Such an
abstract model breakdown should respect B architecture rules, especially those concern-
ing variable modifications (see [MRefB02]). So we try to gather operations modifying
the same abstract variables in the same modules. When this cannot be performed, them
we can still replace a variable by two variables representing the same entity at different
moments of the execution cycle. Synchronization of the two variables can be achieved
by a parent module, since it has the rights to modify both variables.

344 F. Badeau and A. Amelot

Operations traceability is achieved by placing references to informal specification
inside the quality-assurance header of operations. This is helpful for inspection and
maintenance.

4.4 Abstract Model Properties

The method described so far, can be summarized into formalizing the software func-
tional specification, element by element, into a B abstract model. Each element is more
or less independent from the others, which means that a modelling error in one particu-
lar element is unlikely to be discovered after the element has been formalized.

During the last stage of the abstract model phase, we insert properties, tying ele-
ments together, into the abstract model that has to be proved by the end of the abstract
model phase. Those properties strengthen the abstract model since we have to prove
that they hold when all elements of the abstract model are put together.

These properties are part of the specification documents. They come from system
analysis and they all are safety critical properties. So proving that the software built
through this process complies with those safety critical properties is of tremendous
importance.

Abstract model properties are written inside the higher-level B module (called the
main module), the one with the run_cycle operation. Properties could be either static or
dynamic. Static properties are properties that can be expressed with abstract variables
(and of course with constants). They are part of the main module invariant. Dynamic
properties are properties that link the old values and the new values of some variables,
before and after calling the run_cycle operation. So in the main abstract machine, the
run_cycle operation is formalized as a “becomes such that” substitution containing
dynamic properties. The old value of an abstract variable x is expressed by x$0 and the
new value is expressed by x.

At runtime, the software developed in B is used by calling at a regular pace the
run_cycle operation. As the B model should be entirely proved, thanks to invariant
preservation and refinement consistency of the run_cycle operation, we are sure that
static and dynamic properties hold at each call of this operation.

As an example, a property states that a block has to be regarded as occupied when
its block detector is occupied or when a beam sensor located at one of the block borders
is cut. A simplified predicate formalizing this property is given below.

∀block ·(block ∈ t_block∧
((ctx_block_bs_up[{block}] ∪ ctx_block_bs_down[{block}])

∩cut_beam_sensors �= ∅∨
ctx_block_detector[{block}] ⊆ occupied_block_detectors)
⇒
block ∈ occupied_blocks)

In order to prove entirely the abstract model, those properties have to be handled
through sequencing modules until they prop on final modules. This top down approach
for properties along the abstract model is only useful for explanation purpose. Actually,
we used a bottom up approach. The process of formalizing a property is described as

Using B as a High Level Programming Language in an Industrial Project 345

follows. After analyzing a property we figure out on which operations the property is
propped on. The property may come directly from the postcondition of one final oper-
ation or it may come from several operations. Sometimes, a more complex reasoning
has to be carried on to convince oneself that the property holds. Usually in those cases,
the property is cut into several smaller properties.

The actual B properties come at first from the postcondition of the relevant final
operations. They are then spread in upper sequencing modules from the bottom to the
top. The abstract variables dealing with properties are redefined in the upper sequencing
abstract machines and properties are inserted inside operation specification. After each
step, before spreading the property to the next upper level, we check if the lemmas are
provable. In fact, at the beginning we do not have a completely clear idea on how the
property should be formalized in B, so we first start with an initial version of the prop-
erty and then we finalize it through proving. In case of non-provable lemma we check
our alleged property against the informal property and against the called operations.
Through this process, we found errors in the way properties were expressed in B but
also inside final operations. We also asked for adjustments of a property from the soft-
ware specification documents, when that property was not always true. For instance, the
property could be true only in nominal mode, which was not initially stated explicitly
in the informal specification documents.

The software specification documents contain 16 properties which had to be for-
malized in the abstract model. Although it seems to be a small number, some properties
had to be cut into many actual properties. At the end, the size of the static and dynamic
properties in the main abstract machine was more than 1,000 line long.

5 Concrete Model

5.1 Principles

The concrete Model phase consists in completing the Abstract Model to get to a com-
pletely implementable B project. As the operations of the final modules of the abstract
model are deterministic, we do not need the specification documents any more. The
only input of this phase is the abstract model and the goal is to implement it com-
pletely through refinement and importation breakdown. When the concrete model is
fully proved, thanks to refinement proof, then we are sure that the concrete model com-
plies with the abstract model.

Actually developing the concrete model is just a technical phase. Ideally, we could
use a tool that would translate automatically the deterministic abstract model into ADA
code in order to reduce drastically the development cost. However, as abstract model
deals with abstract data types (see 4.2) such a tool is not obvious to implement and does
not exist yet.

The concrete model was originally handwritten by Siemens (see [Behm99]). The
process has been enhanced since. As the abstract model uses a limited number of
abstract data types (see 4.2) and as terminal modules use set-theoretical substitutions
working with these same data types, the refinement process is similar for all software
developed with this method. So this process has been rationalized by developing semi-

346 F. Badeau and A. Amelot

automatic refinement tools based on the application of refinement rules. These tools are
called EDiTh B and Bertille (see [Burd99]).

During the automatic refinement process, abstract variables are either kept through
refinement (see [MRefB02] homonymous abstract variable data refinement) or they are
refined by a concrete variable with a complete gluing invariant. With this precaution,
we are sure that proof refinement guaranties that the concrete model complies with the
abstract model. So refinement tools do not require to be validated, since the process
is fully covered by proof. In other words, refinement tools are just here to guess the
refinement (hopefully a correct refinement), but if their guess is incorrect, proof will
detect it.

The activity of automatic refinement by applying refinement rules is very similar to
proving by applying proving rules. In both cases it is usually easier to treat a general
case, than to treat a special case since it breaks down an initial, and possibly large prob-
lem, step by step into smaller problems described by rules with a limited complexity.

5.2 Semi-automatic Refinement

We are now going to describe the semi-automatic refinement. In practice, building the
concrete model consists in refining independently every final abstract machine of the
abstract model. We build an importation (clause IMPORTS) subtree for every such
abstract machine.

Manual Refinement Preparation. In a first step we prepare manually the auto-
matic refinement. This step aims to reduce the complexity of the automatic refine-
ment by breaking down the starting point abstract machine into smaller abstract
machines and by writing intermediate refinement levels to ease refinement of op-
erations.

To break abstract machine m down, we write an implementation that imports several
abstract machines named m_a, m_b, m_c,. The refinement of an operation is made by
calling imported operations specified as a subpart of the original operation. Every ab-
stract variable of m is redeclared inside one of the imported abstract machine. Breaking
down an abstract machine is not always easy since we have to comply with architecture
rules, especially concerning abstract variables modification. However it was always at
least possible to split an abstract machine into an abstract machine computing the con-
ditions (of SELECT or IF substitutions) and an abstract machine computing the bodies
of those substitutions, since a condition computation only returns a Boolean value and
does not involve global variable modification.

This first step is not mandatory, however it was widely used in the project as we
were dealing with very large terminal abstract machines.

Semi-automatic Refinement. In a second step we use automatic tools on the last B
component of every leaf of the new import tree, which could be either an abstract ma-
chine or a refinement. In this case it operates on m_a and m_b. The tool is made up
of two passes. It calls once EDiTh B and then it calls Bertille till the concrete model is
completed. In the project, automatic refinement may lead to a maximum of 7 levels of
generated modules.

Using B as a High Level Programming Language in an Industrial Project 347

m_a_1
m_a_1_i

m_a_3
m_a_3_i

m_a_2
m_a_2_i

m_a_4
m_a_4_i

m_a_1_it
m_a_1_it_i

m_a_1_it
m_a_1_it_i

m_b
m_b_r

m_b_i

m_b_1
m_b_1_i

m_b_1_it
m_b_1_it_i m_b_2_i

m_b_2

m
m_i

Manual
Concrete

Model

Generated
Concrete

Model

m_a
m_a_r

m_a_i

machine
refinement

implementation

Abstract Model

B module

imports

Fig. 4. Concrete Model of a Terminal Abstract Machine

EDiTh B is used to implement an abstract machine or a refinement with an im-
plementation and a new sub-abstract machine (suffixed with _1) in which high level
abstract substitutions (ANY, SELECT,“becomes such that”,) are replace by low-level
abstract substitutions (IF, CASE) that can be handled by Bertille.

Bertille implements an abstract machine that contains only low-level substitutions,
and it may also produce a new sub-abstract machine (suffixed with _2, _3, _4,) and
an abstract machine containing iterators (suffixed with _it). To refine abstract variables
and substitutions, Bertille uses a refinement rule base. When Bertille produced a new
abstract machine, then it is called again on this abstract machine, until the concrete
model is complete or until it fails during refinement.

Abstract variables of an abstract machine are either kept in the next sub-abstract
machine (see [MRefB02] homonymous refinement) when they are still needed in the
sub-abstract machine or they are implemented by using a variable refinement rule. All
the abstract data types described in 4.2 have a corresponding variable refinement. So
variable refinement is an easy and complete process.

For example, the occupied_blocks abstract variable:

occupied_blocks ⊆ t_block

is refined by the occupied_blocks_i concrete variable:

348 F. Badeau and A. Amelot

occupied_blocks_i ∈ t_block→ BOOL∧
occupied_blocks = occupied_blocks_i−1[{TRUE}]

Substitution refinement, however, is more complex. As a general principle, substi-
tutions dealing with sets can be refined with the help of set iterators, as shown in the
example below.

MACHINE m_a_1
op_1 =̂

a := bool(S �= ∅)...

IMPLEMENTATION m_a_1_i
op_1 =̂

...
a := FALSE;
WHILE continue = TRUE DO

continue, x← iterate_t_a;
y← op_1_1(x);
IF y = TRUE THEN

a := TRUE
END
...

MACHINE m_a_1_it
p_bool, p_elt← iterate_t_a =̂
...

MACHINE m_a_2
p_y← op_1_1(p_x) =̂
PRE

p_x ∈ t_a
THEN

p_y := bool(p_x ∈ S)
END
...

We have to implement here the set-theoretical substitution a := bool(S �= ∅) where
S is a subset of the deferred set t_a. The idea is to initialize a to FALSE and then to
loop on each element y of t_a. If y belongs to S then S is not empty, so a is set to
TRUE, otherwise S is the empty set and a remains equal to FALSE.

To do so, we use an abstract machine containing an iterator on type t_a. This ma-
chine is available as a generic machine and offers services to perform efficiently a loop
on a deferred set. The knowledge of this kind of iterators is integrated into Bertille, so
that it generates automatically the loop variant and the part of the invariant related to
the loop indexes. Bertille automatically generates the iterator abstract machine in which

Using B as a High Level Programming Language in an Industrial Project 349

it instantiates generic parameters; in this case the t_a type. Bertille also generates the
implementation of the iterator abstract machine.

We also use a new sub-machine containing an operation to test if some value x
belongs or not to S. As we can see, we have now another abstract machine to implement.
However, this operation is this time quite easy to implement, since we just need to
implement the abstract variable S with the array S_i and them we can get the value of
y from S_i(x).

The refinement with those tools is only semi-automatic, since Bertille may fail dur-
ing the refinement of a substitution. In this case, we have to examine the cause of the
failure. Most of the time, we add a new rule, or we adapt an existing rule, in Bertille
rule base, and that solves the problem. Them, Bertille should be rerun. This action may
be repeated several times. At the end of the process, when everything is refined, the
concrete B modules automatically produced should be type checked and one should
check if the lemmas generated are provable. This is required to check that the code of
new rules is correct. As proving easily is also a main issue, we should also check that
the lemmas may be easily proved. That is why new rules may sometimes be completed
by ASSERT substitutions.

5.3 ADA Code Produced

When the B model is complete and fully proved, it should be translated into ADA. Both
the abstract and concrete models are translated. Actually the ADA code produced uses
the Digisafe-ADA technology.

Automatic refinement lowers the cost of a software development but what about the
efficiency of the code generated this way? According to Siemens studies, code produced
through automatic refinement is 10% slower than hand written code, which is fully ac-
ceptable. However automatic refinement may lead to suboptimal algorithms which are
not acceptable. To estimate code efficiency at runtime, a static tool was developed by
Siemens. It requires, as an input, the dimensioning of types (for example the number of
blocks of the t_block type) and gives as an output the estimated runtime of every opera-
tion. We spotted a half-dozen exponential-time algorithms where linear-time algorithms
could be used instead. This was due to the automatic application of refinement rules. We
corrected these points by writing new dedicated refinement rules applying appropriate
linear-time algorithms.

As a final remark on the generated ADA code, it is interesting to note that when a
member of the project development team took a look at some ADA code correspond-
ing to an automatic refinement level, this person was lost and could hardly make the
link with the software specification. Actually, it would be the same for a person who
would compare the ADA code he wrote to the corresponding assembly code generated
by a compiler. However, proof makes all the difference in our case. Although automat-
ically generated B0 code may look meaningless, we can still be sure that it implements
correctly its part of the abstract model.

6 Project Statistics

We shall now present and comment some project statistics.

350 F. Badeau and A. Amelot

6.1 B Model Size

B Model Lines Rate

Grand total 183,987 100%
Abstract Model without read operations 28,163 15%
and iterators (324 operations)
Abstract Model: read operations and iterators 10,503 6%
Manual Concrete model without read operations 27,756 15%
Automatic Concrete Model 117,565 64%

Modules and Components Number

Number of B modules 532
Number of basic modules 28
Number of intermediate refinements 59
Number of B componants 1,093

The core of the abstract model is 28,000 line long. This is quite a large number
that can be explained by the different kinds of sections (normal line sections, garage
sections, switch section between the line and the garage). Though they share common
principles, they have different software specification, since they have been specified at
different times by different people. So they make the specification documents, as well
as the abstract model, larger. The rest of the abstract model (10,000 lines) is generated
automatically by instantiating abstract iterator machines or read operations.

Although the manual part of the concrete model is also 28,000 long, it does not
cost much to produce since it is mostly written by applying simple transformations on
a copy of the final abstract machines.

The rest of the concrete model is huge (118,000 lines) but it is automatically gener-
ated by tools.

6.2 ADA Code Size

Translated ADA Code

Lines number (without empty lines nor comments) 158,612
Number of procedures 4,809

The number of ADA code lines is also huge. This is for three reasons:

– The use of Digisafe-ADA: data and instruction dedicated to Digisafe-ADA are au-
tomatically inserted during translation. We can also point out that Digisafe-ADA
forbids complex expressions or conditions, which leads to an extra use of local
variables and “becomes equal” substitutions.

Using B as a High Level Programming Language in an Industrial Project 351

– Every part of the concrete model is usually broken down into many intermediate
levels, which produce a lot of code.

– Code is not shared through this process. For example, generic elements share a
similar code, however the code is duplicated at each use.

The estimated size of the complete software without Digisafe-ADA and without so
many intermediate levels would be 60,000 lines of ADA code.

6.3 Proof

Proof of Lemmas Lem. Nb Rate Lem. Nb Rate

Grand total 43,610 100%
Force 0 38,822 89%
Force 1 1,397 3%
Generic demonstrations (61 user pass) 1,950 5%
- based on predicate prover 1,272 3%
Total of automatic demonstrations 42,169 97%
Interactive demonstrations (745) 1,441 3%

Number of interactive demonstrations/day 15

Proof Rules Nb Rate

total 290 100%
validated by the predicate prover 243 84%
validated semi-automatiquely 27 9%
validated manually 20 7%

The number of lemmas automatically generated is also high (43,000 lemmas). Thus
performance of the tool concerning proof, and especially concerning automatic proof,
is a major issue for the project cost. Force 0 of the automatic prover of Atelier B did
most of the job, since it proved 89% of all lemmas. Force 1 proved 3%. Around 60
generic demonstrations, mainly based on the predicate prover, proved another 5%. This
makes the automatic proof rate of 97%. The remaining 3% lemmas were demonstrated
interactively with an average rate of 15 lemmas by man.day.

The concrete model was easier to prove than the abstract model; since everything
which is done in the concrete model, is broken down into small steps repeating the same
patterns optimized for proof. In the abstract model, the proof of safety properties leads
to complex and long interactive demonstrations that cannot be easily reused.

The predicate prover was also very helpful for validating new proof rules.

352 F. Badeau and A. Amelot

6.4 Manpower Breakdown

Manpower Cost Rate

Grand total 100%
Warmup 5%
Project management 8%
Abstract Model 55%
- questions/answers and documents analysis 18%
(267 questions, 4 questions/day)
- inspections 5%
- proof 16%
Concrete Model 24%
- proof 11%
Finalization (configuration mngt,replay, doc, rules validation) 8%

The cost ratio between abstract and concrete models is 2/3 for the abstract model
and 1/3 for the concrete model.

Most of the time spent on building the abstract model was actually spent on analyz-
ing the specification documents and tracing issues in the question/answer database.

Proof represents a high cost for abstract model (30%) but it is worthwhile, since this
is the way to assure that the final code indeed fulfills the safety-critical properties.

The 10% of abstract model time spent in detailed inspections was also of interest,
since it led to some corrections and raised new questions/answers.

6.5 Specification Documents Size

Size of input documents (in pages)

WCU Software Specification Document (84 functional modules) 228
Block Logic Software Specification Document (30 functional algo) 51
Route Logic Software Specification Document (37 functional algo) 80
Mode Logic Software Specification Document (50 functional algo) 98

The size of the main input specification documents gives elements to measure the
size of the project.

7 Maintenance

Whenever modifications or evolutions are performed on a piece of software developed
through the method presented in this article, what are the consequences on the new
software release?

First, we are sure that every release is still consistent, as long as it is again com-
pletely proved.

Using B as a High Level Programming Language in an Industrial Project 353

Then, modification cost is limited, if the software structure is not questioned and
if the impact on the previous proof work, especially the proof of the abstract model
properties, is limited because all the development environment is set up. In this case,
refinement rules and proof rules are likely to be efficiently reused.

8 Conclusion

We have presented in this article, a straightforward process, summarized below, and
based on reusable generic elements (read operations and iterators components) and on
state of the art tools, especially automatic refinement tools.

The process is split into two phases, first software document specifications are for-
malized into an abstract model and then the abstract model is implemented into the
concrete model.

The abstract B model manipulates high-level software data. Those data have a high-
level aspect, since they use abstract data types such as sets of scalar types, relations,
partial and total functions from an abstract data type into another abstract data type.
However, they also have a concrete software aspect since every abstract data type is di-
rectly and systematically implemented by concrete data. This is the only data refinement
used: an abstract variable defined in the B model is kept unchanged in lower imported
modules (it is refined by an homonym abstract variable) until it is finally refined by its
associated concrete variable(s) in the concrete model.

Sequencing treatments are formalized as sequencing calls of operations in the im-
plementation of sequencing modules.

Core logical treatments are formalized in operation specifications by high-level soft-
ware substitutions. They are high-level, since they use set-theoretical expressions and
parallel substitutions. However these substitutions are deterministic and they can be im-
plemented through automatic refinement rules. The refinement process to generate the
concrete model starting from the abstract model is semi-automatic. Refinement rules
implement step by step such a set-theoretical substitution by generating software loops
going through every element of the set.

All these characteristics make the B Method used through this process, a high-level
programming language. However, a key feature of this so-called language lies in its
proof capabilities. The process offers the possibility of proving that some properties are
indeed preserved by each call of the main software procedure. Obviously, in the case of
safety critical software those properties shall be safety critical properties. The process
also proves that the final code correctly implements its formal specification.

The process described here is suitable for any industrial domains, not only for rail-
ways command/control software. Actually this process deals with designing procedural
software based on logical treatments, not based on real or floating-point numbers. It
is all the more suitable that software specification can be easily formalized into set-
theoretical expressions.

From the management point of view, the project went off according to the initial
schedule, although the software produced is quite large, thanks to a straightforward
process and efficient tools.

354 F. Badeau and A. Amelot

Every verification stage throughout the process was useful and led to early error de-
tection: analysis of software document specification, type checking, inspections, proof
of abstract model safety properties, refinement proof of correct implementation. The
WCU-SCS is currently being integrated with the rest of the software.

Acknowledgments. We would like to thank Laurent Voisin for his very interesting
comments.

References

[Abr96] Abrial, J.-R., Extending B Without Changing it (for Developing Distributed Sys-
tems), 1996

[BBook96] Abrial, J.-R., The B-Book: Assigning Programs to Meanings, 1996
[Behm99] Behm P., Benoit P., Faivre A. and Meynadier J.-M., Météor: A Successful Applica-

tion of B in a Large Project, 1999
[Burd99] Burdy L., Meynadier J.-M., Automatic Refinement; BUGM at FM’99, 1999
[Dol03] Dollé D., Essamé D., Falampin J., B dans le transport ferroviaire, l’expérience de

Siemens, Technique et science informatiques - volume 22, 2003
[MRefB02] Badeau F., B Language Reference Manual v1.8.5, 2002

Development via Refinement in Probabilistic B
— Foundation and Case Study

Thai Son Hoang1,2, Zhendong Jin1, Ken Robinson1,2,
Annabelle McIver3, and Carroll Morgan1

1 School of Computer Science & Engineering, University of New South Wales,
NSW 2052, Australia

{htson, zjin, kenr, carrollm}@cse.unsw.edu.au
2 National ICT, Australia

3 Department of Computing, Macquarie University,
NSW 2109, Australia
anabel@ics.mq.edu.au

Abstract. In earlier work, we introduced probability to the B-Method
(B) by providing a probabilistic choice substitution and by extending
B ’s semantics to incorporate its meaning [8]. This, a first step, allowed
probabilistic programs to be written and reasoned about within B .

This paper extends the previous work into refinement within B . To al-
low probabilistic specification and development within B , we must add a
probabilistic specification substitution; and we must determine the rules
and techniques for its rigorous refinement into probabilistic code.

Implementation in B frequently contains loops. We generalise the
standard proof obligation rules for loops giving a set of rules for rea-
soning about the correctness of probabilistic loops. We present a small
case-study that uses those rules, the randomised Min-Cut algorithm.

Keywords: Probability, program correctness, generalised substitutions,
weakest preconditions, B , randomised algorithms, refinement.

1 Introduction

Our overall aim is to extend the B-Method (B) to incorporate probability, with
the aim of allowing its rigorous development techniques to apply to random algo-
rithms, probabilistic distributed systems (via for example Event-B) and safety-
critical applications (using fully quantitative judgments of the “cost” of program
outcomes).

We have made a number of extensions already at what would be called a “low-
level”. For example, we have extended B to allow the deduction of probability-
one conclusions about programs containing probability: this is called qB [11], and
would apply to the final stages of an algorithm like the IEEE 1394 (FireWire)
protocol [2, 6] where a potential livelock is resolved with probability one.

A second extension is the incorporation of full probabilistic reasoning into B
(that is, not just probability-one) via the introduction of a probabilistic-choice

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 355–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

356 T.S. Hoang et al.

substitution, with its associated semantics: this is called pB. Unlike qB, whose
logic remains Boolean, the pB logic is based on real numbers, necessary to be
able to make judgments about probability.

The probabilistic-choice substitution is “code” in the sense that it can be
(almost) directly translated into a programming language, and would typically
be found in the last stages of a development. In that sense it can be considered
“low-level”.

Our aim in this paper is to begin to address the “higher-level” concerns of
probabilistic development. Traditionally this involves some form of “specifica-
tion”, incorporating nondeterminism (interpreted as implementation freedom),
together with an appropriate notion of “refinement” that leads from such spec-
ifications to the code that implements them.

We propose a probabilistic specification substitution (similar to the one pro-
posed for Z [21]), and we recall the definition of probabilistic refinement [16].
We prove the “fundamental theorem” for the new construct, in the B context,
by analogy with the fundamental theorem for the traditional specification state-
ment [12] that shows the new statement’s semantics properly interacts with
refinement.

To illustrate and explore the extension, we extend the rules for partial and
total correctness of standard loops to probabilistic loops, in the style of the
probabilistic wp-logic [16]. Furthermore, the proof obligations for probabilistic
loops can be separated so that we can prove standard (predicate) properties
and probabilistic (quantitative) properties separately. The latter is especially
important for a practical method, such as B , where we need to preserve as much
as possible the facility and efficiency of dealing with a system’s non-probabilistic
components, limiting the new (and more complex) probabilistic reasoning to
where it’s required.

The new techniques mentioned are illustrated by a case study of a randomised
algorithm. In the example, we go from specifying the algorithm, implementing
it using a loop and reasoning about the correctness of the algorithm.

The paper is structured as follows: in Sec. 2 we briefly recall the details of the
probabilistic Generalised Substitution Language (pGSL), and illustrate the expec-
tation logic by using simple examples; in Sec. 3 we first review the traditional
specification substitution for standard systems and then introduce probabilistic
specification substitution to describe probabilistic systems; in Sec. 4 we appeal
to the expectation semantics from pGSL and obtain the probabilistic funda-
mental theorem which is a generalised version of the corresponding standard
theorem.

In Sec. 5 we discuss proof obligations for probabilistic loops, which is the
generalisation of the variant and invariant technique for standard loops.

In Sec. 6 we first apply the fundamental theorem to the well-known example
of “Min-Cut” algorithm, we also set out the proof obligations for maintaining
the refinement; finally, we summarise the development, draw our conclusions and
outline possible future work.

Development via Refinement in Probabilistic B 357

2 The Probabilistic-Choice Substitution

The probabilistic-choice substitution has been introduced into probabilistic B
(pB) already [8]; as we noted in the introduction, it can be considered as a
“low-level” extension.

The numeric logic pGSL necessary to accommodate the extension uses real-
rather than Boolean-valued expressions for its “predicates”, which we call “ex-
pectations”: the numbers represent “expected values” rather than the normal
predicates that definitely do, or do not hold. In other words, we replace cer-
tainty by probability.

We can give only a very brief description of pGSL in the space available here;
the reader is referred to our earlier work for a full introduction [11].

The probabilistic-choice substitution is the only extension to standard Gen-
eralised Substitution Language (GSL). It has the form

prog1 p⊕ prog2 ,

which means that with probability p, the substitution prog1 is executed, and
with probability 1− p, the substitution prog2 is chosen.

Implication-like relations between expectations are

exp1 � exp2 =̂ exp1 is everywhere no more than exp2
exp1 ≡ exp2 =̂ exp1 is everywhere equal to exp2
exp1 exp2 =̂ exp1 is everywhere no less than exp2.

The refinement relationship in pB is defined accordingly:

prog1 prog2 if and only if [prog1]exp � [prog2]exp for all exp

The semantics of the substitutions in pGSL are given in Fig. 1.

3 The Probabilistic-Specification Substitution

The probabilistic-specification substitution, and its properties, are the “high-
level” subjects of this paper. Because our concern here is with larger-scale struc-
tures, we must turn to a specification construct, since that is the starting point
for the refinement steps that are characteristic of B developments, whether stan-
dard or probabilistic. We begin by reviewing the “standard” specification that
B already contains, where by standard we mean “without probability”.

3.1 Standard Specification Substitution

In this section, we briefly review the interaction of specifications and so-called
“specification substitutions”1 for standard systems.

1 For those familiar with the refinement calculus, these will correspond to pre-
postcondition specifications [4], specification statements [13], and prescription [19];
we are going to treat the B version of those.

358 T.S. Hoang et al.

[v : = E]exp The expectation obtained after replacing all free
occurrences of v in exp by E , renaming bound vari-
ables in exp if necessary to avoid capture of free
variables in E .

[pre | prog]exp 〈pre〉 ∗ [prog]exp, where 0 ∗ ∞ =̂ 0.
[prog1 [] prog2]exp [prog1]exp min [prog2]exp
[prog1; prog2]exp [prog1][prog2]exp
[pre =⇒ prog]exp 1/ 〈pre〉 ∗ [prog]exp, where ∞ ∗ 0 =̂ ∞.
[skip]exp exp
[prog1 p⊕ prog2]exp p ∗ [prog1]exp + (1−p) ∗ [prog2]exp

[@v · pred =⇒ prog]exp (min v | pred · [prog]exp), where v does not occur
free in exp.

prog1 � prog2 [prog1]exp � [prog2]exp for all exp

• exp is an expectation (possibly but not necessarily 〈pred 〉 for some predicate pred);
• pre is a predicate (not an expectation);
• 〈pred〉 = 1 when pred holds, 〈pred〉 = 0 when pred does not hold;
• ∗ is multiplication;
• prog, prog1, prog2 are probabilistic generalised substitutions;
• p is an expression over the program variables (possibly but not necessarily a con-

stant), taking a value in [0, 1]; and
• v is a variable (or a vector of variables).

pGSL [15] acts over “expectations” rather than predicates: expectations take values in
[0, 1] ∪ {∞}.
We give the definitions including infeasible or “miraculous” commands [13–Sec. 1.7],
but omit them in the main text.

Fig. 1. pGSL semantics

In the specification stage of a development, it is traditional to use pre- and
post-conditions to describe the desired behavior of the system to be built. In gen-
eral, there are many forms of this; one version is “Specification statements” [13]:

v : [P ,Q]

where v is the frame, a sub-vector of the program variables whose values may
change. P and Q are predicates describing the initial state and the final state,
respectively.

In B [1], we find the same idea though with a different syntax. In this paper
we will use the syntax

v : {P ,Q} , 2 (1)

2 In B it could be written as
P | v : Q

Development via Refinement in Probabilistic B 359

P and Q are predicates over x and over x0, v. The variables v are those that
can be possibly changed by the substitution. The variables x0 are distinct from
x and represent their original values.

3.2 Probabilistic Specification Substitution

We now show how the ideas of Sec. 3.1 can be generalised to the probabilistic
context, that is, we will propose a probabilistic generalisation of (1) which will
play the same role in probabilistic specification and refinement as the original
(1) does in the standard case.

In the expectation logic of Sec. 2, we write

A � [S]B , (2)

to mean that execution of S must establish that the expected value of B over final
state distributions is bounded below by A’s value in the initial state. By analogy
with the connection between Dijkstra-style specification and the specification
statement, we propose a probabilistic specification substitution written as in the
standard case, that is

v : {A,B} , (3)

except that A now is an expectation defined over the program variables, B is an
expectation that may additionally refer to x0 and v as before are variables that
are allowed to change.

For example, if we want to specify a coin that with probability at least one-
half comes up heads, then in the style of (2) we would write

1
2

� [Flip] 〈c = H 〉 ,

where c (for “coin”) is the state variable with possible values {H ,T}. In the
style of (3), we would instead specify the substitution Flip as the substitution

c :
{

1
2
, 〈c = H 〉

}
, (4)

for the following reason: it achieves c = H (post-expectation 〈c = H 〉) with prob-
ability at least 1

2 (pre-expectation). Thus the probabilistic specification substitu-
tion generalises the traditional specification substitution into the probabilistic
program domain.

We now give the semantic definition for (3) so that we can explain why the
specifications like (4) have the meaning we claim for them.

.

with the meaning that the substitution will establish Q under the precondition
P , and change only the variables in v. In this form, we will always assume that

360 T.S. Hoang et al.

Definition 1. The semantics of the specification substitution v : {A,B}, with
respect to arbitrary post-expectation C (containing no x0), is given by

[v : {A,B}]C =̂ A ∗ [x0 := x] ("x · C ÷ Bw) , (5)

where x is the vector of all variables appearing in A,B or C ; w is the vector of
unchanging variables, in x but not in v; and Bw is B ∗ 〈w = w0〉. The symbols
∗,÷ denote multiplication, division respectively of real numbers.

In general, ("x ·D) means the greatest lower bound of the expression (expecta-
tion) D over the possible values of x. We use explicit brackets to indicate the
scope of the minimum, so in the definition, ("x · C ÷ Bw) means the minimum
of C ÷ Bw over all x.

We give the intuitive justification for Def. 1 as follows: it says that the speci-
fication takes an initial state to any one of a number of final state distributions,
all of which satisfy the requirement that the expectation of B over that final
distribution is bounded below by A evaluated on the initial state. Given that,
the definition calculates the expected value of C (instead of B), using algebraic
properties of these substitutions.

Taking the example of (4), we can calculate the probability that the outcome
is heads. From Def. 1 it is given as

[c :
{ 1

2 , 〈c = H 〉
}
] 〈c = H 〉

≡ 1
2 ∗ [c0 := c] ("c · 〈c = H 〉 ÷ 〈c = H 〉) Def. 1

≡ 1
2 ∗ [c0 := c] 1 arithmetic 3

≡ 1
2 . arithmetic and simple substitution

So indeed the probability that (4) establishes c = H is at least 1
2 .

If we calculate the probability that the outcome of the same program is tails,
however, we have

[c :
{ 1

2 , 〈c = H 〉
}
] 〈c = T 〉

≡ 1
2 ∗ [c0 := c] ("c · 〈c = T 〉 ÷ 〈c = H 〉) Def. 1

≡ 1
2 ∗ [c0 := c] 0 minimum 0 ÷ 1 occurs at C = H

≡ 0 . arithmetic and simple substitution

The conclusion is that (4) does not give any guarantee at all that the outcome
is tails. We address this point later, in Sec. 6.5.

4 The Fundamental Theorems for Specifications

In this section we justify the semantics given in Def. 1 by looking at a fundamen-
tal theorem that such semantics should satisfy. There is a standard fundamental
theorem already; we propose a corresponding probabilistic fundamental theorem.

3 We assume that x ÷ 0 is ∞ for any x so that the � ignores it.

Development via Refinement in Probabilistic B 361

4.1 The Standard Fundamental Theorem

This theorem comes from the refinement calculus [13, 12]; here we explain it in
terms of B -style notation.

Theorem 1. Let v : {P ,Q} be defined as in (1) and T be any program written
in GSL with state variables x, then v : {P ,Q} T if and only if

P ⇒ [x0 := x][T]Qw ,

where Qw is Q∧w = w0. Similar theorems and their proofs can be found in [17, 3].
The theorem states that if the before state satisfies P then the substitution T
will guarantee to establish Q in the after state, and change only variables in v.
And therefore T satisfies the specification v : {P ,Q}.

4.2 The Probabilistic Fundamental Theorem

Now we return to the issue of the probabilistic fundamental theorem. It is The-
orem 2 as follows:

Theorem 2. Let v : {A,B} be defined as in Def. 1 and T be any pGSL sub-
stitution and be free from variables x0. Assume B satisfies the assumption:
∀ x0 · (∃ v · (B �= 0)). Then

v : {A,B} T iff A � [x0 := x][T]Bw .

Proof. We now prove the theorem in each direction separately using Lemma 1
and Lemma 2 below.

Lemma 1. Let v : {A,B} and T be the same as in Theorem 2. If v : {A,B} T
then we have

A � [x0 := x][T]Bw ,

where as usual x is “all variables”, i.e. those occurring in A,B or T.

Proof. We begin the proof from the right-hand side. The first few lines for the
proof is for the fact that the post-expectation in Def. 1 does not contain x0. Also
notice that the substitutions are right-associative:

[x0 := x][T]Bw

≡ [x0 := x]([x′ := x0][T][x0 := x′]Bw) x′ are fresh variables
T contains no x0

≡ [x′ := x][T]([x0 := x′]Bw) sequential substitution
no x0 in [T][x0 := x′]Bw

 [x′ := x]([v : {A,B}][x0 := x′]Bw) monotonicity and assumption
≡ [x′ := x] (A ∗ [x0 := x] ("x · [x0 := x′]Bw ÷ Bw)) from Def. 1

≡ simple substitution [x′ := x]
A ∗ [x′ := x][x0 := x] ("x · [x0 := x′]Bw ÷ Bw)

362 T.S. Hoang et al.

≡ A ∗ [x0 := x][x′ := x0] ("x · [x0 := x′]Bw ÷ Bw) [x0 := x] is free of x′

≡ A ∗ [x0 := x] ("x · [x′ := x0][x0 := x′]Bw ÷ Bw) properties of �
≡ A ∗ [x0 := x] ("x · Bw ÷ Bw) sequential substitution

no x′ in B

≡ A , non-zero assumption on B , arithmetic

which completes the proof.

Lemma 2. Let v : {A,B} and T be the same as in Theorem 2. If

A � [x0 := x][T]Bw (6)

then we have
v : {A,B} T .

Proof. We begin by calculating the application of substitution v : {A,B} to any
expectation C which is free from x0:

[v : {A,B}]C
≡ A ∗ [x0 := x] ("x · C ÷ Bw) Def. 1
� [x0 := x][T]Bw ∗ [x0 := x] ("x · C ÷ Bw) Assumption (6)
≡ [x0 := x] ([T]Bw ∗ ("x · C ÷ Bw)) simple substitution [x0 := x]
≡ [x0 := x][T] (("x · C ÷ Bw) ∗ Bw) T free from x0 and scaling [T]; see below

� [x0 := x][T]((C ÷ Bw) ∗ Bw) monotonicity
(�x · C ÷ Bw) � C ÷ Bw as C free from x0

≡ [x0 := x][T]C non-zero assumption on B

≡ [T]C . both T and C free from v0

Since C was arbitrary, we have that v : {A,B} T , which completes the proof.
For the deferred judgment, we using the scaling property of substitutions

which states that multiplication by a non-negative constant distributes through
substitutions [16].

5 Refining Probabilistic Specifications to Loops

We now turn to our second major topic, the development of loops in pB . In
following section we will show how loops and specification substitutions fit to-
gether.

We will first recall the proof obligations for standard loops, then apply the
theorems stated in Sec. 4 in order to set out the generalised proof obligations
for probabilistic loops.

5.1 Proof Obligations for Standard Loops

For a standard loop, such as

loop =̂ WHILE G DO S INVARIANT I VARIANT V END ,

Development via Refinement in Probabilistic B 363

we recall the proof obligations for its correctness in the context of an initialisation
which it occurs in a fragment: init ; loop. Then we have that

P ⇒ [init ; loop]Q

holds if the well-known variant-and-invariant rules are satisfied [7, 1].

S1 : The invariant must hold before the while-test is made for the first time,
which is formulated as: P ⇒ [init]I .

S2 : The invariant is maintained by the loop body: G ∧ I ⇒ [S]I .
S3 : When the loop ends, i.e. the while-test is false and the invariant is still true,

the loop establishes the postcondition: ¬G ∧ I ⇒ Q .
S4 : The invariant guarantees that the variant denotes a natural number, which

is formulate as: I ⇒ V ∈ N.
S5 : The loop body decreases the variant: for some fresh variable n we have:

G ∧ I ⇒ [n := V][S](V < n).

5.2 Proof Obligations for Probabilistic Loops

In setting up the proof obligations for probabilistic loops, we try to mimic the
obligations for standard loops. We need to calculate the pre-expectation of a
probabilistic substitution with respect to a particular post-expectation, which
usually is a product of an embedded predicate4 and another (general) expecta-
tion. The embedded predicate captures the normal invariant and the other deals
with the quantitative property of the loop. We need to be able to separate them,
for which we use “probabilistic conjunction operator”.

Recall the probabilistic conjunction operator “ &” defined over the expecta-
tion space [15]:

(E & F).x =̂ (E .x + F .x− 1) # 0 , 5

for expectations E ,F and all x ∈ X . It is easy to see that “ &” is monotonic
with respect to �, and 〈P〉 ∗E ≡ 〈P〉 & E , for predicate P and general expec-
tation E . Moreover, from an earlier work [15], we know that for any probabilistic
substitution S has the following sub-conjunctivity property:

[S](E & F) [S]E & [S]F , (7)

for all expectations E ,F (The properties of & operator can be seen in [16]).
We begin with a lemma that will allow us to deal with the standard and

probabilistic expectations separately.

Lemma 3. Let S be a probabilistic substitution written in pGSL; let P ,Q be
predicates; and let A,B be expectations. If we have

〈P〉 � [S] 〈Q〉 , and (8)
〈P〉 ∗A � [S]B , then we have (9)

〈P〉 ∗A � [S](〈Q〉 ∗ B) (10)

4 Recall that an embedded predicate 〈P〉 is 1 if P holds and 0 otherwise.
5 The definition of � is: a � b =̂ a max b.

364 T.S. Hoang et al.

Proof. We begin with the left-hand side:

〈P〉 ∗A
≡ 〈P〉 ∗ 〈P〉 ∗A arithmetic
≡ 〈P〉 & (〈P〉 ∗A) 〈P〉 is standard
� [S] 〈Q〉 & [S]B (8), (9) and monotonicity of “ &”
� [S](〈Q〉 & B) sub-conjunctivity (7)
≡ [S](〈Q〉 ∗ B) , 〈Q〉 is standard

which completes the proof.

We now use probabilistic conjunction to explain the generalisation of Sec. 5.1
to probabilistic loops. In fact, we will just study one kind of probabilistic loops,
whose partial correctness is probabilistic while its total correctness is absolutely
trivial. Such loops can be written in pGSL as follows:

loop =̂ WHILE G DO S INVARIANT I EXPECTATION E VARIANT V END .

Assuming as before that the loop follows an initialisation, we will state and
justify the proof obligations for its correctness with respect to the probabilistic
implication

〈P〉 ∗ A � [init ; loop](〈Q〉 ∗ B) ,

where A,B are expectations and P ,Q are predicates [14, 16].

P1 : The expectation E together with the invariant I must be bounded below by
the pre-expectation A, with the precondition P , before the while-test is first
made. This is precisely formulated as follows:

〈P〉 ∗ A � [init] (〈I 〉 ∗ E) .

According to Lemma 3, this can be achieved by the following two proof
obligations:

P1a: The precondition P must guarantee that the invariant I is established
before the while-test is made for the first time: 〈P〉 � [init] 〈I 〉, or
equivalent to

P ⇒ [init] I .

P1b: The expectation E must be bounded below by the pre-expectation A
with the precondition P before the while-test is first made:

〈P〉 ∗ A � [init]E .

P2 : The loop body cannot decrease the expected value of E with the invariant
I and the guard G :

〈G ∧ I 〉 ∗ E � [S](〈I 〉 ∗ E) .

According to Lemma 3, this is achieved by the following two proof obliga-
tions:

Development via Refinement in Probabilistic B 365

P2a: The invariant I must hold within the loop body with probabilistic choice
substitution being treated as demonic — this is called demonic retrac-
tion. If ''S((represents the demonic retraction of S 6, then this rule can
be formulated by 〈G ∧ I 〉� [S] 〈I 〉, or equivalent to

G ∧ I ⇒ ''S((I .

P2b: The expectation E must not decrease within the loop body , i.e. the
operation within the loop body can not decrease the expectation E by
the invariant I and the guard G :

〈G ∧ I 〉 ∗ E � [S]E .

P3 : When terminating, the loop establishes the post-expectation B with post-
condition Q , i.e:

〈¬G ∧ I 〉 ∗ E � 〈Q〉 ∗ B .

According to Lemma 3 this can be achieved by the following:
P3a: When terminating, the loop establishes the post-condition Q , that is we

have: 〈¬G ∧ I 〉� 〈Q〉. We can rewrite this without embedding as:

¬G ∧ I ⇒ Q .

P3b: When terminating, the loop establishes the post-expectation B :

〈¬G ∧ I 〉 ∗ E � B .

P4 : The standard invariant guarantees that the variant denotes a natural number
as is the case in standard rule:

I ⇒ V ∈ N .

P5 : The loop body decreases the variant as is the case in standard rule, but the
probabilistic choice within the body is treated as demonic retraction:

G ∧ I ⇒ [n := V]''S(((V < n) .

6 Case Study: Randomised Min-Cut

In this section, we show how to use the theorems of Sec. 4.2 and Sec. 5.2 in
practice to develop a probabilistic algorithm. We will be using the well known
technique of “probabilistic amplification”.

6 This demonic retraction is defined in [11] as ��S I ≡ ([S] 〈I 〉 = 1). This is defined to
take advantage of the fact that [S] 〈I 〉 can only take values in 0, 1, and can be easily
calculated by replacing all probabilistic choice substitutions by non-deterministic
ones.

366 T.S. Hoang et al.

In particular we take the example of finding a Min-Cut of a graph, the small-
est number of edges whose removal would disconnect the graph. The algorithm
contains two parts: the first part is to find a Min-Cut probabilistically, but at low
probability; and the second part is to use probabilistic amplification to improve
the probable correctness of the algorithm.

We will first briefly describe the Min-Cut algorithm and the probabilistic
amplification technique; then we discuss how to code the Min-Cut algorithm in
B , and we look in particular at the proof obligations required.

6.1 Informal Description of the Min-Cut Algorithm: Contraction

The Min-Cut algorithm operates on undirected and connected graphs. A cut is
a set of edges such that if we remove just those edges, the graph will become
disconnected.

Deterministic algorithms’ complexities are often improved by randomisation,
and Min-Cut is an example of that. The result for randomised algorithms is
much better than for the deterministic one, especially for dense graphs [20].

The randomised algorithm consists of a number of “contraction” steps. In
a contraction, two connected nodes are chosen randomly and merged together.
The contracted graph then has one node less than the original one. It can be
proved that the connectivity of the contracted graph is always no less than the
original one and that any specific minimum cut in the original graph remains in
the contraction with probability at least N−2

N (where N is the number of nodes
of the graph). This contraction is done repeatedly until there are only two nodes
left. At that point the only cut left is the (multiple) edges connecting the last
two nodes. This will therefore be the cut that is chosen.

The above contraction procedure does not guarantee to find the minimum
cut for the original graph, but there is a non-zero lower bound of probability
that it will. By multiplying the probabilities for the successive stages, we see
that probability is at least

p(N) =
N − 2

N
∗ N − 3

N − 1
∗ ∗ 2

4
∗ 1

3
=

2
N ∗ (N − 1)

; (11)

Further, independent repetitions of the process can reduce the probability that
a witness (solution to the problem) is not found on any of the repetitions, using
the probabilistic amplification technique we describe below.

Full details of this algorithm are given by Motwani and Raghavan [20].

6.2 Probabilistic Amplification

Intuitively, because it is difficult to find solutions in a search space which contains
a large number of witnesses, it often suffices to choose an element at random
from the space. The randomly chosen element is likely to be a witness; further,
independent repetitions of the process reduce the probability that a witness is
not found on any of the repetitions. This improvement is known as probabilistic
amplification.

Development via Refinement in Probabilistic B 367

ans ←− contraction(N) =̂
VAR n IN

n := N ; ans := TRUE ;
WHILE 2 < n DO

ans ←− merge(n, ans); /* Select two nodes and merge */
n := n - 1

INVARIANT n ∈ N ∧ n ≤ N ∧ 2 ≤ n ∧ ans ∈ BOOL
EXPECTATION (2 ÷ (n ∗ (n − 1))) ∗ 〈ans〉
END

END

Fig. 2. Implementation of contraction in pGSL

As we saw at (11) above, the probability of finding the minimum cut in one
test is quite small. For N = 10, it would be 2

10∗9 , that is approximately 2%. In
order to improve that, we use probabilistic amplification to find the minimum cut
repeatedly. The probability that we find the right minimum cut is the probability
that the minimum cut is found in any one of those tests, which for M tests is at
least is P(N ,M) = 1− (1− p(N))M , where p(N) is as above.

For example, if we run the N = 10 case 120 times, the error probability would
only be around 10%, that is, our probability of sucess is increased from 2% to
100− 10 = 90%.

6.3 Formal Development of Contraction

In this section, we will see how the contraction steps are specified, and then
implemented in pGSL; and we see the proof obligations for preserving the re-
finement relationship between the specification and the implementation.

Specification of Contraction. We look at the specification of the contraction,
i.e. of the one test to find the minimum cut. Since the probability of the outcome
for the test only depends on the number of nodes in the graph, we can take an
abstract view for the specification. The machine (program) has one operation
to model one test, with the input N being the number of nodes for the original
graph. The output ans is TRUE when we have found the right minimum cut, and
FALSE otherwise. In this specification, we want to state that for any input N ,
the probability that the output ans is TRUE on termination is at least 2

N∗(N−1)
(as at (11)). The specification is shown below:

ans ←− contraction(N) =̂ ans : {〈N ∈ N ∧ 2 ≤ N 〉 ∗ p(N), 〈ans〉}

An Implementation of Contraction. A loop implementation of the con-
traction using pGSL is given in Fig. 2. In this implementation, we have a local
variable n to keep the number of nodes in the current graph, and so we start
with n = N (original graph). At each stage, variable ans is TRUE just when the

368 T.S. Hoang et al.

actual Min-Cut has not yet been destroyed by any merge so far. We keep merg-
ing while the number of nodes is greater than 2. The operation merge(n, ans) is
specified in the machine merge as below.

ans ←− merge (n , a) =̂ n ∈ N ∧ a ∈ BOOL | ans := FALSE ≤ 2
n
⊕ a

The operation says that with probability at most 2
n , the minimum cut will

be destroyed by the contraction. Otherwise, if the minimum cut has not been
destroyed, it will be kept.

Proof Obligations of Contraction. We now will apply the generalised proof
obligations for the probabilistic loop to prove the correctness of the implemen-
tation to the specification of the contraction process.

To prove the refinement relationship between the specification and the im-
plementation in Fig. 2 of the contraction process, Theorem 2 is applied to those
programs. We thus have to prove that

〈N ∈ N ∧ 2 ≤ N 〉 ∗ p(N)
� [ans0 := ans][contraction] 〈ans〉 ,

which can be simplified to

〈N ∈ N ∧ 2 ≤ N 〉 ∗ p(N) � [contraction] 〈ans〉 ,

where we have used the fact that there is no ans0 on the right-hand side, so that
the substitution [ans0 := ans] is redundant. Further more, we have used the fact
that proving 〈P〉 ∗ E � F is equivalent to prove E � F under the assumption
that P holds, so it is necessary to prove: p(N) � [contraction] 〈ans〉, given that
N ∈ N∧2 ≤ N , which means that the implementation succeeds with probability
(finding the right minimum cut) at least p(N).

We first state all the components of the loop within our reasoning context.
Referring to Sec. 5.2, we have the following information.

• The initialisation for the loop is: init1 =̂ n := N ; ans := TRUE .
• The standard invariant is: I1 =̂ n ∈ N ∧ n ≤ N ∧ 2 ≤ n ∧ ans ∈ BOOL.
• The guard for the loop is: G1 =̂ 2 < n.
• The body of the loop is: S1 =̂ ans ←− merge(n, ans); n := n − 1 .
• The expectation (probabilistic invariant) is: E1 =̂ 2

n∗(n−1) ∗ 〈ans〉.
• The precondition is: P1 =̂ N ∈ N ∧ 2 ≤ N .
• The pre-expectation is: A1 =̂ p(N).
• The postcondition Q1 is the constant predicate true.
• The post-expectation is B1 =̂ 〈ans〉.

From this information there are 14 proof obligations for the implementation
of the contraction, all of which have been proved using the B-Toolkit with some
extra proof rules.

Development via Refinement in Probabilistic B 369

ans ←− minCut(N , M) =̂
ans : {〈N ∈ N ∧ 2 ≤ N ∧ M ∈ N1〉 ∗ P(N ,M), 〈ans〉}

Fig. 3. Specification of probabilistic amplification

Proving the Obligations. The proofs of the obligations can be found in [9].

6.4 Formal Development of Probabilistic Amplification

In this section, we use probabilistic amplification in order to increase the proba-
bility of finding the minimum cut. We will again look at the specification and its
implementation, and then look at the proof obligations for the refinement step.
We will see that a slightly more specialised version of the probabilistic specifica-
tion (and its fundamental theorem) is necessary for developments of this kind.

Specification of Min-Cut Probabilistic Amplification. The machine has
only one operation, namely minCut. This operation has two inputs: they are N for
the number of nodes in the original graph and M for the number of times that we
do the amplification, i.e. the number of times that the contraction process is used.
The output ans of the operation abstractly models whether we find the right
minimum cut or not after having done one amplification step. The specification
states that the probability of finding the correct minimum cut should be at least
P(N ,M) = 1− (1− p(N))M . The specification is shown in Fig. 3.

Implementation of Min-Cut Probabilistic Amplification. The implemen-
tation of the probabilistic amplification is shown in Fig. 4. In the implementation,
we have two auxiliary variables m and a, which represent the counter and the
recent output from the contraction process, respectively. Initially, m is assigned
M and ans is assigned FALSE , which means that we intend to repeat the test
process M times and initially have not found the right minimum cut yet. In the
body of the loop, the contraction process is taken and its result is returned in
a; then ans is the disjunction of the new result a and the old ans (since if we
find the correct (least) cut once, we can never lose it); and finally, the counter
decreases accordingly.

Proof Obligations of Min-Cut Probabilistic Amplification. Again, we
will apply the generalised proof obligations for the probabilistic loop to prove
the correctness of the implementation to the specification of probabilistic am-
plification. To prove the refinement relationship, Theorem 2 is applied between
the programs in Fig. 3 and Fig. 4; it states that we must show

〈N ∈ N ∧ 2 ≤ N ∧ M ∈ N1〉 ∗ P(N ,M)
� [ans0 := ans][minCut] 〈ans〉 (12)

in order to establish the refinement. The implication (12) can be simplified to

〈N ∈ N ∧ 2 ≤ N ∧ M ∈ N1〉 ∗ P(N ,M) � [minCut] 〈ans〉 ,

370 T.S. Hoang et al.

ans ←− minCut(N , M) =̂
VAR m, a IN

m := M ; ans := FALSE ;
WHILE m �= 0 DO

a ←− contraction(N);
ans := ans ∨ a;
m := m − 1

INVARIANT m ∈ N ∧ m ≤ M ∧ ans ∈ BOOL
EXPECTATION 〈ans〉 + 〈m �= 0〉 ∗ 〈¬ans〉 ∗ P(N ,m)
END

END

Fig. 4. Probabilistic implementation of the specification in Fig. 3

by noting that there is no ans0 on the right-hand side. Also, we again sep-
arate the standard predicate and expectation, i.e. we will prove P(N ,M) �
[minCut] 〈ans〉, under the assumption that N ∈ N ∧ 2 ≤ N ∧ M ∈ N1.

We first state all the components of the loop within our reasoning context.
Referring to Sec. 5.2, we have the following information.

• The initialisation for the loop is: init2 =̂ m := M ; ans := FALSE .
• The standard invariant is: I2 =̂ m ∈ N ∧ m ≤ M ∧ ans ∈ BOOL.
• The guard for the loop is: G2 =̂ m �= 0.
• The body of the loop is

S2 =̂ ans ←− contraction(N); ans := ans ∨ a;m := m − 1 .

• The expectation (probabilistic invariant) is:

E2 =̂ 〈ans〉+ 〈m �= 0〉 ∗ 〈¬ans〉 ∗ P(N ,m) .

• The precondition is’: P2 =̂ N ∈ N ∧ 2 ≤ N ∧ M ∈ N1.
• The pre-expectation is A2 =̂ P(N ,M).
• The postcondition Q2 is the constant predicate true.
• The post-expectation is: B2 =̂ 〈ans〉.

Here, we concentrate only on the proving of P2b; the other proofs can be
seen elsewhere [9]. We find that the obligation P2b cannot be proved because of
termination (details also can be seen in [9]). This is not surprising in retrospect,
because for example a specification v : {p, 〈Q〉} ensures termination in state
satisfied Q with probability p only; with probability 1− p, abortion is possible.
Here, we must ensure additionally that in the latter case, termination occurs
although we do not care about the postcondition in that case. We address this
briefly in the next section.

Development via Refinement in Probabilistic B 371

6.5 The “Terminating” Probabilistic Specification Substitution

In order to avoid the problem revealed in the last section, we would have to
introduce the concept of “terminating probabilistic specification substitution”
and a corresponding fundamental theorem for it as well.

To do that we would consider a special case of the probabilistic substitution,
where the post-expectation B is standard, i.e is 〈Q〉 for some predicate Q , and
the pre-expectation A is the probability — still a function of the state — that Q
will be achieved. For consistency with probability elsewhere, we use lower-case
p for pre-expectation.

Definition 2. Let p be a probabilistic expression over x and free from x0; Q
a predicate defined over x0, v and satisfying ∀ x0 · (∃ v · Q). The specification
v : {{p, 〈Q〉}} is defined by:

v : {{p, 〈Q〉}} =̂ v : {1, 〈Q〉} p⊕ x : {1, 1} . (13)

And accordingly, we introduce the fundamental theorem for the above sub-
stitution as follows.

Theorem 3. Let p be an expression over x and let Q be a predicate defined over
x0, v, and satisfying ∀ x0 · (∃ v · Q); and T a program written in pGSL. For all
such programs T, if x : {1, 1} T and v : {p, 〈Q〉} T then v : {{p, 〈Q〉}} T.

With the new terminating version of the specification and fundamental the-
orem, we can reconstruct and prove all the proof obligations for the implemen-
tation of probabilistic amplification, which can be seen in [9].

We now can prove the correctness of the refinement for the contraction steps
and the probabilistic amplification technique, both containing probabilistic spec-
ification substitution.

7 Conclusion and Challenges

We have taken a “second step” into the probabilistic-B world, by adding above
our earlier work [8] the “superstructure” required for following the specify-refine-
code path embodied in the B-Method . We have been successful in the sense that
the new constructs are shown to be well defined, and interact properly with each
other. In addition, the case-study is not completely trivial.7

Neil White in his MSc thesis at Oxford [21] presented similar ideas expressed
in Z .

The B context however provides a number of new challenges, some of which
we have addressed here. The issue of separation of standard reasoning from
probabilistic reasoning is (or will be) of crucial importance if the probabilistic B
is to handle developments of anything like the same size and scope as standard
B . And the “terminating” specification substitution (mentioned here in the case
study) will probably become the one used in practice.

7 It was suggested to us by a case-study of the same algorithm done in the theorem-
proving environment Coq [10] by Christine Paulin of the LRI in Paris.

372 T.S. Hoang et al.

Acknowledgments

We wish to acknowledge the assistance of B-Core [5] for the modification of the
B-Toolkit.

The authors at University of New South Wales gratefully acknowledge the
support of the Australian Research Council under the large grant A00103115.

We wish to thank anonymous reviewers for their comments, which have been
used to improve the paper.

References

1. Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.
2. Jean-Raymond Abrial, Dominique Cansell, and Dominique Mery. A mechanically

proved and incremental development of IEEE 1394 firewire tree identify protocol.
Formal Aspects of Computing, 14(3):215–227, 2003.

3. Ralph-Johan Back. On the correctness of refinement in program development. PhD
thesis, Department of Computer Science, University of Helsinki, 1978. Report A-
1978-4.

4. Ralph-Johan Back and Joakim Von Wright. Refinement Calculus, a Systematic
Itroduction. Springer-Verlag New York, Inc., 1998.

5. B Core(UK) Ltd. B Toolkit. http://www.b-core.com.
6. Colin J. Fidge and Carron Shankland. But what if I don’t want to wait forever?

Formal Aspects of Computing, 14(3):281–294, 2003.
7. David Gries. A note on a standard strategy for developing loop invariants and

loops. Science of Computer Programming, 2:207–214, 1984.
8. Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver, and Carroll

Morgan. Probabilistic Invariants for Probabilistic Machines. In D. Bert, J. P.
Bowen, S. King, and M. Waldén, editors, ZB2003: Formal Specification and De-
velopment in Z and B, Proceedings of the 3rd International Conference of B and
Z Users, volume 2651 of LNCS, Turku, Finland, June 2003. Springer-Verlag.

9. Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver,
and Carroll Morgan. Proofs of the Min-Cut development.
http://www.cse.unsw.edu.au/∼htson/b/minCutProofs.pdf, April 2004.

10. INRIA. The Coq proof assistant. http://coq.inria.fr/.
11. Annabelle McIver, Carroll Morgan, and Thai Son Hoang. Probabilistic termination

in B. In D. Bert, J. P. Bowen, S. King, and M. Waldén, editors, ZB2003: Formal
Specification and Development in Z and B, Proceedings of the 3rd International
Conference of B and Z Users, volume 2651 of LNCS, Turku, Finland, June 2003.
Springer-Verlag.

12. Carroll Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3), July 1988. Reprinted in [18].

13. Carroll Morgan. Programming from Specifications. Prentice-Hall, second edition,
1994. At web.comlab.ox.ac.uk/oucl/publications/books/PfS.

14. Carroll Morgan. Proof rules for probabilistic loops. In He Jifeng, John Cooke, and
Peter Wallis, editors, Proceedings of the BCS-FACS 7th Refinement Workshop,
Workshops in Computing. Springer-Verlag, July 1996.

15. Carroll Morgan. The Generalised Substitution Language extended to probabilistic
programs. In Proceedings B’98: the 2nd International B Conference, volume 1393
of LNCS, Montpelier, April 1998.

Development via Refinement in Probabilistic B 373

16. Carroll Morgan and Annabelle McIver. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer-Verlag, 2004.

17. Carroll Morgan and Ken Robinson. On the Refinement Calculus, chapter Specifi-
cation Statements and Refinements, pages 23–45. Springer-Verlag, 1992.

18. Carroll Morgan and Trevor Vickers, editors. On the Refinment Calculus. FACIT
Series in Computer Science. Springer-Verlag, Berlin, 1994.

19. J.M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9(3):287–306, December 1987.

20. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

21. Neil White. Probabilistic Specification and Refinement. Master’s thesis, Keble
College, September 1996.

Formal Program Development with
Approximations

Eerke A. Boiten1 and John Derrick2

1 Computing Laboratory, University of Kent at Canterbury
2 Department of Computer Science, University of Sheffield
E.A.Boiten@kent.ac.uk, J.Derrick@dcs.shef.ac.uk

Abstract. We describe a method for combining formal program devel-
opment with a disciplined and documented way of introducing realis-
tic compromises, for example necessitated by resource bounds. Idealistic
specifications are identified with the limits of sequences of more “re-
alistic” specifications, and such sequences can then be refined in their
entirety. Compromises amount to focusing the attention on a particular
element of the sequence instead of the sequence as a whole.

This method addresses the problem that initial formal specifications
can be abstract or complete but rarely both. Various potential applica-
tion areas are sketched, some illustrated with examples. Key research
issues are found in identifying metric spaces and properties that make
them usable for refinement using approximations.

Keywords: Refinement, approximations, metric spaces.

1 Introduction

In formal program development, one starts with a complete formal statement of
the problem to be solved, and then develops a program by gradually adding detail
to the solution. In practical program development, one starts with an incomplete
informal problem statement, and then develops a program by adding detail to the
solution (and implicitly also to the specification). The difference between the two
approaches thus appears immediately in two aspects: formality and completeness
of the initial specification. Just using a formal initial specification is a definite1

improvement on the practical development process; however, insisting that the
initial specification be complete requires a radical change in the process.

Indeed, it is sometimes argued that this assumption of completeness makes
formal development inadequate in practice. Initial specifications often cannot
be complete and abstract at the same time. Consider, for example, a garbage
collector for a programming language. An idealistic specification would say that
it collects all memory cells that have become inaccessible whenever they become

1 Disregarding issues of communication – assume a specification language is used which
transliterates to English or the diagrammatic notation du jour .

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 374–392, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Program Development with Approximations 375

so. As this is unrealistic and probably not desirable, one might specify it as:
“periodically collects some memory cells which have become inaccessible”. Un-
fortunately, without quantifying “some” and “periodically”, such a specification
is likely to be inadequate, also satisfied by a program which collects no cells on a
yearly cycle. Replacing “some” and “periodically” by explicit values makes the
specification less abstract; worse, it may only be evident much later in the de-
velopment process which values are realistic or optimal. An informal incomplete
specification which can avoid using either “all” or “some” appears to be at an
advantage here.

This paper presents an approach which addresses this issue through using
chains of specifications, which are considered equivalent to their limits. Differ-
ent examples may be based on different limits for the chain, based on measures
of distance between specifications (i.e., metrics), or orderings such as degree of
fairness or randomness, machine integer size, floating point precision, memory
space, etc. The limits represent idealised behaviour, such as unbounded integers,
infinite floating point precision, etc. Elements in the chain represent approxima-
tions to the limits, which for sensible orderings behave “correctly” within bound-
aries which can be characterised precisely. Metrics measure the distance between
specifications, and thus provide a notion of convergence to idealised behaviour
from approximations which might be realisable as implementations.

The corresponding development process starts with an initial “optimistic”
specification. At some stage, this is replaced by a chain of specifications whose
limit it represents. Further development then refines2 the chains uniformly in
their entirety for as long as possible. This implies that “the position in the
chain” – often a resource constraint – is treated as a parameter of the specifi-
cation. The, a specific member of the chain is selected for further development
– this step represents a compromise with respect to the limit specification, and
will generally not preserve correctness. However, by postponing this step for as
long as possible, any further development which relies on the specific choice of
compromise is isolated from the more “generic” development up to that point,
which could later be reused for a different choice. In this way, the development
trail clearly documents where resource constraints were first taken into consid-
eration, and most importantly: at which point the resource constraint’s impact
on the specification forced a compromise. One might call this process “approx-
imate refinement”, but it is actually refinement interspersed with isolated and
highlighted approximation steps.

This process addresses the “incompleteness vs. abstraction” issue by allow-
ing initial specifications to be optimistic, assuming for example unbounded re-
sources. For as long as any mention of resource bounds can be avoided, it is;
then, we introduce the resource bound but continue to develop independently of
its value for as long as possible. This may go all the way to a code level constant,

2 This paper will use the term “refinement” to describe any formal development pro-
cess, without implying the post-hoc verification bias sometimes associated with “re-
finement”.

376 E.A. Boiten and J. Derrick

that is later instantiated on the basis of empirical information such as testing or
profiling.

Apart from the issue of limited resources, a number of other areas which
traditional refinement does not cover in a satisfactory way are addressed by this
approach. One of these is probabilistic algorithms which can come arbitrarily
close to the exact solution but are not guaranteed to ever reach it. Floating point
precision was already mentioned above; in general, any system which should
be dealing with real numbers (e.g. hybrid systems) at some stage should be
dealing with the approximation by floating point numbers. Also, the notion
of urgency in real-time formalisms, i.e., actions that happen instantaneously
once they are enabled, is often an unsatisfactory way of describing “as soon as
possible”; approximation is useful in this context as well.

No particular specification notation or refinement relation has been assumed
so far – indeed, apart from the specific notions of metrics and limits, the approach
described here applies independently of such choices. However, examples in this
paper will mostly use relational refinement [5, 6] using Z [14] as a concrete syntax.
This is briefly described in Section 2.

Section 3 presents sequences of specifications, identified with their limits, and
describes a formal development method using sequences. The rich mathematics
of chains and convergence leads to a number of foundational questions. Some of
these are discussed in Section 4 which considers limits defined by metrics over the
space of specifications. We discuss possible approaches to defining metrics for use
with refinement, and sketch a number of these. Section 4.3 discusses open issues
concerning metrics, limits and their induced topology. Section 5 considers the
relationship between refinement of limits and element-wise refinement of chains.

Various ways of addressing limitations of refinement have been published
previously; these are discussed in Section 6, and we conclude in Section 7.

2 Refinement

Although the approach described in this paper is independent of the choice
of specification notation, we fix a notation and notion of refinement for use in
examples. Our basic formalism is that of alphabetised relations [9], characterised
by predicates, using Z as a concrete syntax.

Where we consider a single operation on a fixed state, we may give its frame
directly, e.g., Δ [x : N], rather than define an explicit state schema.

Refinement for Z is described in the monograph [6]; we omit many of the
more general definitions and technical details here. For the examples in this
paper, algorithmic or operation refinement mostly suffices. We first recap on the
basic definition of refinement.

A Z specification defines a data type consisting of partial relations, D =
(State, Init, {Opi}i∈I , Fin), where I is the alphabet of the data type (its set of
operations). Each such data type induces a number of potential programs, each
program being a relation over some global state G (the final element Fin is the
finalisation which details what is observable, its technicalities need not concern

Formal Program Development with Approximations 377

us here). In the context in which we are working, a program will be characterised
by a sequence of operation indices (i.e., elements of I), and each such sequence
defines a program. E.g., if p = 〈p1, ..., pn〉 then pD = Init o

9 Opp1
o
9 ... o

9 Oppn
o
9 Fin.

We use the standard definition of refinement [5], defined in terms of these
potential programs. The relational inclusion ensures that the observations pro-
duced by data type C must be consistent with those produced by data type A
for the same sequence of inputs.

Definition 1 (Data Refinement). For data types A and C, C refines A, writ-
ten A data C, iff for each program p over I , pC ⊆ pA. Further, we write =data
to denote data refinement in both directions. �

In general two methods are used to verify such refinements: downward and
upward simulations. In this paper they coincide because we will use retrieve
relations which are the identity. Thus we use the following.

Definition 2 (Operation Refinement). Operation COp is an operation re-
finement of the operation AOp on the same state, using the same inputs and
outputs, iff

preAOp ⇒ preCOp
preAOp ∧ COp ⇒ AOp

hold for all states, inputs and outputs. preOp denotes the “domain” of Op: those
before-states and inputs for which related after-states and outputs are defined by
Op.

This definition is extended operation-wise to abstract data types of the form
(State, Init , {Opi}i∈I) (both using the same state) with sets of operations and
initialisation (as an operation with an irrelevant before-state). The same condi-
tions hold for operation refinement when the abstract state is a subset of the
concrete one.

However, in a real development it could be argued that this ideal is not always
obtained. Consider the following two examples.

2.1 Example - Bounded Buffer

Part of an abstract specification might specify an abstract buffer:

Buffer
cont : seq Item

EmptyBuf
Buffer ′

cont ′ = 〈 〉

Remove
ΔBuffer
out ! : Item

cont = 〈out !〉� cont ′

378 E.A. Boiten and J. Derrick

Insert∞
ΔBuffer
in? : Item

cont ′ = cont � 〈in?〉

However, this might be implemented by a bounded buffer of a particular size,
e.g., n = 256. In this implementation, Insert∞ is replaced by Insertn , where this
is defined as:

Insertn
ΔBuffer
in? : Item

(#cont < n ∧ cont ′ = cont � 〈in?〉) ∨ (#cont ≥ n ∧ cont ′ = cont)

This bounded buffer is only an approximate refinement (in some sense) of
the abstract infinite buffer – it certainly does not meet the requirements of the
definition of operation refinement.

2.2 Example - Add

We could also imagine a development involving several steps that include an ap-
proximation at the end. One that starts with Add∞, replaces it by Addn , refines
that to ModAddn and finally instantiates n to maxint. Here the specifications
are:

Add∞
Δ [x : N]; add? : N

x ′ = x + add?

Addn

Δ [x : N]; add? : N

x ′ = x + add? ∧ x ′ < n

ModAddn

Δ [x : Z | −n ≤ x < n]
add? : N

x ′ mod (2 ∗ n) = (x + add?) mod (2 ∗ n)

The final result is not a correct implementation of the original specification, but
it can be formally traced back to it, recording the approximations needed in its
development.

3 Refinement and Approximation with Chains

To model these types of approximate refinements we consider chains of specifi-
cations (Sn), where we will identify a chain with its limit:

Formal Program Development with Approximations 379

Definition 3. A sequence of specifications (Sn)n∈N is considered equivalent to
its limit.

Sequences which do not have a limit are not considered meaningful. Different ap-
proximations give different notions of a limit, and we consider examples of these
in section 4. In this section, we describe an envisaged formal development pro-
cess using chains of specifications. (For simplicity, we do not mention sequences
with multiple indices, although they are definitely not excluded.)

The development process contains four kinds of steps:

Element-Wise Refine. A refinement step is a normal development step of the
notation at hand, applied to the current specification. When we are dealing with
a sequence (Sn), we apply such a step uniformly to each of its elements.

Introduce Sequence. At any time, we may replace a specification S with a
sequence of specifications (Sn) such that S is the limit of (Sn).

Replace Sequence. A sequence (Sn) may be replaced by a sequence (Tn) whose
limit is identical to, or a refinement of, the limit of (Sn).

Compromise. We replace a sequence (Sn) with one of its elements Sn .

Sequence introduction and replacement are correct steps, this follows directly
from our interpretation of sequences. Conditions for the correctness of refinement
steps applied element-wise are discussed below, where we also explain what we
mean by the “uniform” application of such steps. A compromise step generally
does not preserve correctness, and for that reason forms a central part of the
development documentation.

Example 2.2 uses sequence introduction when we replace Add∞ by the se-
quence (Addn) and element-wise refinement in the refinement to (ModAddn),
and the final step is a compromise, i.e., when we instantiate n to maxint.

A variation on the bounded buffer example given previously might start de-
velopment from the unbounded buffer, replace it by (Bufn) (sequence introduc-
tion), then by (Buf2∗n)n∈N (sequence replacement, the limit of even-sized buffers
is still the infinite buffer), implement that by serial composition of two copies of
Bufn (element-wise refinement), and finally instantiate n to 256 (compromise).

The definition of refinement between sequences is inherited from their iden-
tification with limits. Thus, we have:

Theorem 1. The sequence (Sn) with limit S∞ is refined by the sequence (Tn)
with limit T∞ iff S∞ is refined by T∞.

Clearly our main objective in refining chains should be to use element-wise
refinement as much as possible. Sequence replacement is complete by definition
for sequence refinement (assuming a complete rule for refinement of their lim-
its), but defeats the purpose of moving to sequences. Its use is probably best
limited to replacing sequences which converge “at different speeds”, such as in
the even-sized buffer example above. However, element-Wise refinement does

380 E.A. Boiten and J. Derrick

not necessarily lead to refinement between sequences; this is discussed further
in Section 5 below.

4 Metrics and Limits

The above discussion on orders and limits is the precursor to a discussion on
alternative approaches to limits in terms of metrics (and hence topologies). We
first recap on the standard definitions. Limits are defined in terms of convergence,
which is relative to a particular distance function: a metric.

Definition 4 (Metric). A metric on a space A is a function d : A × A → R

such that ∀ x , y , z ∈ A:

d(x , y) ≥ 0
d(x , y) = d(y , x)
d(x , y) = 0 iff x = y
d(x , y) ≤ d(x , z) + d(z , y) �

The limit of a sequence is defined as the point of convergence with respect to a
metric.

Definition 5 (Limit of a Sequence). A sequence sn converges to s, denoted
sn → s, whenever:

∀ ε > 0 • ∃N • ∀n > N • d(sn , s) ≤ ε �

There are several approaches to defining metrics and topologies for specifi-
cations, to understand what is relevant in terms of refinement we return to its
definition. This was defined as consisting of program observation, expressed as
pC ⊆ pA, where pC is a finite sequential composition of operations from C. From
this there are two immediate parameters which can be used to define metrics: the
consistency of observations as represented by ⊆, and the programs themselves.
We discuss each of these in turn.

4.1 Program Length

Data refinement asks for consistency of observations for all programs. We can
define a metric by assigning a distance to specifications which agree on obser-
vations up to a certain length. This is easiest if phrased in terms of equivalence
(i.e., data refinement in both directions). Thus we define

Definition 6 (Program Length Metric). We define the metric dl on speci-
fications as follows:

dl(A,C) =
{

0 if A =data C
2−n if n = min{m : N | ∃ p • pC �= pA ∧#p = m}

where the length of a program is the number of operations plus one (for the
initialisation). �

Formal Program Development with Approximations 381

It should be clear that this defines a metric on the set of equivalence classes
(with respect to =data) of specifications. The basis of this metric, see [4], is the
idea that two specifications are close if it takes a long time to tell them apart,
where a ‘long time’ is the length of the program before the difference is observed.

Limits with respect to this metric are characterised as follows. The sequence
Sn converges to S whenever, dl(Sn ,S) → 0, i.e., 2−n → 0 where n is the mini-
mum length of program needed to distinguish Sn from S .

Buffer Example. This metric works well on the buffer example. The shortest
program that can observe that Bufn , a buffer of size n, does not have infinite
capacity has size 2n + 2: first n + 1 elements are inserted (the last of which is
the first one to be ignored), then n Remove operations are successful, and the
next Remove operation fails3.

Thus dl(Bufn ,Buf) = 2−(2n+3) and so Bufn → Buf .
This metric has thus here correctly formalised our intuition that Bufn gets

closer to its idealised behaviour as n gets larger. The metric quantifies this
closeness numerically.

Notice that the definition of the metric is, as one would hope, not sensitive to
small changes. For example, if we consider finite and infinite stacks (i.e., inserting
and removing from the same end) we can observe the difference more quickly
than in the buffer example (since we do not have to remove all the elements
first). However, the distance is 2−(n+1), and thus we still get convergence to the
infinite stack as one would expect.

Although its definition seems to assume observations being characterised by
outputs, it also works for specification styles that use other notions of observabil-
ity [7]. This is because there will always be a minimum length program where any
difference can be observed – whether that be due to an output of an operation,
or an explicit finalisation after the last operation.

Add Example. Applying this metric to the second example results in the fol-
lowing. First, note that as it stands the specifications are data refinement equiv-
alent (for any n) since no difference can be observed. So let us add an observer
to both:

Obs
Ξ [x : N]; out ! : N

out ! = x

Denoting the two specifications by An and A∞, we find that dl(An ,A∞) =
2−3 since the sequence Init ; Add ; Obs will observe a difference for any input

3 The standard semantics of applying Remove outside its precondition allows for any
result including the “correct” one and a completely undefined one; however, we are
looking for equality of semantics of programs rather than inclusion.

382 E.A. Boiten and J. Derrick

bigger than n. Thus, with respect to this metric, we do not get convergence.
This is despite the sequence (Addn) being ordered by refinement:

preAddn = x + add? < n ⇒ preAddn+1 = x + add? < n + 1

and

preAddn ∧Addn+1

≡
x + add? < n ∧ x ′ = x + add? ∧ x ′ < n + 1
≡
x + add? < n ∧ x ′ = x + add? ∧ x ′ < n
≡
Addn

The use of this metric on this example could be criticised because, although
dl(An ,A∞) = 1/23, the behaviour is correct for some inputs. That is, this defi-
nition stresses quantification over programs at the expense of quantification over
inputs and outputs. Consider, for example,

OpN

Δ [x : N]
x? : N

y ! : B

x? �= N ⇔ y !

Op
Δ [x : N]
x? : N

y ! : B

y !

then (assuming each specification is completed in an obvious way) dl(OpN ,Op) =
1/4 despite the fact that Op and OpN have identical behaviour for all but one
input. The metric in Section 4.2 tackles this issue.

Metrics via Probability Distributions. It should be noted that the program
length metric is a worst case analysis. The shortest program that one can observe
the difference on is used to determine the difference, irrespective of whether that
program is likely to appear in practice. Such a worst case analysis is useful in, for
example, safety analysis. However, it might well be that other analyses are useful
on occasion, and this would involve the use of a different metric. To determine
the correct measure, a probability distribution would have to be assigned to
the possible programs occurring, and this probability would be reflected in the
distance calculated.

For example, let π : P → [0, 1] be a probability distribution on the space of
all finite programs P (which is countable). Thus π(p) represents the probability
that p will occur. At this moment we abstract away from any discussion of time
intervals over which programs may be invoked, but assume they occur in some
unspecified interval, kept finite (along with the program length) to avoid any
issues of fairness.

Formal Program Development with Approximations 383

Definition 7. We say a probability distribution π is observationally consistent
over a set of specifications S if, for all A,C ∈ S we have A �=data C ⇒ ∃ p.π(p) >
0 ∧ pA �= pC. �

This is needed to ensure that we can observe the non-equivalent specifications.
It is a natural requirement to seek, since A �=data C means we can observe a
difference in behaviour, and this will only be the case if there is a non-zero
probability of a program being invoked which exhibits that difference. We can
now define a metric with respect to such a probability distribution as follows.

Definition 8. Let π be an observationally consistent probability distribution
over a set of specifications S. Define dπ by

dπ(A,C) =
{

0 if A =data C
p if p = Σ{π(p) | p : P ∧ pC �= pA}

�

Thus dπ measures the distance in terms of a probability that the non data-
equivalence will be observed by one of the programs.

Theorem 2. dπ is a metric on the set of equivalence classes (with respect to
=data) of specifications.

Proof:
1. Non-negativity and symmetry are obvious.

2. dπ(A,C) = 0 iff A =data C follows from π being observationally consistent.

3. For the triangle equality, given non-equivalent specifications A,B ,C . Let p
be a program with pC �= pA and π(p) = p; then either pB �= pA or pC �= pB (or
indeed both), thus p will be in the sum of probabilities in the measure dπ(A,B)
or dπ(B ,C). This holds for all elements in the sum Σ{π(p) | p : P ∧ pC �= pA},
and thus

Σ{π(p) | p : P ∧ pC �= pA} ≤
Σ{π(p) | p : P ∧ pB �= pA}+ Σ{π(p) | p : P ∧ pC �= pB}

as required. �

Other variants of such a metric are clearly feasible and this approach needs
to be assessed against practical as well as theoretical relevance.

4.2 Input/Output Metrics

An alternative to a metric based around program length is one that ‘counts’ the
inputs/outputs for which the concrete specification correctly refines the abstract
one. Due to the issue of counting over an infinite domain such as N, we first
consider bounded data types before generalising to unbounded ones.

384 E.A. Boiten and J. Derrick

Bounded Data Types. Consider a simplification of the Add example given as
follows.

Setn
Δ [x : 0..m]
set? : 0..m

x ′ = set? ∧ x ′ < n

Set∞
Δ [x : 0..m]
set? : 0..m

x ′ = set?

Obs
Ξ [x : 0..m]; y ! : N

y ! = x

We want to define a metric which counts the values for which (Init ,Setn ,Obs)
differs from (Init ,Set∞,Obs). This time we will base our metric on the simulation
rules (i.e., operation refinement as in Definition 2), in contrast to the metric in
Section 4.1, which used the basic definition of data refinement.

First note that the temptation to just count the outputs (i.e., observations)
is not sufficient: Obs in the concrete is clearly a correct refinement of Obs in the
abstract. Thus if we are to base a metric on the simulation rules we will clearly
need to consider both inputs and outputs. This means we will consider refinement
of both preconditions and postconditions. Again we will define a metric d that
is zero on data refinement equivalent specifications, this will be defined in terms
of the maximum distance between the constituent operations:

d(A,C) = maxi∈I d(AOpi ,COpi)

and the distance between two operations in terms of an asymmetrical distance
based on applicability and correctness:

d(AOp,COp) = max{ρ(AOp,COp), ρ(COp,AOp)}
ρ(AOp,COp) = ρa(AOp,COp) + ρc(AOp,COp)

Here ρa will measure distance in preconditions, and ρc distance in correctness.
Both will count values where failure occurs, and return the ratio of this to the
size of the input/output domain as the distance. Thus we define (with suitable
generalisation):

Definition 9 (Input/Output Metric). ρa(AOp,COp) = (#Y −#T)
#Y where Y

is the type of the input x? and T is the largest set T ⊆ Y such that

∀ x? : T • ∀State • preAOp ⇒ preCOp

ρc(AOp,COp) = (#Z−#T)
#Z where Z is the type of the output y ! and T is the

largest set T ⊆ Z such that

∀ y ! : T • ∀State; State ′; x? : Y • preAOp ∧ COp ⇒ AOp �

Formal Program Development with Approximations 385

Limits, and convergent sequences, with respect to this metric are charac-
terised as follows. The sequence Sn converges to S whenever the number of
inputs and outputs for which Sn and S are not equivalent tends to zero.

We can calculate the distance between An = (Init ,Addn ,Obs) and A∞ =
(Init ,Add∞,Obs):

d(An ,A∞) = d(Addn ,Add∞) since Obs is identical in An and A∞

= ρ(Add∞,Addn) since Addn Addn+1

= ρa(Add∞,Addn) since there are no outputs
= (m + 1−#T)/(m + 1)

where T is the largest T ⊆ 0..m for which add? : T • add? < n, hence

d(An ,A) =
{

(m + 1− (n − 1))/(m + 1) if n < m
0 otherwise

Hence An → A∞ with respect to this metric. In a similar way with the Add
example from Section 2.2 we also get An → A∞. The following proposition
follows directly.

Proposition 1. d is a metric on the set of equivalence classes (with respect to
refinement) of specifications.

Proposition 2. If Si Si+1 and S is the least upper bound in the refine-
ment ordering (i.e., Si S and no other Si T S with T �=data S), then
d(Si ,S)→ 0.

Proof
It suffices to consider one operation Opi . Since Si Si+1 we have

preSi ⇒ preSi+1
preSi ∧ Si+1 ⇒ Si

and the distance will depend upon convergence of the following

preSi+1 ⇒ preSi
preSi+1 ∧ Si ⇒ Si+1

Now since the sequence (Si) is bounded above and the types are bounded, the
preconditions must eventually converge, i.e., ∃N • ∀n > N • preSn = preS .

Similarly, correctness will allow reduction of non-determinism in output and
after-state. With the bounded output type, once the preconditions have con-
verged, the correctness must do so also, i.e., ∃M > N • ∀m > M • Sm =data S .

�

Notice that this proposition is also true for the metric in Section 4.1.
In order to calculate a ratio #Y −#T

#Y the input and output types must obvi-
ously be bounded, however, the state does not have to be bounded. However, a

386 E.A. Boiten and J. Derrick

non-finite state can lead to differences in the distance calculated as the following
example shows.

State1
x : 0..m

State2
x : N

Addn [S]
ΔS
add? : 0..m

x ′ = x + add? ∧ x ′ < n

Add∞[S]
ΔS
add? : 0..m

x ′ = x + add?

We can calculate d(Addn [State1],Add∞[State1]) = 1 −#T/(m + 1), where,
similarly to before, we find that

T =

⎧⎨⎩
∅ if n ≤ m
0..m if n > 2m
0..(n −m) if m < n ≤ 2m

so again d(Addn [State1],Add∞[State1]) → 0, indeed the distance is zero after
n = 2m.

However, if we calculate d(Addn [State2],Add∞[State2]), this also comes to
1 − #T/(m + 1), but T = ∅ since for no input values can we guarantee that
x ′ < n for all state. And this sequence does not converge, correctly reflecting
our intuition that we can never force Addn to behave like Add∞ no matter what
input values are chosen.

A similar situation occurs when we apply this metric to the buffer example.
In Insert , the value of the input chosen is immaterial thus d(Bufn ,Buf) = 1
since it is the size of the state that forces convergence or otherwise.

Arbitrary Input/Output Types. How do we generalise the above metric to
arbitrary input/output types such as add? : N? The approach we take is to avoid
the problem and recognise the nature of approximation of implementation. The
observation is that in any real implementation approximations will be made to
data types such as N, Z, R etc. For example, N will usually be implemented as
0..maxint and so forth, R as a certain precision of float.

As an example, consider our original addition example:

Addn

Δ [x : N]
add? : N

x ′ = add? + 1 ∧ x ′ < n

Add∞
Δ [x : N]
add? : N

x ′ = add? + 1

Addn is a correct refinement of Add∞ whenever x ′ < n. Now, the maximum
range of a realistic implementation for N is 0..maxint , so when n exceeds maxint ,
Addn should correctly refine the implementation of Add∞.

Formal Program Development with Approximations 387

We thus use the same definition for d and ρ, and adapt the definition of ρa
and ρc to take into account the implementation range. Then to adapt Definition
9 we take Yimp (and resp. Zimp) to be the actual implementation of Y (and
resp. Z), and then find (#Yimp−#T)

#Yimp
where T is the largest set T ⊆ Yimp such

that

∀ x? : T • ∀State • preAOp ⇒ preCOp

and similarly for ρc . (Notice we do not change the calculation of the precondi-
tion.)

With this metric should be a description of how each infinite type has been
implemented, e.g., N as 0..maxint .

Applying this to the example above gives us:

preAdd∞ = true
preAddn = (add? + 1 < n)

= add? : 0..n − 2

So we find the largest T with ∀ add? : T • ∀State • add? : 0..n − 2, we then
calculate (#Yimp−#T)

#Yimp
which is{ (maxint+1−(n−1)

maxint+1 if n < maxint + 2
0 otherwise

which tends to zero as n →∞.

Discussion. Although this metric has the pleasing characteristic that it is de-
fined via the simulation rules, and this is tractable, it is open to criticism in
a number of respects. Firstly, it is somewhat ad hoc, and one must wonder
whether a better characterisation can be obtained by beginning with the defini-
tion of downward simulation instead of the definition of data refinement. Second,
the fudge to deal with unbounded data types is indeed a fudge. Whilst it deals
satisfactorily with an infinite data type such as N, it is less clear how effective it
would be with R where the subset of values actually represented in a program-
ming language varies more wildly depending on implementation strategy.

There are a number of ways these issues could be tackled. For example, one
could embed the input/output in the state (in the standard fashion [6]) in order
to derive the simulation rules from the data refinement definition. The metric
could also take account of the complexity of constructing a particular input
as its characterisation of how often this would occur (as opposed to a ratio as
above). Such a complexity measure is akin to using a probability distribution,
and this perhaps is the most promising avenue to explore. Instead of returning
a ratio of failures to all possible values, we should construct a distance in terms
of the probability of a particular input/output occurring that is a witness to the
non-equivalence of A and C . This could then be combined with the approach
to probability distribution discussed in Section 4.1. How a simulation based
characterisation could be derived from this definition would be a challenging
problem.

388 E.A. Boiten and J. Derrick

4.3 Open Questions

The purpose of this paper was to provide an initial articulation of the problem
of approximate refinement, and sketch an approach based on metrics, chains and
their limits. The use of metrics as a semantic basis in computer science is not new
[4, 1, 11], however, the emphasis here has been on using the measure of distance
and characterisation of limits rather than interest in the induced topological
structure. In addition to the questions raised in the discussions above, there are
a number of open questions which need addressing, including:

What is the relationship of the metrics outlined in this paper to work
on metric space approaches to semantics? Metric spaces used for deno-
tational semantics have principally been used where concurrency is an issue,
however, the metric defined in Section 4.1 is based upon that in [4], and this
could be the starting point for such an exploration. It is less obvious what the
relation is between the metric in Section 4.2 and those used as the basis for the
semantics of concurrency.

What are the topological characteristics of the metrics? Some will be
inherited from their derivation, e.g., the metric used in [4]. For others, such as
that in Section 4.2, an understanding of completeness, compactness and when
they induce known topologies would be interesting.

What is their basis in terms of data refinement? The metric defined in
Section 4.1 is based upon the definition of data refinement, how does this interact
with the normal definition of simulation rules? On the one hand, the metric from
Section 4.2 adapts the definition of operation refinement, rather than going back
to the basic definition (Definition 1). This is rather unsatisfactory, and a better
characterisation would derive the definition from that of data refinement. How
should this be done, and how do these metrics relate to the finalisations (which
determine what is visible). How do the results generalise to non-identity retrieve
relations, and what topological properties do the retrieve relations induce?

What alternative metrics are there? Do the ones defined here capture all
the intuitive properties of approximation? Which, if any, is the most attractive
from a theoretical or practical viewpoint? How do notions of approximate re-
finement relate to work on implementing programming language data types such
as [10]?

5 Metrics and Chains

The previous section has discussed possible metrics at some length. We now
briefly discuss how they fit into the use of chains as an approach to development.
Four kinds of development steps were proposed. The metric chosen will have a
direct relevance to the limits in introduce sequence and replace sequence. It is also

Formal Program Development with Approximations 389

worth noting that our discussion above has revealed there is no single canonical
notion, thus the choice of metric is down to practical considerations: it depends
on what aspects one considers important for a particular application. Similarly
the choice of compromise depends on practical considerations, that is, how close
an approximation is needed in particular circumstances.

In element-wise refinement, metrics and refinement are closely intertwined.
What is needed is a way of refining each element in such a way that the refined
sequence converges (hopefully to a refinement of the original limit).

A simple example shows that arbitrary refinement does not always have this
property. Consider the following specifications together with the program length
metric of Section 4.1.

Consider the sequence of ADTs consisting of an observer operation together
with Incn , where each Incn is defined by

Incn
Δ [x : N]

x ≤ x ′ ≤ x + 2

This sequence is constant (its elements are independent of n), so it converges.
However, the individual operation Incn is refined by the operation EvenIncn ,
defined as

EvenIncn
Δ [x : N]

if even(n) then x ′ = x + 2 else x ′ = x

but the sequence (EvenIncn) does not converge.
This proves the following (counter-)theorem:

Theorem 3. Element-wise refinement does not guarantee sequence refinement,
i.e., a refinement relation and sequences (Sn) and (Tn) exist such that

∀n : N • Sn Tn

and (Sn) converges, but (Tn) does not.

This example shows that non-determinism cannot, in general, be resolved
without losing uniformity. To preserve it one would have to ensure that the
non-determinism was resolved in the same way in each element of the sequence.
Further, with this metric, preconditions cannot be weakened, even if the weak-
ening is the same in each element in the sequence.

Consider the following diagram, which shows the effect of one operation after
another. There is no discernible difference, however, this does not hold if we
weaken the precondition of the first operation (this is represented by the dotted
line), and the distance has increased with this element-wise refinement.

390 E.A. Boiten and J. Derrick

�

�

�

�

�

�

�

�������

Op1 Op2 Op1 Op2

In order to achieve element-wise refinement we clearly need the refinement
to be uniformly convergent in the following (usual) sense. Letting f (x) denote a
refinement of x , we need

∀ ε > 0 • ∃ δ > 0 • d(x , y) < δ ⇒ d(f (x), f (y)) < ε

which might be achieved, for example, in the following ways.
One possibility is to use the refinement calculus to refine each element in the

sequence uniformly. This would involve not weakening the preconditions and
resolving the non-determinism in a uniform way.

Another similar idea is to use calculational approaches. In particular, one can
calculate the weakest downward or upward simulation of a specification (with
respect to a retrieve relation which might change the state), and the result is
equivalent to the original. Thus calculation could be applied element wise to
a sequence, and convergence would be preserved (as required by element-wise
refinement).

An alternative is to perform the refinement independently of n in such a way
that element-wise refinement is obtained. Details of this are left for the future.

6 Related Work

The observation that idealised specifications correspond to “realistic” specifica-
tions with resource bounds tending to infinity is not new. In particular, in his
PhD thesis [12], Neilson defined ∞-refinement ∞ in terms of ordinary refine-
ment as follows:

A ∞ B
⇔
∃ c1, c2, . . . , cn : ResourceLimit • limc1,c2,...,cn→∞,∞,...,∞(A B)

where the resource constraints ci appear free in B and not at all in A. Such a
refinement step establishes resource limits as constants in the specification; Neil-
son implicitly indicates that subsequent refinement may fix the values of these
constants. Thus, these constants act as existential rather than universal param-
eters of the specification [3]: they may be arbitrarily constrained as long as the
specification remains satisfiable. In our view, the use of underspecified constants
obscures the distinction between the introduction of resource constraints, re-
finement, and the actual approximation that occurs by specialising their values.
Another difference to our approach is that after the ∞-refinement step, there is
no further mention (let alone development) of chains.

Formal Program Development with Approximations 391

Banach and Poppleton have defined and investigated a generalisation of re-
finement called “retrenchment” [2]. They add “within” and “concedes” relations
to every refinement step, indicating where preconditions are strengthened and
postconditions weakened. These allow for developments which are not quite cor-
rectness preserving to be documented. However, this documentation refers to
the internals of a specification at any given point in the development trace, and
is thus hard to relate to external behaviour. Clearly, by taking a strong enough
“within” relation, retrenchment holds between any pair of specifications – its
value is in the documentation of where and how refinement has been relaxed.
Taking that interpretation, our main objection to retrenchment as a development
relation is that it encourages inexact development steps throughout, rather than
localising them as we do here. Similar ideas are explored by Smith [13] for real-
time specification – importantly, this work concentrates on the properties that
are preserved by development steps which are not quite refinement steps but
so-called “realisations”.

Approximate refinement has been listed in a number of contexts as being
desirable. In the UK Grand Challenge for Non-Classical Computation [15], it is
mentioned as necessary for non-classical models such as quantum computation.
Researchers at Berkeley [8] suggested its use for hybrid systems, although offered
no means to do so.

7 Concluding Comments

This paper has set out an approach which we believe might be useful for com-
bining formal program development in a disciplined way with the inevitable
compromises required by the bounded resources of implemented programs. The
underlying mathematics is very rich, and we have hardly begun to explore it,
even in the context of relational specification languages – but we hope that the
examples presented give a flavour of what might be possible, and some indication
that a further exploration of these ideas would be worthwhile.

Acknowledgements. Thanks are due to members of the EPSRC RefineNet
network (www.refinenet.org.uk), whose feedback on an earlier presentation sub-
stantially improved some of the above ideas, to Dan Grundy who commented on
the draft, and to the reviewers for their useful suggestions.

References

1. P. America and J. Rutten. Solving reflexive domain equations in a category of
complete metric spaces. In J. W. de Bakker and J. J. M. Rutten, editors, Ten
Years of Concurrency Semantics: Selected Papers of the Amsterdam Concurrency
Group, pages 131–163. World Scientific, Singapore, 1992.

2. R. Banach and M. Poppleton. Retrenchment, refinement and simulation. In J.P.
Bowen, S. King, S. Dunne, and A. Galloway, editors, ZB 2000, volume 1878 of
Lecture Notes in Computer Science, pages 304–323. Springer-Verlag, 2000.

392 E.A. Boiten and J. Derrick

3. E.A. Boiten. Loose specification and refinement in Z. In D. Bert, J.P. Bowen,
M.C. Henson, and K. Robinson, editors, ZB 2002, volume 2272 of Lecture Notes
in Computer Science, pages 226–241. Springer-Verlag, 2002.

4. J. W. de Bakker and J.-J. C. Meyer. Metric semantics for concurrency. In J. W.
de Bakker and J. J. M. Rutten, editors, Ten Years of Concurrency Semantics:
Selected Papers of the Amsterdam Concurrency Group, pages 104–130. World Sci-
entific, Singapore, 1992.

5. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. CUP, 1998.

6. J. Derrick and E.A. Boiten. Refinement in Z and Object-Z: Foundations and Ad-
vanced Applications. FACIT. Springer Verlag, May 2001.

7. J. Derrick and E.A. Boiten. Relational concurrent refinement. Formal Aspects of
Computing, 15(2):182–214, 2003.

8. A. Ghosal, M. Jurdzinski, R. Majumdar, and V. Prabhu. Approximate re-
finement for hybrid systems. Berkeley EECS Research Summary for 2003,
http://buffy.eecs.berkeley.edu/ResearchSummary/03abstracts/vinayak.1.html.

9. C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

10. B. Jacobs. Java’s integral types in PVS. In Elie Najm, Uwe Nestmann, and Perdita
Stevens, editors, FMOODS’03, pages 1–15, Paris, November 2003. Springer.

11. Marta Kwiatkowska and Gethin Norman. A fully abstract metric-space denota-
tional semantics for reactive probabilistic processes. In Abbas Edalat, Achim Jung,
Klaus Keimel, and Marta Kwiatkowska, editors, Electronic Notes in Theoretical
Computer Science, volume 13. Elsevier, 2000.

12. D.S. Neilson. From Z to C: Illustration of a Rigorous Development Method. PhD
thesis, Oxford University Computing Laboratory, 1990.

13. G. Smith. From ideal to realisable real-time specifications. In N. Leslie, editor,
Fifth New Zealand Formal Program Development Colloquium, number 99-1 in IIMS
Technical Report. Institute of Information and Mathematical Sciences, Massey
University at Albany, 1999.

14. J. M. Spivey. The Z Notation: A Reference Manual. International Series in Com-
puter Science. Prentice Hall, 2nd edition, 1992.

15. Susan Stepney, John A. Clark, Colin G. Johnson, Derek Partridge, and Robert E.
Smith. Artificial immune systems and the grand challenge for non-classical compu-
tation. In Jon Timmis, Peter Bentley, and Emma Hart, editors, Proceedings of the
2003 International Conference on Artificial Immune Systems, LNCS 2787, pages
204–216. Springer, September 2003.

Practical Data Refinement for the
Z Schema Calculus

Lindsay Groves

School of Mathematics, Statistics and Computer Science,
Victoria University of Wellington,

Wellington, New Zealand
lindsay@mcs.vuw.ac.nz

Abstract. It is well known that the principal operators in the Z schema
calculus are not monotonic with respect to either operation or data re-
finement. This is generally regarded as limiting their usefulness in soft-
ware development, and has lead to proposals to redefine the schema
calculus and/or the notion of refinement so that monotonicity is estab-
lished. We examine this issue more closely, to demonstrate just how
non-monotonicity arises, and identify various conditions under which
components of schema expressions can be safely replaced by their refine-
ments. This shows that in a wide range of practical situations, refinement
of such components can be justified by checking fairly simple conditions.

1 Introduction

Two important features of Z — perhaps the most important — are the schema
calculus [1], which allows specifications to be composed by combining partial
specifications of operations and/or states, and the refinement theory [1, 2, 3],1

which allows specifications to be made progressively more concrete in preparation
for being turned into code. Unfortunately, these features do not blend together
as well as might be hoped, because certain key operators of the schema calculus
are not monotonic, which means that refining a component of a specification
does not (in general) automatically give a refinement of the whole specification.
Thus, one must either remove schema operators before performing refinements,
or prove explicitly each time a component is refined that this gives a refinement
of the whole specification.

In response to this lack of monotonicity, some authors (e.g. [4]) have sought
to redefine the schema calculus (e.g. by adding explicit preconditions) and/or the
notion of refinement so that monotonicity is obtained. Others have abandoned
Z in favour of alternative formalisms, such as B or the refinement calculus. All
of these responses mean sacrificing some of the more appealing aspects of Z,

1 We use the general term refinement to encompass both data refinement and opera-
tion refinement, and use the more specific terms where appropriate, unless it is clear
from the context which is meant.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 393–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

394 L. Groves

most notably the simple and intuitive definitions of its schema operators and
refinement.

In this paper we look more closely at the interaction between the schema
calculus and refinement, extending the results presented in [5] to include data
refinement. We focus mainly on schema conjunction, disjunction and composi-
tion, since these have the most interesting properties and are the most widely
used,2 and also give results for schema override [7]. We show that monotonicity
of these schema operators can be guaranteed by discharging fairly simple proof
obligations which appear to be applicable in a wide range of practical situa-
tions. Some of these conditions are simple syntactic checks, some involve only
computing preconditions of components, and some are equivalent to feasibility
conditions that would still be required in a modified Z or another formalism. In
the case of data refinement, they impose additional constraints upon the kinds
of abstraction relation that can be used.

Section 2 reviews key aspects of the schema calculus to establish some nota-
tion and introduce some basic results required later. Sections 3 and 5 give basic
definitions of operation and data refinement, and some important special cases.
Section 4 summarises the main results on monotonicity for operation refinement
(taken mainly from [5]), providing a basis for Section 6, which presents our
new results on monotonicity for data refinement, and Section 7, which examines
the calculation of data refinements for composite specifications. Section 8 then
concludes by discussing the significance of our results and possible extensions.

2 The Schema Calculus

We are concerned with using the Z schema calculus to specify operations that
modify some state, as described for example in [1].

Simple operations are defined as schemas, with the general form:

[ΔS ; x? : X ; y ! : Y | P]

where ΔS is an abbreviation for S ; S ′, denoting the sets of pre-state (S) and post-
state (S ′) variables, x? are the input variables and y ! are the output variables.
Such schemas are interpreted as defining operations that can exhibit various
behaviours described by bindings for variables in ΔS , x? and y ! that satisfy P .

In discussing operation refinement, we restrict our attention to operations
that act only on the state and have no input or output variables (and no unusual
decorations), and thus consider schemas of the form:

[ΔS | P]

The ensuing results can be adapted systematically to handle input and output
variables, by treating input variables in the same way as pre-state variables and
output variables in the same way as post-state variables.

2 Early empirical evidence is given in [6]; my experience suggests that this is still the
case.

Practical Data Refinement for the Z Schema Calculus 395

Complex operations can be defined by combining operations using various
schema operators. When combining schemas in this way, their declarations must
first be standardised so that they can be merged; we will usually assume that
declarations have already been standardised is such a way that operations being
combined have the same signature.

In addition to the standard schema operators, we will also consider schema
override [7], which is defined so that A ⊕ B behaves like A except where a
behaviour is specified by B (pre is defined below):3

Definition 1. A⊕ B = (¬ pre B ∧ A) ∨ B

Given an operation A = [ΔS | P], we write Vars(A) for the set of state
variables (declared in ΔS) that occur in P .4

The precondition of an operation in Z characterises the pre-states (and values
of input variables) for which the operation is defined.

Definition 2. (Precondition) For an operation A = [ΔS ; x?:X ; y ! :Y | P],

pre A = ∃S ′; y ! : Y • A
≡ [S ; x?:X | ∃S ′; y ! : Y • P]

Ignoring input and output variables, this reduces to ∃S ′ • A or [S | ∃S ′ • P].
We will need the following properties of preconditions:

Law 1. For any operations A and B on the same state:5

(i) A⇒ pre A

(ii) pre (A ∨ B) ≡ pre A ∨ pre B

(iii) pre (A ∧ B)⇒ pre A ∧ pre B

(iv) If Vars(A) ∩Vars(B) = Ø, then pre (A ∧ B) ≡ pre A ∧ pre B

(v) If A does not constraint its post-state variables (i.e. no variable in S ′ occurs
in A), then pre A ≡ A and pre (A ∧ B) ≡ pre A ∧ pre B ≡ A ∧ pre B

(vi) pre (A⊕ B) ≡ pre A ∨ pre B

(vii) pre (A B) ≡ (∃S ′′ • A[S ′′/S ′] ∧ pre B [S ′′/S]) ≡ pre (A pre B)

We say that two operations are consistent if their conjunction is defined
whenever they are both defined; i.e. that A ∧ B terminates whenever A and B
both terminate.

3 We use = to denote syntactic equality (including definitions) and ≡ to denote se-
mantic equivalence of schemas.

4 A semantic definition would be less sensitive to minor syntactic variations, but a
syntactic definition is easier to use in practice.

5 When there is no confusion, we often omit universal quantification over the state.

396 L. Groves

Definition 3. (Consistency) Two operations, A and B, on the same state, S ,
are consistent iff ∀S • pre A ∧ pre B ⇒ pre (A ∧ B) holds.

Since pre (A ∧ B)⇒ pre A ∧ pre B always holds (see Law 1(iii)), the added
condition means that when A and B are consistent we have pre (A ∧ B) ≡
pre A ∧ pre B .

3 Operation Refinement

An operation, A, is refined by another operation, B , if B produces a valid result
whenever A does, and any behaviour exhibited by B is permitted by A [1].

Definition 4. (Operation Refinement) Let A and B be operations with state
S, input variables x? : X and output variables y ! : Y , then B is an operation
refinement of A, written A B, iff the following conditions hold:

Applicability:
∀S ; x? : X • pre A⇒ pre B (1)

Correctness:
∀ΔS ; x? : X ; y ! : Y • pre A ∧ B ⇒ A (2)

Ignoring input and output variables, these reduces to:

∀S • pre A⇒ pre B (3)

∀ΔS • pre A ∧ B ⇒ A (4)

Operation refinement can be understood as having two possible effects, which
we often describe using more operational terminology:

– Refinement can increase the domain over which an operation is defined (i.e.
weaken preconditions or increase termination).

– Refinement can reduce nondeterminism (i.e. strengthen postconditions).

Note that the applicability condition limits the extent to which nondeter-
minism can be reduced. If nondeterminism is reduced so much that no possible
outputs (i.e. post-state values) are left for some inputs (i.e. pre-state values),
those inputs no longer satisfy the precondition, so the applicability condition
fails.

It will be useful later to distinguish refinements that only modify an operation
in one of the ways described in Definition 4. We say that A is pre-refined by
B , if B can only modify A by increasing its precondition, i.e. by adding new
behaviours for inputs not in the precondition of A, and that A is post-refined by
B , if B can only modify A by reducing nondeterminism, i.e. by removing some
(but not all) behaviours for inputs in the precondition of A.

Practical Data Refinement for the Z Schema Calculus 397

Definition 5. (Pre-refinement) A is pre-refined by B, written A pre B, iff
B refines A, but does not reduce nondeterminism for any initial state in the
precondition of A; i.e. A pre B iff A B and ∀ΔS • A⇒ B, which simplifies
to A pre B iff ∀ΔS • pre A ∧ B ≡ A.

Definition 6. (Post-refinement) A is post-refined by B, written A post B,
iff B refines A, but is only defined for initial states where A is defined; i.e.
A post B iff A B and ∀S • pre B ⇒ pre A, which simplifies to A post B
iff ∀S • pre A ≡ pre B and ∀ΔS • B ⇒ A.

4 Monotonicity for Operation Refinement

This section defines monotonicity with respect to operation refinement, and
presents some results regarding monotonicity of schema operators with respect
to operation refinement. These results are presented without proofs or examples,
since most of them were presented in [5].6 They are included here as they provide
helpful background for understanding the results for data refinement in Section
6, and can be used in concert with the calculations discussed in Section 7.

A schema operator is monotonic with respect to operation refinement in a
given argument position if refining that argument gives a refinement of the entire
operation. This means that a component of a composite specification can safely
be refined independently of the rest of the specification.

Definition 7. (-Monotonicity) An n-ary schema operator F is monotonic
with respect to operation refinement in its kth argument, for 1 ≤ k ≤ n, iff S
S ′ implies F(a1, · · · , ak−1,S , ak+1, · · · , an) F(a1, · · · , ak−1,S ′, ak+1, · · · , an).

With operation refinement it is sufficient to consider refinement in just one
argument position, since refinements in several arguments can be performed one
at a time, in any order. For example, if binary operator F is monotonic in both
argument positions, then S1 S ′

1 and S2 S ′
2 implies F(S1,S2) F(S ′

1,S2)
F(S ′

1,S
′
2) and F(S1,S2) F(S1,S ′

2) F(S ′
1,S

′
2). We will see in Section 6 that

this is not the case for data refinement.
Although many of the Z schema operators are not monotonic, it is often

possible to find fairly simple conditions under which component replacement is
safe. Our aim is to find rules that are useful in practice, so we are interested in
finding a range of conditions that make the operators monotonic, rather than
just finding the most general conditions.

We present results for conjunction, disjunction, override and composition,
since they have the most interesting properties, and are also used frequently in
composing specifications. Universal and existential quantification (and hiding)

6 More specifically, [5] presents detailed proofs and examples for conjunction and dis-
junction (except for Law 13); results for composition were mentioned only briefly.

398 L. Groves

have similar properties to conjunction and disjunction, respectively, and piping is
effectively the same as composition in this context. Precondition and renaming
are straightforwardly monotonic, while negation, implication and equivalence
are pathologically non-monotonic, so don’t have many interesting properties.
Conjunction and disjunction are both commutative, so we don’t need to con-
sider the two argument positions separately. Override and composition are not
commutative, so we do need to consider the two argument positions separately.

4.1 Conjunction

Reducing nondeterminism in the components of a conjunction can leave the op-
eration with no choices for some input(s), thereby reducing the precondition of
the operation and violating the applicability condition of Definition 4. This is
the only way in which refining the components of a conjunction can lead to
non-monotonicity. We can therefore guarantee that the components of a con-
junction can be refined safely, by ensuring that this does not remove all possible
behaviours for any input in the precondition of the conjunction.

First, we observe that refining the components of a conjunction cannot vi-
olate the correctness condition of Definition 4, so we only need to consider the
applicability condition. This gives us (by Definition 3) a very general law:

Law 2. If A A1, B B1, and A1 and B1 are consistent whenever A and B
are, then A ∧ B A1 ∧ B1.

While very general, this condition may be too difficult to check because it
involves computing pre (A1 ∧ B1), and possibly also pre (A ∧ B).7 We would
prefer to avoid this, since it usually involves computing A1 ∧ B1, which defeats
the aim of refining components independently.

We can obtain a simpler condition by observing that we can safely refine the
components of a conjunction in a way that only increases termination, i.e. is a
pre-refinement (see Definition 5), since this cannot reduce nondeterminism in
a conjunction and thus cannot lead to non-monotonicity. Moreover, since this
cannot reduce nondeterminism, the resulting refinement is a pre-refinement.

Law 3. If A pre A1 and B pre B1, then A ∧ B pre A1 ∧ B1.

Note that A pre A1 holds if A A1 and A is deterministic; similarly for B and
B1. Thus, we can always safely refine a component of a conjunction if we know
that that component is deterministic.

Finally, the components of a conjunction can be refined safely if they (and
their refinements) act on disjoint parts of the state, or if the refinement of one
of them does not constrain its post-state variables (see Laws 1(iv) and 1(v)).

7 The condition that A1 and B1 are consistent whenever A and B are holds if A1 and
B1 are always consistent, so we only need to compute pre (A ∧ B) if pre (A1 ∧ B1)
can be falsified.

Practical Data Refinement for the Z Schema Calculus 399

Law 4. If A A1, B B1, Vars(A)∩Vars(B) = Ø, Vars(A1) ⊆ Vars(A) and
Vars(B1) ⊆ Vars(B), then A ∧ B A1 ∧ B1.

Law 5. If A A1, B B1, and A1 does not constrain its post-state variables,
then A ∧ B A1 ∧ B1.

Thus, we have a range of conditions that suffice to show that components
of a conjunction can be refined safely, ranging from the most general condition
in Law 2 to the very simple syntactic conditions in Laws 4 and 5. The simple
syntactic conditions in Laws 4 and 5 will hold for a wide range of practical uses
of schema conjunction, which is often used to extend the state and/or outputs
(e.g. to add a result indicator) or to add a test on the inputs/pre-state (e.g.
when distinguishing a success case from a fail case of an operation or adding an
authorisation condition).

Law 3 gives a weaker condition that can be used in more general cases. This
can often be checked by calculating preconditions of individual components, by
noting that B is a pre-refinement of A iff B can be written as a disjunction of
A and another operation C whose precondition is disjoint from that of A, i.e.
B = A ∨ C , where pre A⇒ ¬ pre C .

It seems that the more general Law 2 is seldom likely to be needed in practice.
However, it is worth noting that the condition in Law 2 corresponds to checking
for feasibility in the refinement calculus [8, 9], and cannot in general be com-
pletely avoided. Unlike in the refinement calculus, checking for feasibility cannot
be deferred, since in Z, if each of the components of a conjunction undergoes a
sequence of refinements, say A A1 A2 and B B1 B2, the fact that A2
and B2 are consistent does not ensure that A1 and B1 were consistent.

4.2 Disjunction

Weakening the precondition of one component of a disjunction can add be-
haviours for initial states in the precondition of the other component, thereby
admitting previously excluded behaviours and violating the correctness condi-
tion of Definition 4. This is the only way in which refining the components of a
disjunction can lead to non-monotonicity. We can therefore guarantee that the
components of a disjunction can be refined safely, by ensuring that this does not
add new behaviours for initial states in the precondition of the other component.

First, we observe that refining the components of a disjunction cannot vi-
olate the applicability condition of Definition 4, so we only need to consider
the correctness condition. This can be specialised (and simplified) to obtain the
following very general law:

Law 6. If A A1, B B1, pre A ∧ ¬ pre B ∧ B1 ⇒ A and pre B ∧
¬ pre A ∧ A1⇒ B, then A ∨ B A1 ∨ B1.

This can be understood as saying that any behaviour of B1 for inputs that are in
the precondition of A but not of B must be permitted by A, and any behaviour of
A1 for inputs that are in the precondition ofB but not ofAmust be permitted byB .

400 L. Groves

While Law 6 provides a general way of showing that components of a disjunc-
tion are refined safely, it is quite complex to apply, because it involves reasoning
about the effects of the two operations not just their preconditions. Situations
requiring this complexity, however, seem unlikely to arise in practice, so the law
will usually be more complex than we really need.

One way to obtain a simpler and more useful law is to require that if the
preconditions of A and B (and thus of A1 and B1) overlap, then A1 only adds
behaviours for states that are not in the precondition of B , and B1 only adds
behaviours for states that are not in the precondition of A.

Law 7. If A A1, B B1, pre A1 ∧ pre B ⇒ pre A and pre B1 ∧ pre A ⇒
pre B, then A ∨ B A1 ∨ B1.

This only involves reasoning about preconditions, so is considerably simpler
than Law 10, but still allows refinements that are unlikely to arise in practice.
It is far more likely (and should probably be regarded as good practice) that
the refinement of one component is only defined outside the precondition of the
other (original) component, and vice versa. This also requires the preconditions
of the original components to be disjoint, but allows the preconditions of the
refinements to overlap outside of the preconditions of original components.

Law 8. If A A1, B B1, pre A ⇒ ¬ pre B1 and pre B ⇒ ¬ pre A1, then
A ∨ B A1 ∨ B1.

This can be simplified further by requiring that the refined components have
disjoint preconditions, in which case the preconditions of the original components
must also be disjoint.

Law 9. If A A1, B B1 and pre A1⇒ ¬ pre B1, then A ∨ B A1 ∨ B1.

We can obtain a still simpler law by observing that, since increasing termina-
tion is the only way in which refining the components of a disjunction can lead
to non-monotonicity, we can safely refine the components of a disjunction in a
way that only decreases nondeterminism; i.e. is a post-refinement.

Law 10. If A post A1 and B post B1, then A ∨ B post A1 ∨ B1.

Note that A post A1 holds if A A1 and A is total; similarly for B and B1.
Thus, we can always safely refine a component of a disjunction if we know that
that component is total.

A special case of Law 9 arises when the components of the disjunction (and
their refinements) act on disjoint parts of the state. This situation is unlikely to
arise in practice, because whichever disjunct is chosen, the variables in the other
disjunct are completely unconstrained.

Law 11. If A A1 and B B1, Vars(A)∩Vars(B) = Ø, Vars(A1) ⊆ Vars(A)
and Vars(B1) ⊆ Vars(B), then A ∨ B A1 ∨ B1.

We also note that refining both components to the same operation is safe.

Practical Data Refinement for the Z Schema Calculus 401

Law 12. If A C and B C, then A ∨ B C ∨ C ≡ C.

Finally, we observe that any refinements of the components of a disjunction
can be adapted to obtain safe refinements, by restricting their preconditions
to ensure that they do not add behaviours in the precondition of the other
component.

Law 13. If A A1 and B B1, then A ∨ B pre A ∧ A1 ∨ pre B ∧ B1.

The conditions in this law can be weakened, at the expense of added complexity,
by replacing pre A by pre A ∨ ¬ pre B1 and pre B by pre B ∨ ¬ pre A1.

Again, we have a range of conditions that suffice to show that components of
a disjunction can be refined safely, ranging from the most general conditions in
Law 6 to the very simple syntactic condition in Law 11. In this case, the simple
syntactic condition of Law 11 is unlikely to be useful in practice. However, the
conditions in Laws 9 and 10 are likely to cover most practical situations, since
in most practical uses of disjunction the preconditions of the components are
disjoint and are likely to remain so under refinement. Law 9 only requires com-
puting the preconditions of the refined components, which is standard practice
in developing Z specifications in any case (e.g., see [2, 10]). Law 10 can also often
be checked easily by noting that B is a post-refinement of A iff B can be written
as a conjunction of A and another operation C whose precondition is contained
in that of A and is consistent with A; i.e. B = A ∧ C , where pre C ⇒ pre A, and
A and C are consistent. Finally, Law 13 provides a more constructive approach
which allows any refinements of the components of a disjunction to be adapted
in a way that guarantees monotonicity.

4.3 Override

It is easy to see that schema override is monotonic in its first argument, but not
in its second argument. We can prove properties of override using our laws for
conjunction and disjunction.

Law 14. If A A1, then A⊕ B A1⊕ B.

Proof. We first observe that ¬ pre B does not constrain its post-state variables,
so A A1 implies ¬ pre B ∧ A ¬ pre B ∧ A1 by Law 5, and pre (¬ pre B ∧
A1) ≡ ¬ pre B ∧ pre A1 by Law 1(v).

A⊕ B

≡
〈

Definition of ⊕
〉

¬ pre B ∧ A ∨ B

〈

Law 9, since ¬ pre B ∧ A ¬ pre B ∧ A1 and
pre (¬ pre B ∧ A1)⇒ ¬ pre B

〉
¬ pre B ∧ A1 ∨ B

≡
〈

Definition of ⊕
〉

A1⊕ B

402 L. Groves

Override is not monotonic in its second argument for the same reason that
disjunction is not monotonic, so we can thus guarantee safe refinement of the
second argument in similar ways to those presented in Section 4.2. For example,
we can refine the second argument of an override provided that its precondition
is not increased.

Law 15. If B post B1, then A⊕ B A⊕ B1.

Proof. Follows immediately from Law 10, since A post A.

4.4 Composition

Composition is not monotonic in its first argument because reducing nonde-
terminism in the first component can exclude the only behaviours that “link”
the two components, and is not monotonic in its second argument because in-
creasing definedness in the second component can admit previously excluded
behaviours.

Since non-monotonicity in the first argument arises from reducing nondeter-
minism, we can guarantee safe refinement of the first component in ways similar
to those for conjunction. We can get a quite general result by observing that
reducing nondeterminism is the only way in which refining the first component
of a composition can lead to non-monotonicity, and is safe provided that it does
not remove all behaviours that “link” the two components for any input. This is
equivalent to saying that the refinement of the first component must be able to
establish the precondition of the second component, provided that the original
first component could also.

Law 16. If A A1, and pre(A B) implies pre(A1 B), then A B A1 B.

Note that pre (A B) is equivalent to (∃S ′′ • A[S ′′/S ′] ∧ pre B [S ′′/S]) (see Law
1(vii)). We would usually be able to prove pre (A1 B) (i.e. (∃S ′′ • A1[S ′′/S ′] ∧
pre B [S ′′/S])) without having to calculate pre (A B) or A1 B . For example,
pre (A B) reduces to pre A if B is total, and to pre B if A is total.

We can obtain a simpler law by observing that increasing termination in
the first component, without reducing nondeterminism, cannot lead to non-
monotonicity.

Law 17. If A pre A1, then A B pre A1 B.

As with Law 3, we note that A pre A1 holds if A A1 and A is deterministic.
Since non-monotonicity in the second argument arises from increasing de-

finedness, the conditions under which the first component of a composition can
be refined safely are similar to those for disjunction. We can get a quite general
result for the second argument by observing that increasing definedness in the
second component will only add new behaviours to the composition if it adds
behaviours for states that can be reached by the first component.

Practical Data Refinement for the Z Schema Calculus 403

Law 18. If B B1 and (∀S ′′ • A[S ′′/S ′] ∧ pre B1[S ′′/S] ⇒ pre B [S ′′/S]),
then A B A B1.

We can obtain a simpler law by observing that decreasing nondeterminism
in the second component, without increasing termination, cannot lead to non-
monotonicity.

Law 19. If B post B1, then A B post A B1.

As with Law 10, we note that B post B1 holds if B B1 and B is total.
Finally (and somewhat uninterestingly), we observe that both components of

a composition can be refined safely if they (and their refinements) act on disjoint
parts of the state.

Law 20. If A A1, B B1, Vars(A) ∩ Vars(B) = , Vars(A1) = Vars(A)
and Vars(B1) = Vars(B), then A B A1 B1.

Once again, we have a range of conditions that can be used to show that
components of a composition can be refined safely, ranging from the general
conditions in Laws 16 and 18 to the simpler Laws 17 and 19 which will suffice
in most practical situations.

5 Data Refinement

A Z data type specification (cf. [3]) is a triple (State, Init ,Ops), where State is a
schema describing the set of values the type may assume, Init is an initialisation
schema over State describing the possible initial states, and Ops is a set of
operation schemas over State describing the operations that may be performed.
Two Z data type specifications are compatible if there is a one to one mapping
between their sets of operations, and corresponding pairs of operations have
the same inputs and outputs. Spivey [1] builds this mapping into the operation
names, so AddBirthday1 is the concrete version of AddBirthday , etc.

Let A = (SA, InitA,OpsA) and C = (SC , InitC ,OpsC) be compatible Z data
type specifications.

Definition 8. (Data Refinement) C is a data refinement of A, with respect to
a given abstraction relation Abs, written A Abs C, iff:

– Every initial state of C corresponds to some initial state of A.8

∀S ′
C • InitC ⇒ (∃S ′

A • InitA ∧ Abs ′) (5)

8 We assume that initial states are define in terms of post-state variables. If initial
states are defined in terms of pre-state variables, as in [1], the condition is: ∀SC •
InitC ⇒ (∃SA • InitA ∧ Abs).

404 L. Groves

– For every corresponding pair of operations, OpA and OpC , we have:

Applicability:
∀SA; SC ; x? : X •

pre OpA ∧ Abs ⇒ pre OpC
(6)

Correctness:

∀SA; SC ; S ′
C ; x? : X ; y ! : Y •

pre OpA ∧ Abs ∧ OpC ⇒ (∃S ′
A • OpA ∧ Abs ′) (7)

Since we are primarily interested in the relationship between two operations,
we introduce the notation OpA Abs OpC to mean that conditions (6) and (7)
hold for operations OpA and OpC and abstraction relation Abs.

If the abstraction relation is a total function from concrete states to abstract
states (i.e. if ∀SC • ∃1 SA • Abs holds), condition (7) becomes:

∀SA; S ′
A; SC ; S ′

C ; x? : X ; y ! : Y •
pre OpA ∧ Abs ∧ Abs ′ ∧ OpC ⇒ OpA

(8)

6 Monotonicity for Data Refinement

This section defines monotonicity with respect to data refinement, and presents
some results regarding monotonicity of schema operators with respect to data
refinement. We can adapt the definition of monotonicity with respect to op-
eration refinement, to define monotonicity with respect to data refinement, as
follows.

Definition 9. (Abs -Monotonicity 1) An n-ary schema operator F is mono-
tonic with respect to data refinement with abstraction relation Abs in its kth ar-
gument, for 1 ≤ k ≤ n, if S Abs S ′ implies F(a1, · · · , ak−1,S , ak+1, · · · , an) Abs
F(a1, · · · , ak−1,S ′, ak+1, · · · , an).

It only makes sense to data refine a single component of a specification if its
state is disjoint from the states of the other components, in which case it is easy
to demonstrate monotonicity. We will prove the case for conjunction; the proofs
for disjunction and composition are similar.

Law 21. Let A, B and C be operations on pairwise disjoint states SA, SB and
SC , and let Abs be an abstraction relation between SA and SB such that A Abs
B, then A ∧ C Abs B ∧ C.

Practical Data Refinement for the Z Schema Calculus 405

Proof.

Applicability:

pre (A ∧ C) ∧ Abs

≡
〈

Law 1(iv); SA and SC disjoint
〉

pre A ∧ pre C ∧ Abs

⇒
〈

Applicability of A Abs B
〉

pre B ∧ pre C

≡
〈

Law 1(iv); SB and SC disjoint
〉

pre (B ∧ C)

Correctness:

pre (A ∧ C) ∧ Abs ∧ B ∧ C

≡
〈

Law 1(iv); SA and SC disjoint
〉

pre A ∧ pre C ∧ Abs ∧ B ∧ C

⇒
〈

Correctness of A Abs B ;
Definition of pre C

〉
(∃S ′

A • Abs ′ ∧ A) ∧ (∃S ′
C • C)

≡
〈

S ′
A not free in C ;

S ′
C not free in Abs ′ or A

〉
(∃S ′

A; S ′
B • Abs ′ ∧ A ∧ B)

A more interesting case is the where two or more components have the same
state and are data refined in the same way. This is captured in the following
definition for binary schema operators, but can easily be extended to operators
of higher arity.

Definition 10. (Abs -Monotonicity 2) A binary schema operator F is mono-
tonic with respect to data refinement with abstraction relation Abs, iff A1 Abs
B1 and A2 Abs B2 implies F(A1,A2) Abs F(B1,B2).

We now consider the situations under which the principal schema operators
are monotonic with respect to data refinement. We only consider conjunction,
disjunction and override in detail. Data refinement of sequential compositions
will be discussed further in Section 7; similar comments apply to the other op-
erators as noted in Section 4

In the rest of this section, we assume that an abstract operation A is defined
in terms of two partial operations A1 and A2, defined on state SA, and that
A1 and A2 are data refined by C1 and C2, respectively, defined on state SC ,
via abstraction relation Abs. Expanding the assumptions that A1 Abs C1 and
A2 Abs C2, we get (omitting outer universal quantifiers):

pre A1 ∧ Abs ⇒ pre C1 (9)
pre A1 ∧ Abs ∧ C1 ⇒ (∃S ′

A • A1 ∧ Abs ′) (10)
pre A2 ∧ Abs ⇒ pre C2 (11)
pre A2 ∧ Abs ∧ C2 ⇒ (∃S ′

A • A2 ∧ Abs ′) (12)

406 L. Groves

6.1 Conjunction

Suppose A is defined as the conjunction of A1 and A2, i.e. A = A1 ∧ A2. We want
to determine under what additional conditions A is refined by C = C1 ∧ C2. In
order for A Abs C to hold, we must be able to show:

pre (A1 ∧ A2) ∧ Abs ⇒ pre (C1 ∧ C2) (13)
pre (A1 ∧ A2) ∧ Abs ∧ C1 ∧ C2 ⇒ (∃S ′

A • A1 ∧ A2 ∧ Abs ′) (14)

First, consider (13):

pre (A1 ∧ A2) ∧ Abs

⇒
〈

Law 1(iii)
〉

pre A1 ∧ pre A2 ∧ Abs

⇒
〈

Assumptions (9) and (11)
〉

pre C1 ∧ pre C2

We can deduce pre (C1 ∧ C2) if we can infer pre C1 ∧ pre C2 ⇒ pre (C1 ∧ C2)
from pre (A1 ∧ A2) ∧ Abs, i.e. if C1 and C2 are consistent whenever A1 and A2
are consistent for corresponding states.

Now, consider (14):

pre (A1 ∧ A2) ∧ Abs ∧ C1 ∧ C2

⇒
〈

Law 1(iii)
〉

pre A1 ∧ pre A2 ∧ Abs ∧ C1 ∧ C2

⇒
〈

Assumptions (10) and (12)
〉

(∃S ′
A • A1 ∧ Abs ′) ∧ (∃S ′

A • A2 ∧ Abs ′)

In order to deduce (∃S ′
A • A1 ∧ A2 ∧ Abs ′), we must now show that the two

existential quantifiers can have the same witness. This can be inferred if we
assume that Abs is functional, or if A1 and A2 act on disjoint parts of the state.

Thus, we have the following laws.

Law 22. If A1 Abs C1, A2 Abs C2, C1 and C2 are consistent whenever A1
and A2 are consistent for corresponding states, and Abs is functional, then A1 ∧
A2 Abs C1 ∧ C2.

Law 23. If A1 Abs C1, A2 Abs C2, C1 and C2 are consistent whenever A1
and A2 are consistent for corresponding states, and Vars(A1) ∩ Vars(A2) = ,
then A1 ∧ A2 Abs C1 ∧ C2.

We can simplify these law as we did in Section 4.1, by replacing the consis-
tency condition by the requirement that C1 and C2 act on disjoint parts of the

Practical Data Refinement for the Z Schema Calculus 407

state, or that either C1 or C2 does not constrain its post-state variables (cf. Laws
4 and 5). The former condition will hold if A1 and A2 act on disjoint parts of
the abstract state and this disjointness is preserved by the abstraction relation.

Data refining a conjunction can violate both of the data refinement condi-
tions. The additional conditions required to ensure applicability are similar to
those discussed in Section 4.1, and the same comments apply about their practi-
cality. To ensure correctness, we need to guarantee that the same abstract value
can represent the result of both concrete components. We can do this if the
abstraction relation is function, which is quite common in practice, or if the con-
crete components act on disjoint parts of the state, which is common in many
uses of conjunction.

6.2 Disjunction

Suppose A is defined as the disjunction of A1 and A2, i.e. A = A1 ∨ A2. We want
to determine under what additional conditions A is refined by C = C1 ∨ C2.
In order for A Abs C to hold, we must be able to show:

pre (A1 ∨ A2) ∧ Abs ⇒ pre (C1 ∨ C2) (15)
pre (A1 ∨ A2) ∧ Abs ∧ (C1 ∨ C2)⇒ (∃S ′

A • (A1 ∨ A2) ∧ Abs ′) (16)

Now, (15) follows from (9) and (11) above:

pre (A1 ∨ A2) ∧ Abs

≡
〈

Law 1(ii); Logic
〉

(pre A1 ∧ Abs) ∨ (pre A2 ∧ Abs)

⇒
〈

Assumptions (9) and (11); Law 1(ii)
〉

pre (C1 ∨ C2)

To see under what conditions (16) holds, let us calculate:

pre (A1 ∨ A2) ∧ Abs ∧ (C1 ∨ C2)

≡
〈

Law 1(ii); Logic
〉

(pre A1 ∧ Abs ∧ C1) ∨ (pre A1 ∧ Abs ∧ C2) ∨
(pre A2 ∧ Abs ∧ C1) ∨ (pre A2 ∧ Abs ∧ C2)

⇒
〈

Assumptions (10) and (12); Logic
〉

(∃S ′
A • (A1 ∨ A2) ∧ Abs ′) ∨ (pre A1 ∧ Abs ∧ C2) ∨ (pre A2 ∧ Abs ∧ C1)

Since we cannot proceed further without additional assumptions, we have the
following law.

408 L. Groves

Law 24. If A1 Abs C1, A2 Abs C2, and pre (A1 ∨ A2) ∧ Abs ∧ (C1 ∨ C2)
implies (pre A1 ∧ Abs ∧ C2) ∨ (pre A2 ∧ Abs ∧ C1), then A1 ∨ A2 Abs C1 ∨
C2.

The extra assumption ensures that the data refined components do not add
new behaviours starting from concrete states related by Abs to a state in the
precondition of the abstract version of the other component. This can be sim-
plified in ways similar to those discussed in Section 4.2. For example, we can
simply disallow this kind of overlap between the preconditions of operations (cf.
Law 8).

Law 25. If A1 Abs C1, A2 Abs C2, pre A2 ∧ Abs ⇒ ¬ pre C1, and pre A1 ∧
Abs ⇒ ¬ pre C2, then A1 ∨ A2 Abs C1 ∨ C2.

Or we can require that the data refined components have disjoint precondi-
tions, in which case the preconditions of the original components must also be
disjoint (cf. Law 9).

Law 26. If A1 Abs C1, A2 Abs C2, and pre C1 ⇒ ¬ pre C2, then A1 ∨
A2 Abs C1 ∨ C2.

As with operation refinement, data refinement a disjunction can only violate
the correctness condition. The additional conditions required to ensure appli-
cability are similar to those discussed in Section 4.1, but with the additional
effect of the abstraction relation. The condition for Law 25 can be guaranteed if
the abstraction relation preserves disjointness of the preconditions of the com-
ponents of disjunction, which we would always expect in practice. For example,
if the abstract operation chooses between two components according to whether
a set is empty or whether a given element belongs to a set, we must be able to
make the same choice on the basis of the representation of the set. The condition
for Law 26 is also like to hold in many practical situations. It thus appears than
data refinement of disjunction will be safe in most cases.

6.3 Override

Suppose A is defined as the override of A1 by A2, i.e. A = A1 ⊕A2. We want to
determine under what additional conditions A is refined by C = C1 ⊕ C2. In
order for A Abs C to hold, we must be able to show:

pre (A1 ⊕A2) ∧ Abs ⇒ pre (C1 ⊕ C2) (17)
pre (A1 ⊕A2) ∧ Abs ∧ (C1 ⊕ C2)⇒ (∃S ′

A • (A1 ⊕A2) ∧ Abs ′) (18)

Now, (17) follows from (9) and (11) above:

Practical Data Refinement for the Z Schema Calculus 409

pre (A1 ⊕A2) ∧ Abs

≡
〈

Law 1(vi)
〉

(pre A1 ∨ pre A2) ∧ Abs

⇒
〈

Logic; Assumptions (9) and (11)
〉

pre C1 ∨ pre C2

≡
〈

Law 1(vi)
〉

pre (C1 ⊕ C2)

To see under what conditions (18) holds, let us calculate:

pre (A1 ⊕A2) ∧ Abs ∧ (C1 ⊕ C2)

≡
〈

Law 1(vi); Definition of ⊕
〉

(pre A1 ∨ pre A2) ∧ Abs ∧ (¬ pre C2 ∧ C1 ∨ C2)

≡
〈

Logic; Assumption (11) excludes pre A2 ∧ Abs ∧ ¬ pre C2 ∧ C1

〉
(pre A1∧Abs ∧ ¬ pre C2 ∧ C1) ∨ (pre A1 ∧ Abs ∧ C2) ∨ (pre A2 ∧ Abs ∧ C2)

⇒
〈

Assumptions (10) and (12)
〉

(¬ pre C2 ∧ (∃S ′
A • A1 ∧ Abs ′)) ∨ (pre A1 ∧ C2 ∧ Abs) ∨ (∃S ′

A • A2 ∧ Abs ′)

≡
〈

Logic; S ′
A not free in ¬ pre C2

〉
(∃S ′

A • (¬ pre C2 ∧ A1 ∨ A2) ∧ Abs ′) ∨ (pre A1 ∧ C2 ∧ Abs)

≡
〈

Definition of ⊕
〉

(∃S ′
A • (A1 ⊕A2) ∧ Abs ′) ∨ (pre A1 ∧ C2 ∧ Abs)

Since we cannot proceed further without additional assumptions, we have the
following law.

Law 27. If A1 Abs C1, A2 Abs C2, and pre (A1 ⊕ A2) ∧ Abs ∧ (C1 ⊕ C2)
implies pre A1 ∧ C2 ∧ Abs, then A1 ⊕A2 Abs C1 ⊕ C2.

As in Section 6.2, we can simplify this law in several ways. For example, we
can exclude the case where pre A1 ∧ C2 ∧ Abs holds, i.e. where Abs maps a
state in the precondition of A1 to a state from which C2 can be satisfied with
the following law (cf. conditions for Law 25).

Law 28. If A1 Abs C1, A2 Abs C2, and pre A1 ∧ Abs ⇒ ¬ pre C2, then
A1 ⊕A2 Abs C1 ⊕ C2.

410 L. Groves

7 Calculating Data Refinements

It is well known that when the abstraction relation is a total surjective func-
tion from concrete states to abstract states, we can calculate the least refined
data refinement of a specification, and that any data refinement of the abstract
specification is an operation refinement of the calculated data refinement (see
[1, 2, 3]). We will now consider what happens when we attempt to calculate the
least refined data refinement of a specification defined using the principal schema
operators.

Suppose A and Abs are defined as follows, where f is a total surjective func-
tion from SC to SA:

A = [ΔSA | a]
Abs = [SA; SC | θSA = f (θSC)]

Then the least refined data refinement of A with respect to Abs is given by
Abs A Abs ′.9 From the above assumptions, we have:

Abs A Abs ′ ≡ [ΔSC | a[f (θSC), f (θS ′
C)/θSA, θS ′

A]] (19)

Now, also suppose that A1 and A2 are defined as:

A1 = [ΔSA | a1]
A2 = [ΔSA | a2]

We can calculate the least refined data refinements of A1 ∧ A2, A1 ∨ A2 and
A1 A2, by calculate the least refined data refinements of A1 and A2.

Law 29. Abs (A1 ∧ A2) Abs ′ ≡ (Abs A1 Abs ′) ∧ (Abs A2 Abs ′)

Proof.

Abs (A1 ∧ A2) Abs ′

≡
〈

Definitions of A1 and A2; Schema calculus
〉

Abs [ΔSA | a1 ∧ a2] Abs ′

≡
〈

From (19); Schema calculus
〉

[ΔSC | a1[f (θSC), f (θS ′
C)/θSA, θS ′

A]] ∧ [ΔSC | a2[f (θSC), f (θS ′
C)/θSA, θS ′

A]]

≡
〈

From (19); Definitions of A1 and A2

〉
(Abs A1 Abs ′) ∧ (Abs A2 Abs ′)

9 To simplify this result and the ensuing calculations, we abuse the definition of , to
allow schemas to be composed other than via their pre- and post-state variables. If
U and V are schemas, with signatures X ; Y and Y ; Z , then U V is ∃Y • U ∧ V .

Practical Data Refinement for the Z Schema Calculus 411

Law 30. Abs (A1 ∨ A2) Abs ′ ≡ (Abs A1 Abs ′) ∨ (Abs A2 Abs ′)

Proof. Almost identical to the proof for Law 29.

Law 31. Abs (A1 A2) Abs ′ ≡ (Abs A1 Abs ′) (Abs A2 Abs ′)

Proof.

Abs (A1 A2) Abs ′

≡
〈

Definitions of , A1 and A2; Schema calculus
〉

Abs [ΔSA | ∃S ′′
A • a1[S ′′

A/S ′
A] ∧ a2[S ′′

A/SA]] Abs ′

≡
〈

From (19)
〉

[ΔSA | (∃S ′′
A • a1[S ′′

A/S ′
A] ∧ a2[S ′′

A/SA])[f (θSC), f (θS ′
C)/θSA, θS ′

A]]

≡
〈

Distribute substitution; Schema calculus
〉

∃S ′′
A • [ΔSA | a1][f (θSC), f (θS ′

C)/θSA, θS ′
A] ∧

[ΔSA | a2][f (θSC), f (θS ′
C)/θSA, θS ′

A]

≡
〈

From (19); Schema calculus
〉

(Abs A1 Abs ′) (Abs A2 Abs ′)

This can be proved more easily if Abs is also injective, since then we have Abs ′

Abs = id, and the result follows since is associative in this case.
Thus, when the abstraction relation is a total surjective function, we can

perform a component-wise refinement by calculating the least refined data re-
finement of a composite specification. We can then perform operation refinement
on the resulting specification using the techniques presented in Section 4.

8 Discussion

One of the most appealing aspects of Z is the way that the schema calculus can
be used to compose specifications by combining fragments describing different
aspects of the system being described. It is often desirable to be able to pre-
serve this structure when specifications are refined to more concrete forms in
preparation for being turned into code, but our ability to do so is limited by the
non-monotonicity of the principal schema calculus operators. The operators that
matter most are conjunction and disjunction, and to a lesser extent composition,
since these are the ones most heavily used [6], and most of the others are either
trivially monotonic or pathologically non-monotonic.

Modifying the definitions of these operators so that they are monotonic gener-
ally leads to operators that do not have the same intuitive appeal as the existing
ones, and are thus more likely to lead to errors in specifications. Modifying the
definition of refinement leads to similar problems.

412 L. Groves

We have examined the way in which the principal schema calculus operators
fail to be monotonic, and identified additional conditions under which they are
monotonic. The most general conditions are quite complicated, but there are a
range of simpler conditions which are easier to test if they are applicable. Our
results for data refinement rely on those for operation refinement. In some cases
we also required abstraction relations to be functional, or total, or to preserve
aspects of the structure of the abstract specification. These conditions deserved
further investigation, since they may provide additional insight into the nature
of data refinement.

The question remains as to how widely applicable these conditions are. They
certainly cover the majority of examples found in Z text books and other pub-
lished specifications, where conjunctions are mostly used to combine partial spec-
ifications relating to different parts of the state and disjunctions are used almost
exclusively to combine partial specifications with disjoint preconditions. Like-
wise, most practical uses of data refinement do use functional abstraction rela-
tions, and in any case the restriction to functional abstraction relations may be
able to be overcome by using history variables. The requirement that abstraction
relations should preserve the consistency of components of conjunctions and the
disjointness of the preconditions of disjunctions seem quite reasonable — indeed,
failure of such conditions would usually reveal an inadequacy in the proposed
data representation. There are, of course, always going to be cases where the sim-
pler conditions do not apply, but as long as there are sufficiently few of them,
using the more general conditions for these cases should not be too onerous.

It remains to examine larger examples and case studies to see how often the
various cases we have identified do occur, and to extend our results to common
patterns of use of the schema calculus, especially promotion to see how they
compare to the results presented in [11] and [2]. It would be interesting to define
counterparts of pre- and post-refinement for data refinement, which might allow
additional laws and/or simpler proofs of existing laws. Finally, it would also
be interesting to attempt to extend the results for data refinement to include
backward simulation [2, 3].

Acknowledgements

I wish to thank Martin Henson and Steve Reeves for many fruitful discussions,
the anonymous referees for their detailed and helpful comments, and the Foun-
dation for Research, Science and Technology for financial support.

References

1. Michael Spivey. The Z Notation: A Reference Manual. Prentice-Hall International,
1988. Second edition, 1992.

2. Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and Proof.
Prentice-Hall International, 1996.

Practical Data Refinement for the Z Schema Calculus 413

3. John Derrick and Eerke Boiten. Refinement in Z and Object-Z: Foundations and
Advanced Applications. Springer-Verlag, 2001.

4. Martin C. Henson and Steve Reeves. Program development and specification re-
finement in the schema calculus. In J.P. Bowen, S. Dunne, A. Galloway, and
S. King, editors, Proceedings of ZB2000: Formal Specification and Development in
Z and B, number 1878 in LNCS, pages 344–362. Springer, September 2000.

5. Lindsay Groves. Refinement and the Z schema calculus. In Jim Woodcock, John
Derrick, Eerke Boiten, and Joakim von Wright, editors, Proc. REFINE’02, Copen-
hagen, July 20-21, 2002, volume 70, number 3 of Electronic Notes in Theoretical
Computer Science, 2002. (See http://www.mcs.vuw.ac.nz/~lindsay/Papers.).

6. Rosalind Barden, Susan Stepney, and David Cooper. The use of Z. In J. E.
Nicholls, editor, Proc. 6th Z User Meeting, York 1991, Workshops in Computing,
pages 99–124. Springer-Verlag, 1992.

7. Ian Hayes. Specification Case Studies. Prentice-Hall, second edition, 1993.
8. Carroll Morgan. Programming from Specifications. Prentice Hall, second edition,

1994.
9. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic

Introduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.
10. John Wordsworth. Software Development with Z. Addison-Wesley, 1992.
11. J. C. P. Woodcock. Implementing promoted operations in Z. In Cliff B. Jones,

Roger C. Shaw, and Tim Denvir, editors, Proceedings of the 5th BCS Refinement
Workshop, pages 367–378. Springer-Verlag, 1992.

Slicing Object-Z Specifications for Verification�

Ingo Brückner1 and Heike Wehrheim2

1 Universität Oldenburg, Department für Informatik, 26111 Oldenburg, Germany
ingo.brueckner@informatik.uni-oldenburg.de

2 Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Slicing is the activity of reducing a program or a specifica-
tion with respect to a given condition (the slicing criterion) such that
the condition holds on the full program if and only if it holds on the
reduced program. Originating from program analysis the entity to be
sliced is usually a program and the slicing criterion a value of a vari-
able at a certain program point. In this paper we present an approach
to slicing Object-Z specifications with temporal logic formulae as slicing
criteria and show the correctness of our approach. The underlying mo-
tivation is the goal to substantially reduce the size of the specification
and subsequently facilitate verification of temporal logic properties.

1 Introduction

Program slicing has been introduced by Weiser [18, 19] as a technique for reduc-
ing programs with respect to some criteria under interest. The title of his first
article already suggests what the main idea of slicing and its main application
was (and partly still is): “programmers use slices when debugging”. Whenever
a variable turns out to have a wrong value at a certain program statement pro-
grammers are interested in finding out what the part (slice) of the program is
which influences this variable value, and for debugging they just want to look at
that part. This is exactly what slicing is doing for them. Ever since this first ar-
ticle a huge number of publications on slicing have appeared, introducing slicing
techniques in various flavours and for various types of programs (with procedure
calls, pointers, concurrency etc.). For a general survey see [15]. Recently, slic-
ing techniques have been transferred to the area of model checking [10, 8] where
the slicing criterion is no longer a variable value but a temporal logic formula.
In these works slicing should guarantee that the property specified by the for-
mula holds on the reduced program/specification if and only if it holds on the
full program/specification. This is similar to the technique of cone-of-influence
reduction used in hardware verification [3].

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 414–433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Slicing Object-Z Specifications for Verification 415

In this paper, we suggest a method for slicing Object-Z specifications with
respect to formulas of an interval based temporal logic over states and events.
To this end a dependence graph of the specification is build which precisely
reflects data and control dependencies. Starting from the atomic propositions in
the formula this graph is traversed in a backward direction thus determining the
part of the specification which potentially influences these atomic propositions.
We show that the remaining part of the specification can safely be omitted
when checking for the holding of the formula since the formula holds on the full
specification iff it holds on its slice. This can substantially reduce the size of the
Object-Z specification and thus the state space during verification of temporal
logic properties.

A related approach has been presented in [17, 16] where slicing techniques
have been used to determine whether changes of a specification might influence
already proven properties. In contrast to the work there we will here build a
dependence graph with a much finer granularity. Dependencies will be deter-
mined on the level of predicates not complete schemas. This allows to omit some
predicates in a schema while keeping other necessary parts. Moreover, we will
use a state- and event-based temporal logic for property specification instead of
ordinary LTL. The logic is inspired by the Duration Calculus (DC) [21], how-
ever, omitting the time. The reason for choosing a logic talking about events
for a state-based formalism lies in our ultimate goal of extending this work to
CSP-OZ [7], a combination of Object-Z with the process algebra CSP, and fi-
nally to CSP-OZ-DC [9] which additionally adds Duration Calculus formulae
(for specifying timing constraints) to CSP-OZ. Properties will in the final set-
ting be expressed in DC (which is one of the reasons for choosing a timeless
variant of DC here).

The paper is structured as follows. In the next section we introduce Object-Z
(or more precisely, the Object-Z part of CSP-OZ) by means of a small example
which we later use for slicing. Furthermore, following Winter and Smith [20] we
define a Kripke structure semantics for Object-Z. This is used as the basis for
interpreting the temporal logic (SE-IL) formulae. Section 3 will then present the
construction of the dependence graph and the slicing algorithm, and illustrate
both on the running example. The slicing algorithm will be proven correct with
respect to preservation of the SE-IL property under interest in section 4. The
last section concludes.

2 Background

This section sets the background for our work on slicing Object-Z specifications.
We briefly describe Object-Z [13, 6] by means of an example that we will later
use for slicing. Furthermore we introduce the temporal logic and explain how to
give a Kripke structure semantics to Object-Z so that the holding of formulae for
Object-Z specifications can be defined. Finally, we give a definition of projection,
which is the relation used to compare full and reduced specification.

416 I. Brückner and H. Wehrheim

Example. The example is inspired by the Tic-Tac-Toe specification of [5], but
has been slightly modified to serve as a good example for slicing. Tic-Tac-Toe
is a game involving two players (called black and white) and a board with 9
positions in a 3-by-3 array.

0 1 2

3 4 5

6 7 8

The players take turns to move. A move consists of choosing a free position and
adding it to the players owned positions. The goal (in our modified version) is
to obtain as many diagonal, vertical or horizontal lines with three positions as
possible1. The game ends when all positions are occupied.

Posn == 0..8

The function inLine determines whether a set of positions contains a line with
three positions, the function lines counts the number of three-position lines.

inLine : P Posn → B

∀ ps : P Posn •
inLine(ps) ⇔

∃ s : {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 3, 6, }
{1, 4, 7}, {2, 5, 8}, {0, 4, 8}, {2, 4, 6}} • s ⊆ ps

lines : P Posn → N

∀ ps : P Posn •
lines(ps)= #{x , y , z : Posn |{x , y , z}⊆ ps ∧ inLine({x , y , z})•{x , y , z}}

The game has three possible outcomes:

Result ::= black wins | white wins | draw

The following is the specification of the class TicTacToe. It is not exactly Object-
Z but the Object-Z part of a CSP-OZ [7] specification2. The difference can be
found in the schemas for methods: in CSP-OZ a method m can be specified by
giving an enable schema defining a guard to the execution of the method plus
an effect schema defining the actual execution.

1 This is the difference to the usual Tic-Tac-Toe where the player with the first line
of three positions wins.

2 Note in particular that no object references are present due to the communications
that are used in CSP-OZ. Therefore the aliasing problem does not occur.

Slicing Object-Z Specifications for Verification 417

TicTacToe

bposn,wposn, free : P Posn
over , turn : B

moves : N

free = Posn \ (bposn ∪ wposn)
over ⇔ (moves = 9)

Init
bposn = ∅

wposn = ∅

¬over
turn
free = Posn
moves = 0

enable white

turn
¬over

enable black

¬turn
¬over

effect white
Δ(wposn,moves, free, over , turn)
p! : Posn

p! ∈ free
wposn ′ = wposn ∪ {p!}
¬turn ′

moves ′ = moves + 1

effect black
Δ(bposn,moves, free, over , turn)
p! : Posn

p! ∈ free
bposn ′ = bposn ∪ {p!}
turn ′

moves ′ = moves + 1

enable result

over

effect result
r ! : Result

lines(bposn) > lines(wposn)⇒ r ! = black wins
lines(wposn) > lines(bposn)⇒ r ! = white wins
lines(wposn) = lines(bposn)⇒ r ! = draw

This class specification will later be sliced with respect to some temporal logic
properties.

Kripke Structure Semantics. The temporal logic will be interpreted on Kripke
structures, therefore we will next define a Kripke structure semantics for Object-
Z classes. The temporal logic will talk both about states and events (viz. meth-
ods). In contrast to ordinary Kripke structures transitions are thus labelled with
events.

Definition 1. Let AP be a nonempty set of atomic propositions, E an alphabet
of events (or methods names).

An (event-)labelled Kripke structure K = (S ,S0,→,L) over AP and E con-
sists of a finite set of states S , a set of initial states S0 ⊆ S, a transition relation
→⊆ S × E × S and a labelling function L : S → 2AP .

418 I. Brückner and H. Wehrheim

An infinite sequence of events and states s0e1s2e3s4 . . . is a path of the Kripke
structure iff s0 ∈ S0 and (si , ei+1, si+2) ∈→ holds for all i ≥ 0, i even.

A path is fair with respect to a set of events E ′ ⊆ E (or E ′-fair) iff inf (π) ∩
E ′ �= ∅ where inf (π) = {e ∈ E | ∃ infinitely many i ∈ N : ei = e}.

By convention we assume that paths are always infinite. This can be achieved by
augmenting states s with no outgoing transitions by an extra transition s −τ→ s,
where τ is an internal event (e.g. as in the process algebras CSP and CCS). We
furthermore will in the following only consider paths that are fair with respect
to some E ′. This fairness requirement can be seen as an assumption on an
environment which infinitely often has to call methods (viz. events) from E ′.
Since an Object-Z class is not executing methods without a client calling them
anyway such fairness requirements are reasonable assumptions.

The Kripke structure semantics for an Object-Z class is obtained by taking
all possible valuations of variables as states and state changes via execution of
methods as transitions. The set of atomic propositions AP are the predicates
over the class’ variables, e.g. for class TicTacToe predicates moves = 3 and
free �= ∅ are possible atomic propositions. The set of events E are those which
can be built from the methods by filling in values for inputs and outputs, e.g.
the method white gives rise to events white.3, white.4, etc.. For convenience we
will not make an explicit distinction between methods and events here and will
not treat inputs and outputs. Thus we say that each class has a set of events E
and for every such event there might be an enable and an effect schema.

Definition 2. The Kripke structure semantics of an Object-Z class
C = (State, Init , (enable e)e∈E , (effect e)e∈E) is the labelled Kripke structure
K = (S ,S0,→,L) over AP and E with

– S = State,
– S0 = {s ∈ S | Init(s)} a set of initial states,

– the transition relation →=→′ ∪{(s, τ, s) |� ∃ s ′ � ∃ e : s
e
→′ s ′} where

→′= {(s, e, s ′) | enable e(s) ∧ effect e(s, s ′)},

– L(s) = {p | p ∈ AP ∧ s ⇒ p}.

In the following we only consider Object-Z classes that satisfy the following two
further assumptions: First, we assume the set of initial states to be nonempty
(∃State • Init) and second, we assume for any enable schema to imply the
pre-condition of its effect schema (∀ e ∈ E : enable e ⇒ pre effect e).

Logic. The logic for expressing temporal properties is inspired by the Duration
Calculus (DC), and allows us to reason about events and states but (for suit-
ing our purposes) not about time and can therefore be regarded as an untimed
projection of DC. There are two reasons for choosing this logic: first of all, our
ultimate goal is to apply slicing to integrated specifications which in addition to
Object-Z contain parts specifying the dynamic behaviour (in CSP) and timing

Slicing Object-Z Specifications for Verification 419

constraints (in DC). The logic for expressing properties of this type of specifica-
tions will be the full DC. As a second reason, we are interested in a logic which
can precisely express orderings between events and state propositions (e.g. like
“when event e happens then immediately afterwards variable x has the value
5”). Since we are interested in reducing the specification it should, however, on
the other hand not be able to precisely speak about steps of the system (e.g.
like “the 10th operation of the system is event e”). The paths of the reduced
specification will be projections of the paths of the full specification (omitting
some events), and thus a preservation of properties under slicing does only make
sense for logics which do not talk about particular steps.

The following grammar describes formulae of the state/event interval logic
SE-IL (where ev ∈ E is an event and p ∈ AP an atomic proposition).

ϕ ::= *p+ – phase (p holds in all states of the given interval)
| ev – event (ev occurs in the given interval)
| ¬ϕ – negation
| ϕ ∧ ψ – conjunction
| �L ϕ – eventually operator with liveness (ϕ holds inside or

beyond the given interval)
| ϕ ; ψ – chop operator (divides the given interval into two

parts where ϕ holds on the first and ψ holds on the
second part)

We use the abbreviation �L ϕ to stand for ¬�L ¬ϕ. For a formula ϕ we let E (ϕ)
denote the set of events occurring in it and V (ϕ) the set of variables of atomic
propositions in it.

In order to define when a Kripke structure satisfies an interval logic formula
we first define path-satisfaction. Duration Calculus is used to reason about con-
tinuous time models, and the validity of formulas is defined via a quantification
over all time intervals: a formula holds iff it is true in all intervals (starting at
time 0). This definition is now transferred to the discrete setting of paths: a
path satisfies a formula iff the formula holds on all intervals [0, e], e ∈ N. Let
π = s0e1s2e3s4 . . . be a path and π[i] the i -th component of π: π[i] can either be
an event or a state.

1. π, [b, e] |= *p+ iff ∃m, b ≤ m ≤ e : π[m] ∈ S
and ∀m, b ≤ m ≤ e : π[m] ∈ S ⇒ p ∈ L(π[m]),

2. π, [b, e] |= ev iff b = e and π[b] = ev ,
3. π, [b, e] |= ¬ϕ iff not π, [b, e] |= ϕ,
4. π, [b, e] |= ϕ ∧ ψ iff π, [b, e] |= ϕ and π, [b, e] |= ψ,
5. π, [b, e] |= �L ϕ iff ∃m1,m2 ≥ b : π, [m1,m2] |= ϕ,
6. π, [b, e] |= ϕ ; ψ iff (∃m, b ≤ m ≤ e : π, [b,m] |= ϕ and π, [m, e] |= ψ)

∨ (π[b] ∈ S and π[b, b − 1] |= ϕ and π, [b, e] |= ψ)
∨ (π[e] ∈ S and π[e, e − 1] |= ψ and π, [b, e] |= ϕ)

Some explanations for this unusual definition are at place. Item 1: the decision
taken here is that during execution of an event we do not know what atomic

420 I. Brückner and H. Wehrheim

propositions hold, thus the formula *p+ evaluates to false on an interval with an
event only. This reflects the fact that events may invalidate atomic propositions
which hold in the state before their execution and make others become true in
the state after their execution. In order to be able to say that an event causes a
state change we can neither assume that atomic propositions in pre-states still
hold while the event takes place nor that those of post-states already hold. Item
2,3 and 4 should be as expected. Item 5: The eventually operator has to reason
about positions outside the current interval since we want to achieve real liveness,
not just bounded liveness. This operator is taken from the DC with liveness [12];
the standard DC does not allow to reason about unbounded liveness. Item 6: The
first part of the disjunction captures the case where the interval is divided into
two parts such that ϕ holds on the first part and ψ on the second. The second
and third part of the disjunction mimic the phenomenon that in continuous time
one can chop off an empty interval from every interval. The empty interval is
denoted by [b, b−1] (or [e, e−1]). In an empty interval neither *p+ nor ev holds.
Note that for instance ev ; ev ≡ ev3 but ¬*p+ �≡ *¬p+4.

A Kripke structure then satisfies a formula if all of its paths do (and an
Object-Z class satisfies a property when its Kripke structure does).

Definition 3. Let K = (S ,S0,→,L) be a Kripke structure and ϕ an SE-IL
formula. A path π satisfies ϕ if π, [0, e] |= ϕ holds for all e ∈ N. K satisfies ϕ
(K |= ϕ) iff π |= ϕ holds for all paths of K . K fairly satisfies ϕ w.r.t. a set of
events E ′ ⊆ E (K |=E ′ ϕ) iff π |= ϕ holds for all E ′-fair paths of K .

As an example consider the following Kripke structure K :

e

f f

p,q p,r

f

For K we for instance have K |= �L p (p always holds), K |= ¬�L (e ; *¬r+)
(r holds after e, formulated as a counter-example: there is no interval in which
¬r holds immediately after e) but K �|= �L e (event e will eventually happen is
not true since there are paths with event f only) and K �|= �L *q+.

For class TicTacToe we are interested in the following two properties:

ϕ1 := �L *moves = 9−#free+
ϕ2 := ¬�L (black ; (*true+ ∧ ¬(*true+ ; white ; *true+)) ; black)

∧ ¬�L (white ; (*true+ ∧ ¬(*true+ ; black ; *true+)) ; white)

3 The formula ev only holds on a zero interval [b, e] with b = e. The chop operator
can divide this interval into two zero intervals that both satisfy ev .

4 From the fact that $p% does not hold on an interval one cannot conclude that $¬p%
holds on this interval.

Slicing Object-Z Specifications for Verification 421

Property ϕ1 states an invariant between two variables of the class and ϕ2 states
that moves are taken in turn. The second property is again formulated as a
counter-example: there should not be an interval in which an event black is
followed by a nonempty interval in which no white happens which is then followed
by another black (and similar for white). Nonemptiness of the middle interval is
achieved by conjunction with *true+.

Projection of Event-Labelled Kripke Structures. The task of slicing is to compute
a reduced specification which satisfies a certain property if and only if the full
specification satisfies it. For proving this we will show that the reduced specifi-
cation is a projection of the full specification onto some relevant subset of the
atomic propositions and events, i.e. they only differ on atomic propositions and
events that the formula does not mention.

The projection relation is again first defined on paths and then lifted to
Kripke structures. Intuitively, when computing the projection of a given path
onto a set of atomic propositions and a set of events one divides the path into
blocks such that all states inside a block are “projection-equivalent” (i.e. they
coincide on the given set of atomic propositions) and all events inside a block are
”irrelevant” events (i.e. events not from the given set of events) except for the
last event in the block which is a ”relevant” event (i.e. an event from the given
set of events). The projection of the original path contains then any path such
that for each of the blocks of the original path all states and irrelevant events
are mapped onto one single state of the new path while the ”relevant” event
remains in the new path as illustrated in the following sketch of a projection of
a path:

Block 0 Block 1 Block 2 Block 3

π = s0 e0 s1 e1 s2 e2 s3 e3 s4 e4 . . .

Pr(π) , r0 e1 r1 e2 r2 e4 . . .

Definition 4. Let π = s0e0s1e1s2e2s3 . . . be an E ′-fair path over a set of atomic
propositions AP and a set of events E ⊇ E ′. The projection of π onto a set
of atomic propositions AP ′ and a set of events E ′ (PrAP ′,E ′(π)) contains any
E ′-fair path ρ = r0f0r1f1r2f2r3 . . . such that there is a sequence of indices 0 =
i0 < i1 < i2 < . . . (that divides π into blocks) with

– ∀ k ≥ 0: L(sik)∩AP ′ = L(sik+1)∩AP ′ = · · · = L(sik+1−1)∩AP ′ = L(rk)∩AP ′

(relevant atomic propositions do not change within a block and are the same
in the correspondent state of ρ),

– ∀ l ∈ N,∀ k : il ≤ k < il+1 − 1 : ek ∈ E \ E ′

(no relevant events occur inside a block),
– ∀ l ≥ 1 : eil−1 = fl−1 ∈ E ′

(transitions between blocks are labelled with the same relevant event as the
correspondent transition of ρ).

422 I. Brückner and H. Wehrheim

For comparing the Kripke structures we restrict the definition to fair paths since
we are only considering satisfaction of formulae on fair paths.

Definition 5. Let Ki = (Si ,S0,i ,→i ,Li), i ∈ {1, 2}, be labelled Kripke struc-
tures over a set of atomic propositions AP and a set of events E, AP ′ ⊆ AP a
subset of the atomic propositions and E ′ ⊆ E a subset of the events.

K2 is in the projection of K1 onto AP ′ and E ′ (K2 ∈ PrAP ′,E ′(K1)) iff the
following holds:

1. For each E ′-fair path π in K1 there exists an E ′-fair path π′ in K2 such that
π′ ∈ PrAP ′,E ′(π),

2. and vice versa, for each E ′-fair path π′ in K2 there exists an E ′-fair path π
in K1 such that π′ ∈ PrAP ′,E ′(π).

Such a projection relation between two Kripke structures guarantees that for-
mulae which only mention propositions from AP ′ and events from E ′ hold for
either both or none of the Kripke structures.

Theorem 1. Let ϕ be an SE-IL formula over AP ′ and E ′, and K1, K2 labelled
Kripke structures over a set of atomic propositions AP and a set of events E
with AP ′ ⊆ AP and E ′ ⊆ E. If K2 ∈ PrAP ′,E ′(K1) then the following holds:

K1 |=E ′ ϕ iff K2 |=E ′ ϕ .

Due to space restrictions we omit the proof that can be found in appendix 1 of
the full version of the paper [1].

3 Slicing

Slicing means reducing a program or a specification such that the reduced pro-
gram/specification only contains those parts of the full specification which can
influence a certain property called the slicing criterion. At the beginning slicing
criteria have usually been of the form “what is the value of variable x at state-
ment n?”. The task of the slicing algorithm was to find the (smallest) part of
the program/specification sufficient for correctly answering this question.

In the context of model checking slicing criteria have become more complex
and are usually temporal logic formulae. Nevertheless, techniques similar to ordi-
nary slicing can be used for slicing with respect to temporal logic formulae since
the essence of slicing has remained the same: slicing needs precise information
about dependencies between different parts of a program/specification. Such de-
pendencies are represented in a program (or system) dependence graph5. This
section explains the construction of program dependence graphs for Object-Z
classes and their slicing with respect to SE-IL formulae.

5 We stick to the word program although we treat specifications.

Slicing Object-Z Specifications for Verification 423

Program Dependence Graph. We start with some notational conventions. We
assume V to be the set of variables of the class, E to be its methods (or events)
and Pred to be predicates over V .

For a predicate p over a set of variables vars(p) standing in some schema
we define mod(p) to be those variables which occur in primed form and are in
the Δ-list of the schema, and ref (p) to be the variables occurring in unprimed
form. For input and output variables we use the following convention: output
variables of a predicate p are in mod(p) and input variables in ref (p). This
effect could alternatively be achieved by embedding inputs and outputs into the
state as in [14]. For the initialisation schema Init we assume the Δ-list to be
V and ref (p) to be ∅ for all predicates p in Init (although variables appear in
unprimed form they are actually set in the Init schema). For an effect schema
effect e and variables u, v we say that u constrains the value of v in effect e
(constrainseffect e(u, v)) if there is a predicate p in effect e such that both u
and v are in mod(p). The relation constrains is thus symmetric.

The construction of the program dependence graph (PDG) starts with the
construction of the control flow graph (CFG) (depicted in fig. 1). It contains

– one node nInit labelled Init ,
– one node nDO labelled DO (nondeterministic choice),
– for every method/event e two nodes nen e and neff e labelled enable e and

effect e.

These nodes also appear in the PDG where they are supernodes, i.e. nodes
that contain a number of ordinary nodes. This hierarchical relation corresponds
to the relation between predicates (ordinary nodes) that occur inside schemas
(supernodes). The control flow between nodes is used to determine dependencies
in the PDG.

Init

DO

...enable e1

effect e1

enable en

effect en

Fig. 1. Control flow graph of a class

The construction of the PDG then proceeds in two steps. The first step is a
kind of normalisation (although not as complete as the ordinary one) on the
specification; the second step builds the graph.

424 I. Brückner and H. Wehrheim

1. First step: Class normalisation.

– The state invariant is attached to every effect schema in primed form.
– For every variable v of type T occurring in the Δ-list of some schema

but not in primed form in a predicate we add a predicate v ′ ∈ T to the
schema (in order to make it explicit that the variable might change).

2. Second step: Graph construction.
From the CFG we build a hierarchical graph in which the supernodes are
those of the CFG and the predicates of the schemas occur as subnodes.
Furthermore, we add control dependencies between two nodes n and n ′ if
the evaluation of the predicate of n may influence the execution of n ′, and
data dependencies if n modifies a variable that n ′ references.
More formally, for a class (State, Init , (enable e)e∈E , (effect e)e∈E) we
build a hierarchical graph G = (K ,P , l ,�,�) with

– K = {nInit ,nDO}∪{nen e | e ∈ E}∪{neff e | e ∈ E} a set of supernodes,
– P = {px | p is a predicate in a schema named x}, a set of ordinary

nodes6,
– l a labelling function defined as

l : nInit �→ Init
nDO �→ DO
nen e �→ enable e
neff e �→ effect e

px �→ p

– � ⊆ P × P the data dependence edges defined by px � qy iff
• directed data dependencies exist, i.e.

mod(px) ∩ ref (qy) �= ∅ and y �= Init ,

• or symmetric data dependencies exist, i.e.

mod(px) ∩mod(qy) �= ∅ and y = x ,

– � ⊆ P × P the control dependence edges defined by

px � qy iff ∃ e ∈ E : x = enable e and y = effect e .

The program dependence graph of the class TicTacToe can be found in fig. 2.
Control dependencies between two supernodes (of an enable and an effect schema)
stand for dependencies between every predicate in the first and in the second
node. It can be seen that due to normalisation the effect schemas have two extra
predicates which appeared in the original specification as the state invariant.

6 The hierarchical relation between an ordinary node and its associated supernode is
implicitly present in an ordinary node’s index that refers to the schema the predicate
comes from, i.e. its supernode.

Slicing Object-Z Specifications for Verification 425

Fig. 2. PDG of class TicTacToe

Backward Slice. The construction of the program dependence graph is indepen-
dent of the actual SE-IL formula. The formula comes into play when the slicing
is carried out. In ordinary slicing the slicing criterion is the value of a variable
at a certain program statement. In order to construct the slice of a program
w.r.t. this criterion the node representing the statement is determined and then
all nodes are included in the slice which are backward reachable (via dependen-
cies) from this particular node. In this way the part of the program which might
influence the slicing criterion is obtained.

When slicing w.r.t. SE-IL formulae this is less easy. We first have to find
out what the “start nodes” for slicing are, i.e. which nodes represent the slicing
criterion. From the formula ϕ we can derive a set of events Eϕ and a set of
variables Vϕ under interest (those appearing in the formula). From these we
can determine the nodes Nϕ (predicates) in the PDG which directly manipulate
these variables or influence the execution of these events:

Eϕ = E (ϕ)
Vϕ = V (ϕ) ∪ {v | ∃ e ∈ Eϕ,∃ pen e : v ∈ vars(p)}
Nϕ = {px | ∃ v ∈ Vϕ : v ∈ mod(p)} ∪ {py | ∃ e ∈ Eϕ : y = en e}

426 I. Brückner and H. Wehrheim

The nodes in Nϕ are those from which the slicing is then started. All nodes in
the backward slice of Nϕ might potentially influence execution of events in Eϕ

or values of (and thus atomic propositions over) Vϕ.

bs(Nϕ) = {n ′ ∈ P | ∃n ∈ Nϕ : n ′(� ∪�)∗n}

The backward slice contains the set of nodes which influence the truth value of
ϕ and thus gives us the events, predicates and variables which still have to be
in the reduced class specification.

N ′ = bs(Nϕ)

V ′ =
⋃

px ∈N ′
vars(p)

E ′ = {e | ∃ p : pen e ∈ N ′ ∨ peff e ∈ N ′}

There are, however, some variables in V ′ whose values cannot influence the hold-
ing of the formula since they are never referenced (i.e. never occur in unprimed
form in predicates of N ′). Thus we define a second set of variables

V = Vϕ ∪ {v ∈ V ′ | ∃ px ∈ N ′ : v ∈ ref (p)}

which are those actually referenced. Variables out of V ′\V are still needed in the
reduced specification since there might be predicates referring to their primed
version. As an example, consider an effect schema with predicates u ′ = v ′ and
v ′ = 5 where u ∈ V (ϕ). Since the value of u in the post-state is constrained by
that of v both predicates and variables are needed in the reduced specification.
The value of v in some state is however never used, it cannot influence the value
of u. Thus v would be in V ′ but not in V . We let AP denote the set of atomic
propositions over V .

Reduced Specification. Given the set N ′,V ′ and E ′ it is then straightforward to
construct the reduced specification. The class C red contains a state schema with
variables from V ′ only (same type as in C), with schemas only for events in
E ′ (plus Init), and in these schemas only the predicates from nodes in N ′. We
refer to the schemas in this class specification as Statered , Initred , enable ered ,
effect ered and in order to properly distinguish it from the original specification
this will in the following be called C full .

Examples. When slicing the class TicTacToe with respect to the formula

ϕ1 := �L *moves = 9−#free+

the result is the following:

N ′ = N \ {(lines(bposn) > lines(wposn)⇒ result ! = black wins)effect result ,
(lines(wposn) > lines(bposn)⇒ result ! = white wins)effect result ,
(lines(wposn) = lines(bposn)⇒ result ! = draw)effect result}

V ′ = V = V
E ′ = E

Slicing Object-Z Specifications for Verification 427

Thus the slice w.r.t. ϕ1 exhibits only one difference in comparison to the original
specification, namely only the predicates are removed that determine the final
result that is communicated by schema result . This is sensible, of course, since
the communicated result does not influence the given property.

When slicing the class TicTacToe with respect to the formula

ϕ2 := ¬�L (black ; (*true+ ∧ ¬(*true+ ; white ; *true+)) ; black)
∧ ¬�L (white ; (*true+ ∧ ¬(*true+ ; black ; *true+)) ; white)

the result is the following:

N ′ = N \ {(bposn = ∅)Init , (wposn = ∅)Init , (free = Posn)Init ,
(p! ∈ free)effect white , (wposn ′ = wposn ∪ {p!})effect white ,
(free ′ = Posn \ (bposn ′ ∪ wposn ′)effect white ,
(p! ∈ free)effect black , (bposn ′ = bposn ∪ {p!})effect black ,
(free ′ = Posn \ (bposn ′ ∪ wposn ′)effect black ,
(lines(bposn) > lines(wposn)⇒ r ! = black wins)effect result ,
(lines(wposn) > lines(bposn)⇒ r ! = white wins)effect result ,
(lines(wposn) = lines(bposn)⇒ r ! = draw)effect result ,
(free ′ = Posn \ (bposn ′ ∪ wposn ′)effect result}

V ′ = V \ {bposn,wposn, free} = V
E ′ = E

This leads to the following specification slice:

TicTacToe

over , turn : B

moves : N

over ⇔ (moves = 9)

Init
¬over
turn
moves = 0

enable white

turn
¬over

enable black

¬turn
¬over

effect white
Δ(moves, over , turn)

¬turn ′

moves ′ = moves + 1

effect black
Δ(moves, over , turn)

turn ′

moves ′ = moves + 1

enable result

over

effect result
Δ()

true

428 I. Brückner and H. Wehrheim

Thus, additional to the difference that we saw in the previous example, this slice
has another difference in comparison to the original specification: All predicates
have been removed that determine the sets of free and occupied fields. This
difference is sensible since the given property expresses only that there is a strict
alternation between the players’ moves. In order to analyze the sequence of moves
the players can perform, the exact occupation of fields during the course of the
game is irrelevant and all related predicates can safely be removed together with
the variables that store the associated information about free and occupied fields.

This example shows that slicing can substantially reduce the size of the speci-
fication and hence the state space of the associated Kripke structure. Verification
of temporal logic properties can thus be facilitated.

4 Correctness

In this section we show correctness of the slicing algorithm, i.e. we show that the
Kripke structure of the reduced specification is a projection of that of the full
specification. As a consequence the property (and slicing criterion) ϕ then holds
on the full specification if and only if it holds on the reduced specification. In
the proofs we use the notation of the last section, i.e. let N ′,E ′,V ′ denote the
nodes, events, variables which remain in the specification or PDG after slicing
and V ,AP are the variables and atomic propositions, respectively, on which the
full and reduced specification should agree.

We start the correctness proof with two lemmas showing the relationships
between events, predicates and variables which remain in the specification.

Lemma 1. Let e ∈ E ′ be an event and p a predicate out of the schema enable e.
Then pen e ∈ N ′.

Proof: Take some e ∈ E ′. Then by definition of E ′ there is some predicate q
such that either qen e ∈ N ′ or qeff e ∈ N ′.

– Assume qen e ∈ N ′. Then either qen e ∈ Nϕ or it is not in Nϕ but in the
backward slice of Nϕ. In the first case e ∈ Eϕ and hence pen e ∈ Nϕ and
thus in N ′. Or qen e is in the backward slice of Nϕ. Since q is coming from
an enable schema the outgoing dependencies are only control dependencies.
Hence there is some predicate r in effect e such that r is in the backward
slice. The control dependency is going from q to r but also from p to r and
therefore p is in N ′ as well.

– Assume qeff e ∈ N ′. Then pen e is in the backward slice since there is a
control dependency from pen e to qeff e .

As a consequence, either all or none of the predicates of an enable schema are
in the backward slice.

Corollary 1. ∀ e ∈ E ′ : enable ered = enable efull .

The next lemma shows that events not in E ′, i.e. omitted in the reduced speci-
fication, have no influence on the variables in V .

Slicing Object-Z Specifications for Verification 429

Lemma 2. Let e �∈ E ′ be an event. For all predicates p appearing in effect e
we then have mod(p) ∩V = ∅.

Proof: Assume there is some v ∈ V with v ∈ mod(p). Then one of the following
two cases hold:

1. v ∈ Vϕ

⇒ peff e ∈ Nϕ

⇒ peff e ∈ N ′

⇒ e ∈ E ′ (Contradiction!)
2. v ∈ {v ∈ V ′ | ∃ qx ∈ N ′ : v ∈ ref (q)}
⇒ data dependency from peff e to qx
⇒ peff e ∈ N ′

⇒ e ∈ E ′ (Contradiction!)

Next, we state the main theorem of the paper which is the correctness of slicing
with respect to the interval logic property. This is proven by showing that the
Kripke structure of the reduced specification is a projection of that of the full
specification.

Theorem 2. Let C full be a class specification, ϕ an SE-IL formula and C red

the class obtained when slicing C full with respect to ϕ. Let E ′ and AP be the
set of events and atomic propositions, respectively, which the slicing algorithm
delivers as those of interest (in particular E(ϕ) ⊆ E ′ and V (ϕ) ⊆ V).

Let furthermore K full and K red be the corresponding Kripke structures. Then
the following holds:

K red ∈ PrAP,E ′(K full)

Proof:

1. Let π = s0e1s2e3 . . . be an E ′-fair path of K full . We construct a sequence
ρ′ = t0f1t2f3 . . . with

ti : si |V ′

fi : ei if ei ∈ E ′,nop else

Out of ρ′ we construct a sequence ρ by eliminating all subsequences of the
form nop tj .
We have to show that ρ is an E ′-fair path of K red .
(a) Fairness: ρ contains infinitely many events from E ′ since π contains them

and they are preserved by the construction.
(b) Path: Since K red contains fewer predicates than K full in the schemas,

there are fewer restrictions on values of variables. Hence

Init full(s0)⇒ Initred (s0|V ′)
enable efull(si)⇒ enable ered(si |V ′)

effect efull(si , si+2)⇒ effect ered(si |V ′ , si+2|V ′)

430 I. Brückner and H. Wehrheim

Furthermore by Lemma 2 we know that ei �∈ E ′ implies si−1|V = si+1|V .
If there is now a transition si−1 −ei−→ si+1 in K full with ei ∈ E ′ then
a transition tj −ei−→ ti+1 with j ≤ i − 1,∀ k : j < k < i − 1 : ek �∈
E ′ and ej−1 ∈ E ′ is possible in K red since 1) tj |V = sj |V = si−1|V
and ti+1|V = si+1|V and 2) enable ei red only references variables from
V and 3) effect ei red only references unprimed variables from V and
moreover makes no or the same restrictions as effect ei full on primed
variables in V ′ (and hence the value in si+1 is ok, since it coincides with
the value in ti+1).
Thus ρ is a path of K red .

By construction ρ is in the projection of π onto AP and E ′.
2. Let ρ = t0f1t2f3 . . . be a (by definition) E ′-fair path of K red . We inductively

construct a sequence π = s0e1s2e3 . . . by

si : si −ei+1−−→full si+2

ei : fi

We have to show the well-definedness of this construction (by induction), i.e.
show that a transition si −ei+1−−→full si+2 is indeed possible in K full . Further-
more we have to show that si+2|V = ti+2|V (note that si+2 and ti+2 might
differ on variables in V ′ \V).
(a) Induction base: s0

We know that Initred (t0) holds. We have to show that there is some
s0 with Init full(s0) and s0|V = t0|V . To this end we show that Initred

contains all predicates of Init full which directly or indirectly influence
the variables of V .
i. Directly: let u ∈ V and q a predicate in Init full such that u ∈

mod(q). Then qInit ∈ N ′ since either 1) u ∈ Vϕ and then qInit ∈ Nϕ

and hence in N ′, or 2) u ∈ {v ∈ V ′ | ∃ px ∈ N ′ : v ∈ ref (p)} and
then there is data dependency from qInit to px and hence qInit ∈ N ′.

ii. Indirectly: let u ∈ V and assume there is a chain of variables u1, u2,
. . . , un such that u = u1, u = un and constrains(ui , ui+1), 1 ≤ i ≤
n − 1. Due to symmetric dependencies all predicates q causing the
constrains-relationships are in N ′.

(b) Induction step: assume we have constructed the sequence up to some
state si and si |V = ti |V .
We have to show that ei+1 is enabled in si and its execution leads
to some state si+2 such that si+2|V = ti+2|V . By Corollary 1 we get
enable ei+1

red = enable ei+1
full , and thus there is some s ′

i+2 with
si −ei+1−−→full s ′

i+2. Now we choose si+2 = s ′
i+2 ⊕ ti+2|V ′′ with

V ′′ =
⋃

peffect ei+1
full ∈N ′

mod(p) ∪V .

This choice ensures that si+2|V = ti+2|V holds since V ⊆ V ′′. Further-
more this choice is admissible since each predicate in effect ei+1

full

falls into one of the following cases:

Slicing Object-Z Specifications for Verification 431

– peffect ei+1full ∈ N ′: Then mod(p) ⊆ V ′′ and due to the construc-
tion of the slice ref (p) ⊆ V . Since si |V = ti |V , si+2|V ′′ = ti+2|V ′′

and effect ei+1
red (ti , ti+2), we know that predicate p holds for the

transition from si to si+2.
– peffect ei+1full �∈ N ′: Then mod(p) ∩ V ′′ = ∅ holds, since otherwise

there would be some variable v ∈ mod(p) inducing a dependence
such that peffect ei+1full ∈ N ′. From mod(p)∩V ′′ = ∅ we know that
si |mod(p) = s ′

i+2. Together with effect ei+1
full(si , s ′

i+2) this leads
finally to effect ei+1

full(si , si+2).
By construction π is thus an E ′-fair path of K full and furthermore ρ is in
the projection of π onto AP and E ′.

As a consequence of theorem 1, the formula ϕ holds on the reduced specification
if and only if it holds on the full specification.

5 Conclusion

This paper is concerned with reducing Object-Z specifications for the verifica-
tion of temporal logic properties. Given a formula the technique presented in this
paper computes a reduced specification on which the formula holds if and only
if it holds for the full specification. The technique can substantially facilitate
verification of specifications since the preparatory construction of the program
dependence graph is only linear in the size of the original specification while
its state space is usually much larger (or infinite) and might therefore not be
amenable for an analysis. Slicing can thus be seen as one method for fighting
the state explosion problem in verification, along with other techniques like ab-
straction (for Z for instance by combining the work of [14] and [4]), symmetry
reduction, compositional verification (like e.g. [20]) and partial order reductions.

Related Work. Slicing in formal specifications, in particular in Z, has been pro-
posed in [2, 11]. These works carry out slicing with respect to a “standard”
slicing criterion, which are the values of variables. Slicing with respect to tempo-
ral logic formulae is usually done either in the context of hardware verification
[3], therein known as cone-of-influence reduction, or in software model checking,
most notably in the Bandera project [8] where it is applied to Java programs.

Future Work. So far, this technique considers a single class only. It could be
extended to larger systems either by combining it with compositional verification
techniques (e.g. for Object-Z [20]), or by constructing a program dependence
graph of the whole system. The latter could be achieved by combining program
dependence graphs of the individual objects through a special new dependency
arc reflecting the call structure between objects (possibly following approaches
for slicing programs with procedures).

The development of tool support for slicing is another important issue. Our
small example already revealed the necessity for a program computing program

432 I. Brückner and H. Wehrheim

dependence graphs and backward slices and the presented algorithms for these
computations clearly suggest such an automation. This is envisaged in the re-
search project AVACS which forms the overall context of this work.

Our main focus for future work is, however, an extension of this technique to
an integrated specification formalism combining Object-Z with CSP and Dura-
tion Calculus.

Acknowledgement. We would like to thank Jochen Hoenicke for numerous
discussions on the definition of a state- and event-based interval logic and for a
careful reading of the paper.

References

1. I. Brückner and H. Wehrheim. Slicing Object-Z specifications for verification.
Technical Report 3, SFB/TR 14 AVACS, http://www.avacs.org/, 2005.

2. D. Chang and D. Richardson. Static and Dynamic Specification Slicing. In ACM
SIGSOFT international symposium on Software testing and analysis, pages 138–
153. ACM, 1994.

3. E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
4. J. Derrick and G. Smith. Linear temporal logic and Z refinement. In C. Rattray,

S. Maharaj, and C. Shankland, editors, Algebraic Methodology and Software Tech-
nology (AMAST 2004), volume 3116 of Lecture Notes in Computer Science, pages
117–131. Springer, 2004.

5. R. Duke and G. Rose. Formal object-oriented specification using Object-Z. Macmil-
lan, 2000.

6. R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated
for the description of standards. Computer Standards and Interfaces, 17:511–533,
1995.

7. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

8. J. Hatcliff, M. Dwyer, and H. Zheng. Slicing software for model construction.
Higher-order and Symbolic Computation, 13(4):315–353, 2000.

9. J. Hoenicke and E.-R. Olderog. Combining Specification Techniques for Processes,
Data and Time. In M. Butler, L. Petre, and K. Sere, editors, Integrated For-
mal Methods, volume 2335 of Lecture Notes in Computer Science, pages 245–266.
Springer-Verlag, May 2002.

10. L. Millett and T. Teitelbaum. Issues in slicing PROMELA and its applications
to model checking, protocol understanding, and simulation. Software Tools for
Technology Transfer, 2(4):343–349, 2000.

11. T. Oda and K. Araki. Specification slicing in formal methods of software develop-
ment. In Proceedings of the Seventeenth Annual International Computer Software
& Applications Conference, pages 313–319. IEEE Computer Society Press, 1993.

12. J. U. Skakkebæk. Liveness and fairness in duration calculus. In B. Jonsson and
J. Parrow, editors, CONCUR‘94, volume 836 of LNCS, pages 283–298. Springer-
Verlag, 1994.

13. G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.

Slicing Object-Z Specifications for Verification 433

14. G. Smith and K. Winter. Proving Temporal Properties of Z specifications Us-
ing Abstraction. In ZB2003: Formal Specification and Development in Z and B,
number 2651 in LNCS, pages 260–279. Springer, 2003.

15. F. Tip. A survey of program slicing techniques. Journal of programming languages,
3(3), 1995.

16. H. Wehrheim. Inheritance of Temporal Logic Properties. In FMOODS 2003:
Formal Methods for Open Object-based Distributed Systems, number 2884 in LNCS,
pages 79–93. Springer, 2003.

17. H. Wehrheim. Preserving Properties under Change. In F.S. de Boer, M. Bonsague,
S. Graf, and W.P. de Roever, editors, Formal Methods for Components and Objects,
volume 3188 of LNCS, pages 330–343. Springer, 2004.

18. M. Weiser. Programmers use slices when debugging. Communications of the ACM,
25(7):446–452, 1982.

19. Mark Weiser. Program slicing. In Proceedings of the 5th international conference
on Software engineering, pages 439–449. IEEE Press, 1981.

20. K. Winter and G. Smith. Compositional Verification for Object-Z. In ZB2003:
Formal Specification and Development in Z and B, number 2651 in LNCS, pages
280–299. Springer, 2003.

21. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Infor-
mation Processing Letters, 40/5:269–276, 1991.

Checking JML Specifications with B Machines�

Fabrice Bouquet, Frédéric Dadeau, and Julien Groslambert

Laboratoire d’Informatique (LIFC),
Université de Franche-Comté, CNRS - INRIA,

16, route de Gray - 25030 Besançon cedex, France
Tel.: (33) 381 666 664, Fax: (33) 381 666 450

{bouquet, dadeau, groslambert}@lifc.univ-fcomte.fr

Abstract. This paper presents a solution to the lack of tool-support
for the JML models verification. We propose an approach for express-
ing JML specifications within the B abstract machines notation. The B
machines generated from the JML can then be checked to ensure their
correctness. Thus, we deduce the correctness of the original JML specifi-
cation, ensured by rewriting rules which give the semantical equivalence
of the two models. More generally, this translation can be applied to
object-oriented specification languages using before-after predicates.

Keywords: Java Modeling Language, JML, object-oriented, B method,
specifications, abstract machines.

1 Introduction

Formal models is a widely spread practice in the software engineering process.
Specification languages are used to formally describe the systems to study, lead-
ing to safer implementations. The B method [Abr96] is an incremental software
engineering process, starting from the building of an abstract system which is
later on refined to reach an implementation. For each step, properties have to
be checked to ensure the correctness of the specification. In the case of B ab-
stract machines, the specifier has to ensure that the invariant is established by
the initialization and preserved by the execution of an operation. This is the
verification process which aims at checking the correctness of the specification.

In recent years, The Java Modeling Language –JML– [LBR99] has been intro-
duced to act as a behavioral interface specification language to formally describe
Java programs. JML is presented as an alternative to UML [RJB99] with OCL
[WK98] for the formal description of object programs. Since its syntax is close
to Java, this specification language may even be used by non-specialists of mod-
eling. Indeed, JML is presented as annotations embedded within Java comments
so that only specific compilers may recognize them. As for B, JML makes it pos-

� This work has been realized within the GECCOO project of program “ACI Sécurité
Informatique” supported by the French Ministry of Research and New Technologies.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 434–453, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Checking JML Specifications with B Machines 435

sible to describe properties on the system. These properties, applied on a class,
are supposed to hold at every state of the system.

Whereas the B method is well tool-supported –the AtelierB [Cle01], the
B-Toolkit [NS99], B4Free [B4F03], or experimental work around the verifica-
tion of the B invariance proof obligations with different provers such as haRVey
[CDD+03]– the verification of JML models suffers from the lack of tool-support.
Indeed, most of the JML-related tools [BCC+03] were developed to ensure the
conformity of the Java code with regard to the JML annotations. Thus, JML
is not really considered as a modeling language but is more of an annotation
language in which it is possible to express assertions for the Java code. We want
to use JML as a modeling language. For that, we would like to be able to easily
prove the correctness of the JML model.

This paper presents a solutiontotheverification ofJMLspecifications,byrewrit-
ing them into equivalent B machines. Although these two specification languages
present relatively close semantics, the expression of JML within B machines is not
straight-forward, due to the presence of objects, inheritance, and especially the dif-
ficulty of building generalized B substitutions from JML before-after predicates.
Therefore, we introduce the theoretical grounds for expressing JML specifications
in B, providing an original approach for the expression of JML within a B frame-
work.Thismodel-based approach is not exhaustive in the sense that thewhole JML
specification clauses can not be expressed with the B notation. Nevertheless, our
translation covers an interesting subset of JML and presents, at our knowledge, an
original proposal for the verification of JML models.

The paper is organized as follows. Section 2 presents the Java Modeling Lan-
guage and introduces the example we use throughout the remainder of the pa-
per. Section 3 shows how we express Java concepts within a B machine. Section 4
presents the expression of JMLspecificationswithinBmachines. Section 5 presents
how the expression of inheritance can be realized within our framework. Section 6
presents the experimental results we obtained with the example. Section 7 presents
the related work, and finally Section 8 concludes and introduces the future work.

2 Java Modeling Language

The Java Modeling Language was introduced by Leavens et al. at the Iowa State
University. This specification language, describing Java modules behavior, aims
at being used by developers as well as by specifiers. The JML annotations are
embedded within Java comments by using //@ for a single-line annotation and
/*@ . . . @*/ for multiple-lines annotations. Moreover, the JML syntax is based on
the Java syntax for expressing predicates, enriched with several new operators
and keywords.

2.1 Overview of JML Specifications

JML describes the behavior of Java modules, i.e., classes or interfaces, using first-
order logic predicates written with a Java-based syntax. New operators, such as
==> for implication, <==> (resp. <=!=>) for equivalence (resp. non-equivalence),

436 F. Bouquet, F. Dadeau, and J. Groslambert

or \forall (resp. \exists) for the universal (resp. existential) quantifier, are
added to the usual Java syntax. These predicates are used within specification
clauses, which can be applied to the class or to methods. Classical boolean oper-
ators of Java are still used, such as && for the conjunction, || for the disjunction,
and ! for the negation.

The invariant is a class specification clause, which represents properties
that should hold at each state of the system. In the same context, history con-
straints, which are written with before-after predicates, describe properties that
are supposed to hold after each method call, linking the resulting state with its
predecessor. In order to express before-after predicates, a new functional symbol,
\old, designates the evaluation of an expression in the before state. In a before-
after predicate, an attribute or a method call which is not under the scope of
\old is by default considered to be evaluated in the after state. Obviously, his-
tory constraints do not have to hold after an instance creation, since the instance
does not have any previous state.

Method specifications are written within annotations above the method dec-
laration, as described in Fig. 1, which also presents the principal method specifi-
cation clauses. In this figure, X represents the set of class attributes in the before
state and X ′ the corresponding attributes in the after state. Param designates
the set of input parameters of the method. The return value, represented by the
JML \result keyword, is expressed by result in the figure.

The requires clause presents the requirements P(X ,Param) that the sys-
tem must fulfill for the method to be executed. This principle is called Design
By Contract, and was introduced in Eiffel [Mey97] from which JML is inspired.
The diverges clause exhibits a condition D(X ,Param) under which the ex-
ecution of the method may not terminate (e.g. loops forever). Unfortunately,
there is no guarantee that the method will diverge if the predicate is established
when the method is invoked. This corresponds to the Hoare notion of partial
correctness. The assignable is used to specify a list of attributes A, A ⊆ X ,
that are modified by the method execution. A special keyword, \nothing (resp.
\everything) symbolizes that no attributes (resp. all the attributes) are modi-
fied by the execution of the method. The when clause makes it possible to delay
the execution of the method until the system satisfies the specified predicate

/*@ requires P(X ,Param);
@ diverges D(X ,Param);
@ assignable A;
@ when W (X);
@ ensures Q(X ,X ′,Param, result);
@ signals (Exception1) R1(X ,X ′,Param);
@ . . .
@ signals (ExceptionN) RN (X ,X ′,Param);
@*/

returnType methodName(Type1 Param1, . . .) { . . . }

Fig. 1. The principal JML method specification clauses

Checking JML Specifications with B Machines 437

class Purse {

//@ invariant balance >= 0;
protected short balance;

/*@ public normal_behavior
@ requires amount >= 0;
@ assignable balance;
@ ensures balance == amount;
@*/

public Purse(short amount) {...}

/*@ public behavior
@ requires amount >= 0;
@ assignable balance;
@ ensures
@ balance == \old(balance) - amount;
@ signals (NoCreditException E1)
@ balance == \old(balance)
@ && amount > balance;
@*/

public void withdraw(short amount)
throws NoCreditException {...}

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result == balance;
@*/

public /*@ pure @*/ short getBalance() {...}

/*@ public normal_behavior
@ requires p != null && p != this
@ assignable balance;
@ ensures balance == p.getBalance();
@*/

public void transfer(Purse p) {...}

/*@ public normal_behavior
@ requires amount >= 0;
@ assignable balance;
@ ensures
@ balance == \old(balance) + amount;
@*/

public void credit(short amount) {...}

}

class LimitedPurse extends Purse {

//@ invariant balance <= max_amount;
//@ constraint \not_modified(max_amount);
static short max_amount = 10000;

/*@ public normal_behavior
@ requires b >= 0 && b <= max_amount;
@ assignable balance;
@ ensures balance == b;
@*/

public LimitedPurse(short b) { ... }

/*@ also
@ public normal_behavior
@ requires
@ max_amount - balance >= amount
@ && amount >= 0;
@ assignable balance;
@ ensures
@ balance==\old(balance)+amount;
@*/

public void credit(short amount) { ... }

}

Fig. 2. JML specification of a simplified Purse with inheritance

W (X). The ensures and signals clause are both used to express the post-
conditions established after the execution of the method. The ensures clause
describes the normal postcondition Q(X ,X ′,Param, result), established when
the method does not throw any exception during its execution. The signals
clauses describes the exceptional postconditions Ri(X ,X ′,Param), which are es-
tablished when the specified exception is thrown by the method. The method
specification clauses may involve method parameters, with the restriction that
they should not be modified by the method. Indeed, the evaluation of method
parameters in the postconditions systematically refers to their before value, with-
out having to use the \old keyword.

JML also introduces new kind of modifiers, the most interesting being the
notion of purity applied to a method. A pure method is a method that does not
modify any class attribute. Only the pure methods may be called within JML
predicates, in order to prevent from side-effects.

2.2 An Example of JML Specification

The example presented in Fig. 2 specifies a simplified electronic purse. The Purse
class describes a basic purse, managing only one attribute named balance rep-

438 F. Bouquet, F. Dadeau, and J. Groslambert

resenting the amount of money available in the considered purse. A constructor
creates an instance of Purse and initializes its balance. The credit(short)
method is used to add money to the purse, whereas the withdraw(short)
method removes money from the purse. Notice that the latter may possibly throw
an exception named NoCreditException where there is not enough money in the
purse. A pure method named getBalance() returns the value of the balance,
without modifying any class attribute. Finally, the transfer(Purse) method
makes it possible to transfer the amount contained in the purse in parameter
into the current purse.

In order to illustrate the notion of inheritance in JML, we describe the
specification of the LimitedPurse class, which extends the previously de-
scribed Purse class, by introducing a limitation to the amount contained in
the purse. Therefore, this specification inherits the balance attribute and
invariant clause from class Purse. It also inherits the withdraw(short),
getBalance() and transfer(Purse) method and their method specifications,
since these methods are not redefined in the subclass. The credit(short)
method is redefined so that the addition of the amount to the balance does
not exceed a maximal value. The invariant is enriched to specify that the
balance should not exceed the maximum defined by the max_amount static
attribute.

3 Expressing Java/JML Classes with B Machines

The expression of objects in B has already been studied with UML class dia-
grams [LP02]. The main difference between expressing JML classes and UML
classes resides in the interactions between objects. In UML, they are defined
through associations, which create a link between classes. Thus, UML classes
only contain data that are not typed as objects, since associations exists, and
only built-in types are expressed inside UML classes. This makes it possible to
express each UML class within a different B machine, and to describe the associ-
ations within a specific machine. In Java/JML, object interactions are described
through object-typed attributes. Unfortunately, the B method does not support
cyclic references in the machine inclusions, and therefore, it is not possible to
declare one machine per Java class, and to use machine inclusion to reference
and modify another class’ attributes. Indeed, this would induce a too strong
restriction on our framework.

The representation of JML classes is thus done through one single machine,
in addition to an independent machine destined to handle global items.

This section defines the translation of Java/JML class structures in B. First,
we define the heap and instances management in a global machine. Second, we
define the expression of classes and objects with a B machine. Then we describe
the translation of class attributes, and finally, we present how instance creation
is realized within our representation.

Checking JML Specifications with B Machines 439

MACHINE
global

SETS
EXCEPTIONS; INSTANCES

CONSTANTS
null, no_exception

PROPERTIES
null ∈ INSTANCES ∧
no_exception ∈ EXCEPTIONS

VARIABLES
exception, instances, diverges

INVARIANT
exception ∈ EXCEPTIONS ∧
instances ⊆ INSTANCES ∧
null �∈ instances ∧ diverges : BOOL

INITIALISATION
exception := no_exception ‖
instances := ∅ ‖ diverges := FALSE

OPERATIONS
diverge =̂

PRE diverges = FALSE
THEN diverges := TRUE
END;

throw(exc) =̂
PRE exc ∈ EXCEPTIONS ∧

exception = no_exception ∧
exception �= exc

THEN exception := exc
END;

catch(exc) =̂
PRE exception �= no_exception ∧

exc = exception
THEN exception := no_exception
END;

new(inst set) =̂
PRE inst set ⊆ INSTANCES - instances

∧ inst set �= ∅
∧ null /∈ inst set

THEN
instances := instances ∪ inst set

END
END

Fig. 3. The global abstract machine

3.1 One Machine to Rule Them All...

In order to express JML specification functionalities, we have identified three
different Java mechanisms, which are not related to classes but to the language
itself. Therefore, we manage these mechanisms within a specific machine named
global, which is independent from the JML specifications. The code of the
global machine is given in Fig. 3.

The first mechanism is the object management. An abstract representation
of the heap is handled by a B abstract set of addresses named INSTANCES. In
addition, we consider a variable, named instances, subset of INSTANCES des-
ignating the addresses that are used in the heap. We also consider a constant
named null, representing a null pointer, and we specify that null should not
belong to the set of object-assigned addresses.

The second Java mechanism is the management of exceptions, which may
be thrown during the execution of methods, but which may also be caught to
continue the execution of the program. Exceptions described in the specifica-
tions are referenced in an abstract set, named EXCEPTIONS. This set contains
an additional constant, named no_exception to express that no exception has
been thrown. A variable named exception specifies which exception is currently
thrown. Two operations represent the throwing or the catching of exceptions.

The last mechanism to consider is the divergence of method, which indicates
whether an executed method may terminate or not. In this case, the system is
locked and no more methods may be executed. We define a boolean variable
named diverges specifying whether or not the system is executing a method
that loops forever. A corresponding operation makes it possible to modify this
variable during a method execution.

440 F. Bouquet, F. Dadeau, and J. Groslambert

3.2 Classes and Objects Representation

On the same principle as an UML to B translation, we need to consider the
Java classes used as a whole set of classes. Therefore, we start with a gather-
ing of all the JML classes referenced from the considered specification. For the
reasons previously explained, we have to express all the classes within a single
B machine. This machine includes the global machine. In order to avoid any
identifier names conflicts, we prefix the identifiers extracted from the class by
b_ClassName_ to obtain distinct B identifiers, where ClassName is the name of
the class. On the same principle, we prefix by b_ClassName the variables we
introduce. For each class, a set variable, subset of the abstract addresses set,
named b_ClassNameInstances represents the objects that have already been
created. In order to be able to express JML history constraints, we need to
represent the system state preceding the current state. Thus, we duplicate the
variables designating the instances, since the creation of an instance induces a
difference between the set of instances before and after the constructor invoca-
tion. Since we do not consider the garbage collector which retrieves the unused
addresses, we consider that the set of instances in the previous state is a subset
of the current set of instances.

In addition, we declare constants to represent each exception that may be
thrown in the JML specification.

Example 1 (Illustration of the Classes Structures). We illustrate the expression
of class structures with our example. Considering the Java/JML classes Purse
and LimitedPurse, described in Fig.2, the corresponding part of the B machine
concerning class translation and instances management is the following:

MACHINE
system

INCLUDES
global

CONSTANTS
exc NoCreditException

PROPERTIES
exc NoCreditException ∈ EXCEPTIONS ∧ exc NoCreditException �= no exception

VARIABLES
b PurseInstances, b Purse oldInstances
b LimitedPurseInstances, b LimitedPurse oldInstances

INVARIANT
b PurseInstances ⊆ Instances ∧ b Purse oldInstances ⊆ b PurseInstances ∧
b LimitedPurseInstances ⊆ Instances ∧
b LimitedPurse oldInstances ⊆ b LimitedPurseInstances ∧ . . .

INITIALISATION
b PurseInstances,b LimitedPurseInstances := ∅,∅ ‖
b Purse oldInstances,b LimitedPurse oldInstances := ∅,∅ ‖ . . .

3.3 Types Translation and Attributes Representation

Most of the Java types can be expressed with integers only. This is the case
of the integers types (such as byte, short, int and long). Distinction is made
between all these types by specifying their range of values in the machine invari-
ant. Restrictions are put onto the long type, whose range of value may exceed
the maximal and minimal integer value of the verification tools. Characters are

Checking JML Specifications with B Machines 441

Type Range of values
byte -128..127
short -32768..32767
int -2147483648..2147483647
char 0..65535
Object of class C b_CInstances ∪ {null}
Type[]. . .[] NAT &→ (. . . (NAT &→ Range(Type)). . .)

Fig. 4. Range of values for supported types

expressed by their unsigned short value. Floating types (float and double) are
prohibited since they cannot be expressed in B notation.

Object references are typed as addresses, element from the set of created ob-
jects of the corresponding class/machine, which is itself a subset of the common
INSTANCES set. Moreover object references may be null. This way, we simulate
the principle of aliasing, since several references can be made onto the same
object.

Arrays are also managed and considered as a partial function from naturals
to the corresponding type values.

Figure 4 presents the Range function that is used to compute the range of
values for each type.

We express class attributes using machine variables, which are declared, typed
and initialized in the corresponding B machine clauses. Depending on the static
modifier of the attribute, we may have two different cases. Either the attribute is
non-static and the variable is typed as a total function mapping created instances
to their corresponding value. Otherwise, if the attribute is static –it has the same
value for all the class instances– its value does not depend of any instance, and
it can directly be typed.

Since we both need before and after values of the class attributes in order
to express history constraints, we duplicate each attribute to keep the value in
the previous state. Inspired from the principle of JML, we distinguish before
values by prefixing the variable name by old_. In the rest of the paper, this set
is designated by XBold .

Proposition 1 (Expression of Class Attributes). Let att1 be a non-static
attribute from class C1 whose Java type is T1 and whose initial value is val1,
and let att2 be a static attribute from class C2 whose Java type is T2 and whose
initial value is val2. We assume that T1 and T2 are supported and we define the
representation of att1 and att2 in a B machine as follows.

VARIABLES
. . . b C1 att1, b C1 old att1, b C2 att2, b C2 old att2

INVARIANT
. . . b C1 att1 ∈ b C1Instances → Range(T1) ∧

b C1 old att1 ∈ b C1 oldInstances → Range(T1) ∧
b C2 att2 ∈ Range(T2) ∧ b C2 old att2 ∈ Range(T2)

INITIALISATION
. . . b C2 att2, b C2 old att2 := val2,val2

END

442 F. Bouquet, F. Dadeau, and J. Groslambert

Unlike the non-static attributes, which are initialized at the creation of an
instance, the static attribute values are directly assigned in the INITIALISATION
clause. Thus, Java expressions such as C2.att2 can be evaluated without having
to create an instance.

Example 2 (Attributes Expression). Considering the example in figure 2, the
non-static attribute balance of class Purse, and the static attribute max_amount
of class LimitedPurse are expressed in the B machine as follows.

VARIABLES
. . . b Purse balance, b Purse old balance,

b LimitedPurse max amount, b LimitedPurse old max amount, . . .
INVARIANT

. . . b Purse balance ∈ b PurseInstances → -32768..32767 ∧
b Purse old balance ∈ b Purse oldInstances → -32768..32767 ∧
b LimitedPurse max amount ∈ -32768..32767 ∧
b LimitedPurse old max amount ∈ -32768..32767 ∧ . . .

INITIALISATION
. . . b LimitedPurse max amount, b LimitedPurse old max amount := 10000, 10000 . . .

END

3.4 Instance Creation

In the semantics of Java [GJS00], it is possible to express initial values of class
attributes by two different ways - either the value is specified in the attribute
declaration, or it is assigned by the constructor. The latter overrides any value
given at the declaration. If no value has been defined in the attribute declaration
and if the constructor does not assign a value to the attribute, a default value
is substituted - either 0 for numerical-derived types, or null for object types.

In the JML specifications, we have the possibility to know which attributes
are affected by the execution of a method by consulting the assignable clause.
Thus, we deduce which fields are assigned with an initial value given at the dec-
laration. The expression of the constructor is based on the method specifications
expressions. The following example presents a glimpse of this technique, detailed
in Section 4.2.

Example 3 (Constructor representation). In the class Purse, the B operation
b_Purse_constructorPurse_short representing the constructor Purse(short),
is described as follows. The precondition of the operation is used to firstly type
the parameters and secondly to express the JML precondition. Notice that the
operation requires that no diverging method is being executed, and that no
exceptions have been thrown unless they have been previously caught.

b Purse constructorPurse short(this, b amount) =̂
PRE

this ∈ INSTANCES - instances ∧ this �= null ∧ b amount ∈ -32768..32767 ∧
exception = no exception ∧ diverges = FALSE ∧ b amount ≥ 0

THEN
ANY assigned balance WHERE

assigned balance ∈ -32768..32767 ∧ assigned balance = b amount
THEN

new({this}) ‖ b PurseInstances := b PurseInstances ∪ {this} ‖
b Purse balance := b Purse balance ∪ {this �→ assigned balance}

END
‖ b Purse oldInstances := b PurseInstances
‖ b Purse old balance := b Purse balance

END

Checking JML Specifications with B Machines 443

Notice that this operation realizes a call to the new operation of the global
machine to register the newly created instance.

4 Expressing JML Specifications in a B Machine

This section presents the representation the JML specifications, i.e., the expres-
sion of the invariant, the history constraints, and the method specification which
describe the behavior of the Java method, composed of method specification
clauses given in Fig. 1.

In this section, we first describe the invariant and history constraints expres-
sion within our framework. Then, we describe the expression of the pre- and
postconditions of the method specification clauses, before describing how more
exotic clauses such as when and diverges are expressed in our framework. Fi-
nally, we present how to express the pure method calls, which may be used to
write JML predicates.

For this section and the followings, we assume we have a function �−�B
which traduces first order JML predicates into B first order predicates inside
our framework. This function traduces syntacticly all JML operators into B op-
erators, and replaces all the JML variables – including JML pre-state variables–
by their corresponding B variables, as explained in Section 3.

4.1 Invariant and History Constraints Expression in B

In order to check invariant and history constraints, we express them both within
the machine INVARIANT clause. These properties depend on the instances, and
therefore their expression has to be prefixed by an universal quantification on
the created instances of the considered class.

Proposition 2 (Expression of the JML Invariant). Let I (X) be the predi-
cate of the JML invariant of class C . The expression of I (X) in the B machine
INVARIANT clause is the following.

∀ xxinv .(xxinv ∈ b CInstances ⇒ �I �B (XB (xxinv))

Notice that the quantified variable representing the instances, is suffixed with
inv to express that this predicate corresponds to the JML invariant of the source
specification.

Example 4 (Invariant of the Purse Class). Considering the example of Fig. 2, the
expression of the class invariant adds the following predicate to the INVARIANT
clause.

INVARIANT
. . . ∧ ∀ xx inv . (xx inv ∈ b PurseInstances ⇒ b Purse balance(xx inv) ≥ 0)

Contrary to the JML class invariant which only applies on a single state, the
history constraints are expressed with both current and previous state. Therefore

444 F. Bouquet, F. Dadeau, and J. Groslambert

we have introduced in the JML attributes representation, a copy of previous state
value of each attribute. Thus, we are able to express the JML history constraints
within the INVARIANT clause of the B machine.

Proposition 3 (Expression of the JML History Constraints). Let
H (Xold ,X) be the predicate of the JML history constraint of class C . The ex-
pression of H (Xold ,X) in the B machine INVARIANT clause is the following.

∀ xxhc .(xxhc ∈ b C oldInstances ⇒ �H �B (XBold (xxhc),XB (xxhc))

Syntactically, when translating an history constraint, we replace all attributes
of the predicate in the scope of a \old symbol by the corresponding variables of
the B set XBold . This set represents the values of the attributes in the previous
state of the execution. An history constraint does not have to hold after the
call of the constructor. Indeed, there is no previous state for the instance, so
the constraint can not be evaluated. Thus, the predicate representing the his-
tory constraints is quantified on the instances that were already created in the
previous state.

Example 5 (History Constraints of the LimitedPurse Class). Considering the
example of figure 2, the expression of the history constraints adds the following
predicate to the INVARIANT clause.

INVARIANT
. . . ∧ ∀ xx hc . (xx hc ∈ b LimitedPurse oldInstances ⇒

b LimitedPurse old max amount = b LimitedPurse max amount)

4.2 Method Specification Expression

JML methods makes it possible to change the value of the private attributes.
Therefore, we describe a translation scheme for each method.

Proposition 4 (Expressing a JML Method in B).A JMLnon-static method
is expressed as a B operation, which takes as an input parameter named this, which
is the instance to which the method is applied. On the contrary, a JML static method
does not need such an input parameter. Each method parameter is expressed as an
operation input parameter. If the method is non-void, an output parameter named
result is used to describe the return value.

The main difficulty is to express a generalized substitution starting from a
predicate which holds after the execution of the method. In order to help us in
this task, we take into account the assignable indicating which attributes are
modified by the method. The idea of the translation described hereafter is to
introduce local variables in the substitution that will represent the values of the
attributes in the after state. These variables are constrained so that the post-
condition (normal or exceptional) established by the method execution holds.
After that, the attributes of the assignable clause are assigned with these new
values.

Checking JML Specifications with B Machines 445

We assume that the method specifications are composed by the clauses de-
scribed in Fig. 1. The unspecified clauses are considered as their default value,
i.e., true for requires, ensures and when, false for diverges and signals
and \everything for assignable.

Proposition 5 (Expressing Pre- and Postconditions). Given a JML spec-
ification of a non-static method m of class C . This method and its specification
are equivalent to the following B operation b C m TypeParamB :

result ← b C m TypeParamB(this,ParamB) =
PRE �P�B(XB,ParamB) ∧ this ∈ b CInstances

∧ Type(ParamB) ∧ exception = no exception ∧ diverges = FALSE
THEN

CHOICE
ANY LA, LA, lr
WHERE Type(LA) ∧ Type(LA) ∧ Type(lr) ∧ �Q�B (XB (this), LA ∪ LA, ParamB , lr)
THEN AB (this) := LA ‖ result := lr
END

OR
ANY LA, LA, lr
WHERE Type(LA) ∧ Type(LA) ∧ Type(lr) ∧ �R1�B (XB (this), LA ∪ LA, ParamB , lr)
THEN AB (this):=LA ‖ throw(E1) ‖ result := lr
END

OR ... OR
ANY LA, LA, lr
WHERE Type(LA) ∧ Type(LA) ∧ Type(lr) ∧ �Rn�B (XB (this), LA ∪ LA, ParamB , lr)
THEN AB (this):=LA ‖ throw(En) ‖ result := lr
END

END
‖ Vold := V

END

Where LA is the set of local variables representing the after values of the
assignable attributes, LA is the complementary to LA in XB (this), lr is a lo-
cal variable representing the returned value, V is the set of all the B variables
that exist in an old_ version, and Type is a function which returns the typing
predicate of a variable according to the definitions given in 3.1.

Following the semantics of JML, our translation can be informally justified
as follows:

• The precondition P must hold when the method is invoked. We represent this
by a precondition on an operation. We strengthen this precondition coming
from the JML specification by four other predicates. First the operation
assume that the variable this, which represents the current instance, belongs
to the set of the created instances. Second, the operation also check the type
of the parameters. Third, we check that no exception is being thrown. Finally,
we ensure that no other method is diverging.

• If the method terminates, it is either normally or exceptionally. This is mod-
eled this by a non-deterministic choice between a substitution which implies
a normal termination and substitutions which imply exceptional termina-
tions.

• Only the variables included in the assignable clause may change during the
invocation of the method, this is the frame condition in JML. That is why in

446 F. Bouquet, F. Dadeau, and J. Groslambert

our model, only the variables included in set A are substituted. Thus, only
these variables may have changed after the termination of the operation.
LA is introduced to avoid errors which may appear when the assignable
clause is not complete (e.g. unchanged attributes may be expressed within
the postcondition predicates, but may not appear in the assignable clause).
This makes it possible to express the after values for all the attributes within
the B predicate representing the postconditions.

• When the method terminates normally, the postconditions introduced by
the keyword ensures must hold. We represent that by a bounded choice
of local variables which have the same type as the modifiable variables and
which establish the postconditions Q . The assignable variables of the cur-
rent instance – denoted by the parameter this – are assigned with their
corresponding local variable.

• We represent the exceptional termination of the method by the same kind
of substitution. To represent an exceptional postcondition, we assign to the
exceptional variable the type of the generated exception by calling the throw
operation located in the global machine.

• As we keep the values of fields and instances (the V set) in the previous
state, we update the old values after each operation.

Example 6 (Translation of a Method into B). Considering the JML method
credit(short) located in the Purse class described in Fig. 2. The corresponding
B operation is the following.

b Purse credit short(this,b amount) =̂
PRE

this ∈ b PurseInstances ∧ b amount ∈ -32768..32767 ∧
b amount ≥ 0 ∧ exception = no exception ∧ diverges = FALSE

THEN
ANY assigned balance WHERE

assigned balance ∈ -32768..32767 ∧
assigned balance = (b Purse balance(this)+b amount)

THEN
b Purse balance(this) := assigned balance

END
‖ . . . /* update of the old variables */

END

Notice that the translation of the JML precondition amount >= 0 appears
in the precondition of the B operation. Moreover, only variables specified in the
assignable clause are updated. The postcondition balance == \old(balance)
+ amount is now expressed by the ANY substitution. Moreover, the translation
of the Q predicate appears in the WHERE clause.

4.3 Methods Call

However JML predicates and B predicates are both expressed in first-order
logic, the translation is not a simple operator translation since JML allows
pure method calls – without side-effects – into predicates. We propose a method
to translate these predicate in cases without recursive structure in calls of
methods.

Checking JML Specifications with B Machines 447

The idea is to introduce local variables to designate the return value of the
method call and the input parameters. The predicate corresponding to the nor-
mal postcondition is locally rewritten, and substitutions are performed on it in
order to instantiate the method parameters with their value as the method is
called. In the case of method calls in postconditions, the new local variables are
introduced within an ANY substitution, otherwise, they are introduced using an
existential quantifier.

Example 7 (Postcondition of the Transfer Method). The predicate of the post-
condition of the transfer method is balance == p.getBalance(). It includes
a call to the pure getBalance() method, which is translated as follows.

ANY assigned balance, res getBalance WHERE
assigned balance ∈ -32768..32767 ∧ res getBalance ∈ -32768..32767 ∧
res getBalance = b Purse balance(b p) ∧ assigned balance = res getBalance

THEN
b Purse balance(this) := assigned balance

END

As explained above, a new local variable res getBalance is introduced. In the
WHERE clause, notice that res getBalance is typed and assigned balance is
equal to this new variable representing the result of p.getBalance(). The ex-
pression res getBalance = b Purse balance(b p), is the translation of the
postcondition predicate of the method getBalance().

4.4 Expressing the Diverges Clause

When the diverges clause of a method is satisfied on the state preceding the
invocation of a method, it means that this method may diverges, i.e., loops
forever. To model a diverging state, we have introduced a diverges B variable
in our model (see 3.1). In the method model, we have to take care that an
operation representing a JML method cannot be called when the machine is in
a diverging state. To do that, we strengthen all precondition of the operation
modeling a method by the predicate diverges = FALSE.

Moreover, we modify the model of a method to introduce the behavior of the
method, which may diverge. This is modeled as follows.

PRE �P�B (XB,ParamB) ∧ this ∈ b CInstances ∧ Type(ParamB) ∧
exception = no exception ∧ diverges = FALSE

THEN
IF �D�B(XB,ParamB) THEN

CHOICE
diverge

OR
ANY LA, LA, lr
WHERE ... ELSE

CHOICE
ANY LA, LA, lr
WHERE ... END

‖ . . . /* update of the old variables */
END

This introduces an conditional choice in the B operation. If the D predicate is
satisfied, then we have a nondeterministic choice between termination – the ANY

448 F. Bouquet, F. Dadeau, and J. Groslambert

substitutions introduced in Section 4.2 – and non-termination – the diverges
variable is set to TRUE by calling the diverge operation located in the global
machine.

4.5 Expressing the When Clause

To model the JML when clause of a method m, we introduce a new variable
m wait which has the type b CInstances→ BOOL. This variable indicates that
the method m is delayed. This variable is initialized as FALSE when an instance
is created.

In the translation framework, we represent the method m by an operation
b C m TypeParamB(this,ParamB) and an event b C m when as follows.

b C m TypeParamB(this,ParamB) =̂ b C m when =̂
PRE �P�B(XB,Param) ∧ ANY xx WHERE

this ∈ b CInstances ∧ xx ∈ INSTANCES ∧
Type(ParamB) ∧ m wait(xx) = TRUE ∧ �W �B(XB)
exception = no exception ∧ THEN
diverges = FALSE ANY LA, LA WHERE ...

THEN THEN AB (xx) := LA ‖
m wait(this) := TRUE m wait(this) = FALSE

END END
‖ . . . /* update of the old variables */

END

Informally, the action of the operation representing m does not establish
the postcondition of m but sets the variable m wait to TRUE for the current
instance. The B event we have introduced, has as a guard the translation of
the JML W predicate and the predicate m wait = TRUE. It means that the B
event is automatically executed when its guard is true. This leads to the same
results as the JML when clause. Of course, the action of the event b C m when
establishes the postcondition of m.

5 Expressing Inheritance

This section details how inheritance is handled within our framework. First,
we describe the handling of instances and attributes. Second, we present the
expression of method inheritance.

5.1 Instances and Attributes

According to the concept of inheritance, the instances of subclasses are also
instances of the superclass. This property is added to the invariant as described
below.

Proposition 6 (Specifying Subclass Instances). Let C be a Java class, and
CSub be a Java class extending C . The following code is added to the invariant.

b CSubInstances ⊆ b CInstances

Checking JML Specifications with B Machines 449

In the Java/JML semantics, inheritance can be seen as a recopy of the su-
perclass fields -attributes and specifications- within the subclasses. In practice,
we do not recopy fields in the subclasses. Attributes are named with respect to
the class in which they are declared. Since all the classes are declared within
the same machine, the fields can be accessed from any operation representing a
method from any class.

When a subclass instance is created, the corresponding B operation of our
framework adds the instance to the set of the class instances, in addition to
adding the instance to the set of the superclass instances.

Example 8. Considering the LimitedPurse class described in figure 2, the B
operation representing the constructor LimitedPurse(amount) is the following.

b Purse constructorLimitedPurse short(this, b amount) =̂
PRE

this ∈ INSTANCES - instances ∧ this �= null ∧ b amount ∈ -32768..32767 ∧
exception = no exception ∧ diverges = FALSE ∧
b LimitedPurse max amount = b LimitedPurse old max amount ∧
b amount ≥ 0 ∧ b amount ≤ b LimitedPurse max amount

THEN
ANY assigned balance WHERE

assigned balance ∈ -32768..32767 ∧ assigned balance = b amount
THEN

new({this}) ‖ b PurseInstances := b PurseInstances ∪ {this} ‖
b LimitedPurseInstances := b LimitedPurseInstances ∪ {this} ‖
b Purse balance := b Purse balance ∪ {this �→ assigned balance}

END
‖ . . . /* update of the old variables */

END

5.2 Method Inheritance

In the Java/JML semantics, inheritance of method can be seen either as a new
method if the method of the subclass overrides the method of the superclass, or
a recopy of the superclass method within the subclasses otherwise.

Whereas the second case does not lead to a recopy of the corresponding B
operations, as for the attributes, the first case is reduced to the introduction of
a new operation, named b CSub m TypeParamB , specifying the new method
m as described in 4.2.
Example 9 (Translation of an inherited method). Considering the example de-
scribed in Fig. 2, the redefined method credit(short) in the LimitedPurse
class is expressed as follows.

b LimitedPurse credit short(this,b amount) =̂
PRE

this ∈ b LimitedPurseInstances ∧ b amount ∈ -32768..32767 ∧
b amount ≥ 0 ∧ amount ≤ b LimitedPurse max amount ∧ exception = no exception

THEN
ANY assigned balance WHERE

assigned balance = -32768..32767 ∧
assigned balance = (b Purse balance(this)+b amount)

THEN
b Purse balance(this) := assigned balance

END
‖ . . . /* update of the old variables */

END

450 F. Bouquet, F. Dadeau, and J. Groslambert

This operation used both inherited fields like b Purse balance and fields of
the subclass like b LimitedPurse max amount.

To disallow the call of a method of the superclass overridden in the subclass on
a instance of the subclass, we strengthen the precondition of the operation rep-
resenting such a method by the predicate this /∈ b CSubInstances. For exam-
ple, b Purse credit short has the precondition this ∈ b PurseInstances
- b LimitedPurseInstances instead of this ∈ b PurseInstances.

6 Experimental Results

This section presents the experimental results we obtained using our translation
on the example presented in Fig. 2. These experiments were realized with the
AtelierB 3.6.

6.1 From Failed B Proof Obligations to JML Model Errors

If the prover fails to establish the validity of the invariant preservation, several
clues may be used to indicate which part of the original JML invariant is re-
sponsible.

In order to illustrate this principle, an error is introduced within the JML
invariant of class Purse, specifying balance > 0 instead of balance >= 0. The
rest of the JML specification is left unchanged. The AtelierB fails to prove
the four operations corresponding to the four JML methods Purse(short),
withdraw(short), credit(short), and LimitedPurse(short). Each time, the
message displayed is the same:

"‘Check that the invariant (!xx_inv.(xx_inv: b_PurseInstances => b_Purse_balance(xx_inv)>0))
is preserved by the operation - ref ...’" &
=>
1<=(b_Purse_balance\/{this|->assigned_balance})(xx_inv)

Using this error message and remarking the xx_inv constant used in the
expression, we deduce that the error comes from the JML invariant clause. The
failing B invariant can be easily understood, and transposed back into the JML
syntax to identify which part of the JML invariant cannot be checked.

In this case, there are two possibilities to correct the error, either to weaken
the invariant, or to strengthen the preconditions of the operations.

6.2 Detecting a Tricky Error

The experienced readers may have surely noticed that an error has been –
voluntarily– introduced within the JML specification of the LimitedPurse. In-
deed, the attempts for proving the method transfer(Purse) fails, indicating an
error induced by the invariant. The corresponding error message is the following.

Checking JML Specifications with B Machines 451

"‘Check that the invariant
(!xx_inv.(xx_inv: b_LimitedPurseInstances => b_Purse_balance(xx_inv)>=0

& b_Purse_balance(xx_inv)<=b_LimitedPurse_max_amount))
is preserved by the operation - ref ...’" &

=>
(b_Purse_balance<+{this|->assigned_balance})(xx_inv)<=b_LimitedPurse_max_amount

This error concerns thepreservationof the invariant of the JML LimitedPurse
class by the execution of the transfer method. The prover claims that the appli-
cation of the method may violate the invariant of class LimitedPurse . . . which
is effectively true! The reason is the following. Since the transfer method is
not redefined in the LimitedPurse class, it may be applied to an instance of
Purse and LimitedPurse. It is then possible for the method to be invoked on
an instance of LimitedPurse with a Purse as parameter. Given that no upper
limitation on the balance attribute in the Purse class is defined, there is no guar-
antee that the transferred balance is less or equal to max_amount. To correct this
error, the method transfer(Purse) and its specification have to be redefined
in the subclass.

After the correction of this error, the resulting B machine generates 72 non-
obvious proof obligations, which are all proved by the AtelierB in Automatic
(force 1) mode.

7 Related Work

The expression of object concepts in the B notation have already been studied
in the past. A large majority of these works used UML/OCL as an object-
oriented modeling language, as in [LP02]. At our knowledge, no investigations
have been proposed around JML, or any object-oriented language using pre- and
postconditions.

Several tools work on JML annotations. Krakatoa [MPMU04] has been devel-
oped to generate proof obligations to be checked with interactive provers. This
tool is used to check that a Java implementation is compliant with a JML specifi-
cation, but it does not aim at verifying the consistency of the model. The LOOP
project [HJ00] is originally exploring the Java semantics, and particularly the
object-oriented concepts. The main goal of this tool is to verify the correctness
of Java programs, using the JML annotations. As for Krakatoa, the LOOP tool
considers JML as an independent formal language.

The most related work to ours is the JACK (Java Applet Correctness Kit)
tool [BRL03], provided by Gemplus and INRIA Sophia-Antipolis. This tool per-
forms static verification of a JML model, by generating proof obligations for
different automated provers. To the best of our knowledge, it does not formalize
inheritance concept, and moreover, JACK is currently not publicly available.

Contrary to these tools which check Java code against JML, our approach
aims at considering JML specifications by themselves, and to prove class invari-
ant and history constraints preservation. As for every formal method verification,
the more informations the JML model contains, the more accurate results we
get. Indeed, it is better to force a JML specification to be as precise as possible –

452 F. Bouquet, F. Dadeau, and J. Groslambert

a good practice for any model-based approach, whatever the purpose is: checking
model properties or checking implementation.

8 Conclusion and Future Work

In this paper1, we have described an approach for expressing JML specifica-
tions with B abstract machines, and therefore use all the B verification tools
to prove the model described in the JML specification. We have shown a trans-
lation scheme for Java classes and object concepts, such as inheritance, and
we have proposed a mechanism for expressing JML before-after predicates in
postconditions using B generalized substitutions.

We have also illustrated how our translation provides human-readable B spec-
ifications, whose unchecked proof obligations messages may easily be transposed
back into the original JML specifications to provide an assistance for the writ-
ing of correct JML models. Moreover, this representation can also be used for
object-oriented specification languages expressed with before-after predicates.

Our work for the future is the following. First, we plan to implement a com-
piler to automatically generate B machines that may later on be checked with
automatic proof tools for B. This implementation can be based on the parsing
technology of the JML-Testing-Tools specification animator [BDLU05] which
already converts JML annotations into a B-like language.

Second, according to the principles described by Back et al. [BMvW00], we
would propose to use the B refinement to verify correct object substitutability.

Finally, based on the translation exposed in this paper, we plan to develop the
translation of JML specifications into B event systems. This will make it possible
to check temporal properties and especially liveness properties [BGH+04].

References

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, 1996.

[B4F03] The B4free web site. http://www.b4free.com, 2003.
[BCC+03] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M.

Leino, and E. Poll. An overview of JML tools and applications. In Th.
Arts and W. Fokkink, editors, Eighth International Workshop on Formal
Methods for Industrial Critical Systems (FMICS 03), volume 80 of ENTCS,
pages 73–89. Elsevier, 2003.

[BDLU05] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. JML-Testing-Tools: a
Symbolic Animator for JML Specifications using CLP. In Proceedings of
11th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, Tool session (TACAS’05), Lecture Notes in Computer Science,
Edinburgh, United Kingdom, April 2005. Springer-Verlag. To appear.

1 An extended version of this paper is available at http://lifc.univ-fcomte.fr/publis/

Checking JML Specifications with B Machines 453

[BGH+04] F. Bellegarde, J. Groslambert, M. Huisman, O. Kouchnarenko, and J. Jul-
liand. Verification of liveness properties with JML. Technical Report
RR-5331, INRIA, 2004.

[BMvW00] R-J. Back, A. Mikhajlova, and J. von Wright. Class refinement as se-
mantics of correct object substitutability. Formal Aspects of Computing,
12:18–40, 2000.

[BRL03] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-
oriented approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME
2003: Formal Methods: International Symposium of Formal Methods Eu-
rope, volume 2805 of Lecture Notes in Computer Science, pages 422–439.
Springer-Verlag, 2003.

[CDD+03] J.-F. Couchot, F. Dadeau, D. Déharbe, A. Giorgetti, and S. Ranise. Prov-
ing and debugging set-based specifications. In Electronic Notes in Theo-
retical Computer Science, proceedings of the Sixth Brazilian Workshop on
Formal Methods (WMF’03), volume 95, pages 189–208, May 2003.

[Cle01] Clearsy, Europarc de Pichaury 13856 Aix-en-Provence Cedex 3 - France.
Atelier B Technical Support version 3, May 2001.
http://www.atelierb.societe.com.

[GJS00] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java
Series. Sun Microsystems, 2000. Second edition.

[HJ00] Marieke Huisman and Bart Jacobs. Java program verification via a
Hoare logic with abrupt termination. Lecture Notes in Computer Science,
1783:284–303, 2000.

[LBR99] G.T. Leavens, A.L. Baker, and C Ruby. JML: A notation for detailed
design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Be-
havioral Specifications of Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

[LP02] R. Laleau and F. Polack. Coming and going from UML to B: a proposal
to support traceability in rigorous IS development. In Proceedings of the
International Conference on Formal Specification and Development in Z
and B (ZB’02), volume 2272 of LNCS, pages 517–534, Grenoble, France,
January 2002. Springer Verlag.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2 edition,
1997.

[MPMU04] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML. Journal of
Logic and Algebraic Programming, 58(1-2):89–106, 2004.

[NS99] D. Neilson and I.H. Sorensen. The B-Technologies: a system for computer
aided programming. B-Core (UK) Limited, Kings Piece, Harwell, Oxon,
OX11 0PA, 1999. http://www.b-core.com/btoolkit.html.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual, addison-wesley edition, 1999.

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 1998.

Including Design Guidelines in the Formal
Specification of Interfaces in Z

Judy Bowen and Steve Reeves

Department of Computer Science,
University of Waikato, New Zealand
{jab34, stever}@cs.waikato.ac.nz

Abstract. For any sort of computer system, the problems of being sure
you have asked for the right thing and then being sure you are imple-
menting the right thing are important and hard problems. For systems
with a graphical user interface there are the analogous additional prob-
lems of making sure that the interface allows any interaction that is
required, and works in a usable way. Design guidelines are used in both
the design and evaluation of user interfaces to try and ensure that the
systems we build are both usable and conform to specific requirements.
This paper discusses practical ways in which we can use formal methods
to model guidelines for interface design and then use these as a basis
for the formal proof that a specified system has the desired properties
described in the guidelines.

1 Introduction

We are familiar with the idea of formally specifying systems before we build
them and with the benefits that this brings us, such as the ability to verify
the system behaviour prior to implementation. Software engineers and formal
methods researchers have also worked on different ways of including the interface
to a system in the specification. Such works typically cover important areas
such as ensuring reachability, ensuring desired interactive behaviour and proving
temporal properties, and are typified by the abstract interactive system model
known as PIE [6], and its derivatives, as well as structure-based formalisms such
as interactors [8] [9].

While this work is comprehensive, it is generally concerned with the inter-
active nature of the interface in terms of its behaviours and properties and not
with the graphical aspect of the interface. Specification of the graphical aspect
of the interface includes not only interactive behaviour, but also issues such as
the visual or layout properties of the user interface. Considerations around lay-
out properties have included work on automatic generation and/or evaluation
of interfaces, and are often based on layout constraint rules [4] [15]. Our focus
for this paper was to find a way of including graphical interfaces as part of a
system specification in a useful and informative way, and which allowed us to
incorporate design guidelines.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 454–471, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Including Design Guidelines in the Formal Specification of Interfaces in Z 455

By useful and informative we mean that we wish to provide enough informa-
tion about the interface to allow us to be able to relate design guidelines directly
to our specification, whilst at the same time keeping our specification to a man-
ageable size so that it remains readable. We aim to show that by incorporating
design guidelines at the specification stage we will assist the designers who have
to interpret and use the guidelines when they build the interface.

We also aim to ensure that changes made to the interface during an iterative
design cycle do not cause these guidelines to become broken or forgotten at a
later stage. We use the formal specification language Z for this project as it
is a well-established language which allows us to reason about the behaviour
of a system and has a number of tried and tested methods and support tools
which allow us to perform proofs of this behaviour. We use the proof assistant
Z/EVES [17] to perform our proofs.

The first part of this paper looks at a particular way of describing graphical
user interfaces in Z, and how we integrate this into our system specification. We
then discuss design guidelines and how we can both describe them formally and
incorporate them into our specification. Next we present two examples of these
methods and show how they enable us to both refine our specification as well
as identify, and fix, potential design choice problems at the specification stage.
Finally we present our conclusions and discuss the future of this work.

2 Specifying the Interface

In formalising the Graphical User Interface (GUI) our aim was to include the
GUI specification as part of an overall system specification and describe it in a
way which would embody not only behavioural aspects but could also describe
visual aspects.

In previous research where a formal specification of an interface has been
done, it is not unusual to see the interface uncoupled from the underlying system
functionality and described separately [16]. This is true at both the specification
stage and the design stage. Consider the use of UIMS tools [7] whose purpose is
to make that distinction.

We were interested in having an entire system specification which included
both the underlying system and the GUI, not only because we believe they
are inherently connected and should be related together at the earliest possible
stage, but also because of our wish to incorporate guidelines into the specifica-
tion. When we are considering introducing the guidelines we are aware that there
are different categories of guidelines: those relating to the system functionality
as well as those relating to the interface (although our work focuses on interface
guidelines). Because of this it was important to treat the whole system as one
entity, which allows us to include guidelines of any type. If we have two separate
models which have been separately validated and verified, then once we have
completed the process of bringing the two specifications together, which may

456 J. Bowen and S. Reeves

not be a straightforward task, we have to reverify our whole system, or risk
introducing errors in the whole implementation.

Specifying user interfaces in a formal language such as Z can lead to some-
thing which is inherently much more complex than other design models. For
example paper-based designs and prototypes are relatively straightforward arte-
facts which a designer and potential future user can interact with or view with a
reasonable level of understanding and so may seem preferable to using a formal
notation. However informal prototypes can hide many problems: while they are
generally easy to interpret and can show that a GUI can do what is required,
they may also hide unwanted behaviour and do not necessarily expose underlying
problems.

Many different approaches have been taken to the specification of user in-
terfaces. Earlier work is often more focused on the interactivity and behaviour
of the interface and is concerned with interfaces in general rather than graph-
ical user interfaces specifically [10][21]. We looked at a wide range of different
methods, including model-based methods such as [13] and [11], algebraic meth-
ods such as [23] and different ways of using Z such as [12] and [5]. One major
difference from much of the other work in what we were hoping to achieve with
our interface specification was the ability to describe not only the behaviour
and interactive properties of the interface, but also visual elements. We were
mindful, however, that by incorporating visual elements and their detail into
our specification we would increase the complexity of our specification and there
were dangers that it would become simply too large and unwieldy to be of any
practical use.

We decided, therefore, to describe our interfaces at a widget level in a manner
similar to the work of Systä [22]. We use the general understanding of the term
widget to describe a physical item on an interface, such as a button or scroll-bar,
and also to include things such as windows or non-interactive items like borders
or graphical items. Our interface is described as a collection of widgets, some of
which will have a relationship with system operations, some of which will have
relationships with each other, and which will be combined to create the overall
GUI.

Note that while we talk about the GUI as a single entity, it is in reality often
made up of a number of different views which are produced in relation to the
current state of the system and events generated by user actions. A user can
move through different views and interact with different parts of the GUI either
through new primary windows, or via sub-windows such as dialogue boxes which
appear in conjunction with the primary window. We therefore consider our GUI
to be a collection, or set, of windows. Each window is itself described by its
collection of widgets.

In our overall specification, the initialisation of our system will define the
first thing we see by describing the first visible window via its widget set, and
what we can see subsequently via the operations of the system when the window
changes. We effectively map each individual view of the interface to a particular
system state.

Including Design Guidelines in the Formal Specification of Interfaces in Z 457

Part of our work has been to create a hierarchy of windows and widgets which
allows us to break down the GUI into widget categories based on their particular
behaviours. A section of this hierarchy is shown here:

– Controls
• Event Generators
• Selection Controls
• Event Responders
• Event Generators and Responders
• Entries

– Displays
• Containers
• Static

When we consider interface design guidelines we can similarly categorise them.
We therefore have guidelines that apply to all parts of the interface, guidelines
that apply to certain categories of widgets and guidelines that apply to specific
widgets only. By using the same categorisation within both the specification and
the guidelines we make it easier to decide which guidelines are applicable. Our
intention is not only to have a specification of the interface, but also to have
specifications of sets of guidelines. While there are large bodies of work which
provide a specific set of guidelines, such as the Apple Design Guidelines [1]
and GNOME interface guidelines [2], we recognise that software designers will
often make use of these in conjunction with their own in-house requirements, or
may combine several different groups of guidelines for their own purposes. Our
intention is that they specify their personal sets of guidelines which can then be
used in conjunction with the specification of their systems.

Of course in order for the specified guidelines to be useful within the system
specification we need to describe some relationship between them. The fact that
we have formally specified a set of guidelines in Z does not mean there is an
automatic link between them and a system specification. We needed to find a
way to link the two things together and make it easy for others to follow this
link. We found that having a shared vocabulary between the system specifica-
tion and the guidelines allowed us to incorporate the guidelines without having
to re-write them for each new system specification. This relies on two things:
firstly we need a standard way of describing the interface which we can re-use
across different system specifications; secondly, we need a similar standard for
describing our guidelines so that any set of guidelines suitably specified can be
used in conjunction with any system specification.

Following the work of Stepney et al. in [19] [20] we have devised a model
for interface specification which is not only widget-based but which relies on
particular conventions for naming and relating both interface items and system
operations. We extend these conventions to our guideline specifications and find
that it provides the consistent link we require. Not only does it allow us to
incorporate the guidelines into our specifications as predicates which we can later
prove or disprove, it allows us to do it at different levels of abstraction. Where we
have a high-level specification with just a notion of operations and some sort of

458 J. Bowen and S. Reeves

interface control we can relate the guidelines with a similar level of abstraction.
Similarly as we refine our specification to a more concrete description, so we
can start to incorporate more concrete guidelines. We have also found that this
notion of abstraction within the GUI specification and guidelines allows us to
use the guidelines to assist with our refinement. This is discussed further in the
next section.

3 Formalising Guidelines

Graphical user interfaces are complex systems which have a number of difficult-
to-satisfy requirements. They must not only present the user with the ability
to interact with an underlying system fully, i.e. allow the user to perform all
required actions, but they must also themselves interact with the underlying
system functionality. In addition, there are usability issues which require that the
design of the GUI enables the user to be able to interact with it in a reasonably
intuitive manner and without constant reference to manuals or help files. That
this issue of usability has turned out to be a growing area within the field of
human computer interaction (HCI) shows what a large and difficult problem it
is. The use of design guidelines is an important part of the work included in
this discipline, but one which, nevertheless, can give a substantial benefit in the
design of interfaces.

Guidelines are the product of filtering and combining the knowledge and ex-
perience gained from user-testing of interfaces over a number of years. They can
be seen as a ‘best-practice’, or ‘how-to’, which helps us in our goal of designing
better GUIs. While the use of guidelines alone does not guarantee that the GUIs
we design will be usable, they do ensure that we avoid some of the common,
known pitfalls and allow us to concentrate our user-testing efforts on finding
new and unexpected problems. As such we can consider guidelines to be addi-
tional requirements of our system, as they are properties that we expect our final
implementation to have.

Our intention was to find a way to formalise guidelines so that they could be
used in conjunction with a system specification in order to be able to prove cer-
tain desirable properties about the GUI of that system. Our hope is that the pro-
cess of formalising the guidelines will not only assist with clarifying their mean-
ing and making them unambiguous, but will also allow designers to ensure that
exactly the right set of appropriate guidelines are used in each particular case.

One early consideration was how to deal with the varying levels of abstraction
within a set of guidelines. For example, some of the guidelines may be described
in very general terms, such as:

Provide displayed feedback for all user actions [18]

or, conversely, they may be very specific, as in:

Don’t use metal buttons in dialogs. Dialogs should never use the brushed
metal look [1].

Including Design Guidelines in the Formal Specification of Interfaces in Z 459

It may appear at first glance that guidelines as general as the first one cannot
be used in any useful way within our specification. However, if we consider how
we may start by specifying a system at an abstract level and then through a
process of refinement move toward a more concrete implementation then we can
perform a similar process with the guidelines themselves. We have stated that
we provide a breakdown of widgets into a hierarchy. This can also be viewed as
a model that moves from the general to the specific in that we start with things
we identify only as controls, and then by a process of examining the desired
behaviour of the controls we get more and more specific until we can decide on a
particular widget or widget type as the correct option. If we model our guidelines
using the same widget breakdown then we have a relationship between levels of
hierarchy in our guideline specification and system specification. So when our
system specification is at an abstraction level where we are just referring to
userControls with no notion of what these may actually be, we can include the
very general guidelines such as Provide displayed feedback for all user actions in
the form of a predicate such as

∀ uc : userControl • providesFeedback

At this stage we can do nothing useful with this predicate since we cannot prove it
in any formal way, but when we begin to refine our userControls to more specific
widgets we can similarly refine this general guideline. We can give it a specific
meaning for the widgets we refine to. For example if we refine a userControl to
a Slider, we can refer to our guidelines and discover that providing feedback for
a Slider means that we must give the user a visible indication of the value as
the Slider is moved, either by providing valued tick-marks along the line of the
Slider, or by displaying a value label next to the Slider. In this way we treat the
very general level guidelines as placeholders within our specification which can
be refined to specific properties during our refinement process.

Another issue we need to consider is that the differing terminology used
within different sets of guidelines means that it could be difficult to know when
and how the guidelines should be used and it is not immediately clear when two
guidelines refer to the same type of thing.

We began by applying the same categorisation of widgets we had used in our
GUI specification work to some sample sets of guidelines, starting with sections
from the Smith and Mosier guidelines [18] and the GNOME guidelines [2]. We
wanted to see how well the widget categorisation could be applied to the levels
of abstraction within the guidelines themselves. With some adjustments to our
initial categorisation we found that it was relatively straightforward to structure
the sample guideline sets we were considering in this way. At the same time we
had begun specifying some very simple GUIs (windows with just two or three
widgets) and we used these to ensure that we used the same vocabulary in our
guideline specifications as we were using in our specification of the GUIs.

For example, at an abstract level we would describe a widget which the user
interacts with as a control. A guideline which describes a less abstract control
widget, for example one which generates an event to cause an underlying system

460 J. Bowen and S. Reeves

operation to occur, will describe that widget as an action control which is a
subset of the event generator widgets. We now had a direct relationship between
our GUI specification and our guideline specification whatever the current level
of abstraction. If our GUI specification was at a high level of abstraction and
referring only to controls then we could use the guidelines relating to all controls,
whereas a more refined specification describing, for example, binary selection
controls would use only the guidelines describing binary selection controls. By
describing and structuring our guidelines in a hierarchical manner reflecting the
widget categorisation hierarchy we have found it easy to identify the correct
parts of the guideline specification.

During the process of relating the guidelines to the specification, we found
that we could use the guidelines in two different ways. When we are trying to
refine our specification we can use the guidelines to assist us in making choices
about the sorts of widgets we should refine to. When used in this way we incor-
porate the desired properties given to us in the guidelines into our specification
directly, i.e. the way we propose the widget be described is informed by some of
the guidelines. For example, if our guidelines state that all Buttons must have
a label, then our framework for describing a Button will include an observation
called ButtonLabel, so we have satisfied this guideline by following our framework
and no further work is required. In this way some of the guidelines can become
incorporated into our specification by showing us what additional information
we need to include in our widget descriptions.

We can also include guidelines as predicates in our specification and subse-
quently try to prove that our specification has these properties during verifica-
tion. The relationship between the way we formalise the guidelines and the way
we describe the interface is what brings them together and allows us to use them
in these ways. In the next section of this paper we will provide examples of these
two uses. The examples we will be presenting in this paper may, at first read-
ing, appear trivial. They deal with very simple cases of guidelines and can be
resolved by inspection. Our purpose however in choosing these particular exam-
ples is to demonstrate the general process which we are proposing, and in order
to be able to do this within this paper it has proved necessary to choose simple
examples. It is important, therefore, when following the examples to concentrate
on the generality of the process we are presenting rather than the specifics of
the particular example.

4 Making Refinement Choices

We have discussed how using the guidelines in conjunction with a system specifi-
cation may assist us to refine the interface description into more concrete widgets.
We now present an example of this. Consider the following specification segment
which relates to a dialogue window where a user can set certain options for the
way their text is displayed in an application.

Including Design Guidelines in the Formal Specification of Interfaces in Z 461

[FONTTYPE ,FONTSTYLE]
CONTROLSTATE ::= Active | NotActive
FONTSIZE ::= Small | Medium | Large
EVENT ::= ChangeFontSizeEvent | ChangeFontTypeEvent |

ChangeFontStyleEvent | None
SELECTION ::= Selected | NotSelected
[CHAR]

TextDisplay
text : seqCHAR
fsize : FONTSIZE
ftype : FONTTYPE
fstyle : P FONTSTYLE

ChangeFontSize
ΔTextDisplay
eventValue? : FONTSIZE
event? : EVENT

event? �= ChangeFontSizeEvent ⇒ fsize ′ = fsize
event? = ChangeFontSizeEvent ⇒ fsize ′ = eventValue?
text ′ = text
ftype ′ = ftype
fstyle ′ = fstyle

Before we can describe the type of control that will cause the ChangeFontSize
operation to occur we need to consider the behaviour that we wish the control
to exhibit, and from this infer the type of the control using our widget hierarchy.
In this example there are three possible font sizes which we describe as Small,
Medium or Large. We want the user to be able to change the size of the text font
by selecting a new value from the control, so we will require a selection control.
Next we consider whether it is a binary selection control or a selection control
with a value. Given that there are a number of different choices the user can
make we decide on a selection control with a value. Finally we need to consider
whether the control will produce a single value when activated or whether it will
produce several values. In the case of setting the text to a font size we need to
consider only a single value at any given time, so we can refine our choice to
that of a single-value selection control. We describe this by first considering each
individual selection choice as a binary choice control, and then grouping these
together (this mirrors the actual way in which we create, for example, button
groups when we design an interface).

SmallSizeSelector
sselected : SELECTION

462 J. Bowen and S. Reeves

MediumSizeSelector
mselected : SELECTION

LargeSizeSelector
lselected : SELECTION

ChangeFontSizeControl
SmallSizeSelector
MediumSizeSelector
LargeSizeSelector
cstate : CONTROLSTATE
event ! : EVENT
eventValue! : FONTSIZE

sselected = Selected ∧ cstate = Active ⇒
event ! = ChangeFontSizeEvent ∧ eventValue! = Small

mselected = Selected ∧ cstate = Active ⇒
event ! = ChangeFontSizeEvent ∧ eventValue! = Medium

lselected = Selected ∧ cstate = Active ⇒
event ! = ChangeFontSizeEvent ∧ eventValue! = Large

sselected = Selected ⇔ mselected = NotSelected ∧
lselected = NotSelected

mselected = Selected ⇔ sselected = NotSelected ∧
lselected = NotSelected

lselected = Selected ⇔ sselected = NotSelected ∧
mselected = NotSelected

ActiveChangeFontSize =̂ ChangeFontSizeControl>>ChangeFontSize

We now use our guidelines to assist with a further refinement. The guidelines
used in this example are taken from [1]. There are seven possible widget types
within the single-value selection control set. For this example we will consider
two of them and show how we can make a correct decision regarding their ap-
propriateness in this situation. Let us suppose we are considering refining our
ChangeFontSizeControl to either a RadioButtonGroup or a CheckBoxGroup,
which would appear as in figure 1.

Our guideline contains the following information (these are from the Apple
guidelines [1]):

Use radio buttons for a set of mutually exclusive choices

Use checkboxes to indicate one or more options that must be either on
or off

Including Design Guidelines in the Formal Specification of Interfaces in Z 463

Fig. 1. Widget Options for FontSizeControl

Our two widget types can then be expressed by:

RadioButtonGroup
radiobuttons : F RadioButton

2 ≤ #radiobuttons ≤ 8
∃1 a : RadioButton • a ∈ radiobuttons ∧ a.selected = Selected

CheckBoxGroup
checkboxes : P CheckBox

2 ≤ #checkboxes ≤ 8
∃ a : CheckBox • a ∈ checkboxes ∧ a.selected = Selected

Note: we have simplified the information shown in our actual guideline specifications
for the purpose of this example.

In our ChangeFontSizeControl specification, the observations labelled Small-
SizeSelector, MediumSizeSelector and LargeSizeSelector represent the sets ra-
diobuttons or checkboxes in the guidelines. If we inspect the predicate part of
ChangeFontSizeControl we see that we describe the selected behaviour of the
individual selection controls such that exactly one, and one only, is selected at
any given time. If we compare this with the RadioButtonGroup and CheckBox-
Group schemas from our guidelines we can see that we have exactly the same
constraints on the RadioButtonGroup, whereas the selection behaviour of the
CheckBoxGroup is unconstrained. In this example we would therefore choose to
refine our ChangeFontSizeControl to something which includes a RadioButton-
Group based on the information provided by the guidelines. Further, using the
association between observation names as above, we can prove that the system
requires the use of radio buttons rather than check boxes.

Another benefit of what we are doing also becomes apparent at this point.
We had intended to use the GNOME guidelines for this example, however whilst
they are very specific about the use of radio buttons, stating:

464 J. Bowen and S. Reeves

Exactly one radio button should be set in the group at all times.

they are not so specific regarding check boxes, rather the examples they give
imply the usage of check boxes without directly stating that any number of check
boxes in a group may be selected at the same time. So, needing to formalise the
guidelines means we are very likely to find gaps or, perhaps even, inconsistencies
in them, and if required (to convince the writers of their mistakes, perhaps) we
can prove that these gaps or inconsistencies exist (relative, of course and as ever,
to our formalisation).

5 Proving Properties of the Interface

In our second example we look at ways of using our specified guidelines to prove
that an interface has particular desirable properties or does not have undesir-
able properties. The following example uses the Find dialogue window from
Windows95. A full critique of this dialogue appears in [3]. We will provide a
partial specification of the Find dialogue and then show how we can find guide-
line violations by including guideline predicates in our specification and trying
to prove properties of the dialogue.

Our guidelines come from the GNOME Human Interface Guidelines(1.0) [2].
In using this example from Windows95 we do not imply that the designers in-
tended to follow the guidelines that we are using and no suggestion about the
quality of their interface design is intended, we merely provide it by way of an
example of how our work may be applied. Also, notice that in this case we are
reverse-engineering an existing interface rather than specifying a new one. There
are a couple of points that are worth making regarding this. Firstly, the princi-
ples and methods used in this reverse-engineered example are exactly the same
as those we would use if we provided the example the other way around, i.e.
if we described a dialogue that did not already exist. By choosing this method
for our example we show how real-world applications may benefit from this
work.

Secondly, the notion of reverse-engineering interfaces and then applying the
guidelines is something which may prove to be useful and not uncommon in
real-world situations. As software engineers we would hope that prior to the
design of our systems and interfaces a full and rigorous specification, verifica-
tion and validation process would take place. However, we also recognise that in
many instances this is not the case. Interface design in particular is an iterative
process, often starting with prototypes and developing through various forms of
user-testing and refinement. It may be that the starting point for the interface is
based on our specifications, but after many iterations and changes we also want
to be sure that the properties we were able to prove at the prototype stage still
hold true at the implementation stage. If the design cycle has not followed a
specification refinement then we cannot be certain of this unless we are able to
re-test these properties on the final interface. Methods of making this reverse-

Including Design Guidelines in the Formal Specification of Interfaces in Z 465

Fig. 2. Windows95 Find Dialogue

engineering both practical and workable are discussed in our conclusions and
future-work section.

We start by presenting the dialogue interface and then a partial specifica-
tion of that interface. We present only a partial specification for the sake of
brevity and do not expand or elaborate on items which have no bearing on the
point of our example. In keeping with our format for specifying interfaces, our
DialogueWindow is described in terms of a collection of its components. We
provide the specification of one of the components to assist with the reader’s
understanding of the example.

First we can look at the specification of just one button on this interface, the
button labelled with the symbol which serves to minimise the window when
the user clicks on it.

MinimiseWindowButton
buttonName : BUTTONNAME
buttonlabel : BUTTONLABEL
minwbevent ! : EVENT
cstate : CONTROLSTATE

buttonName = Minimise
buttonlabel = NoLabel
cstate = Active ⇒ event ! = MinimiseWindowEvent
cstate = NotActive ⇒ event ! = NoEvent

Notice that in keeping with our GUI specification framework and exemplified by
the font size changing example, we give the widget an output called minwbevent!
which will synchronise with a system operation based on its value. We would
then describe each other part of the FindDialogue in a similar manner, with each
of the widgets that cause system operations to occur having a nameevent! output
of its own. When we describe the total interface for FindDialogue, we describe it
as a collection of its component widgets, these will be schemas themselves which
will have been previously described.

466 J. Bowen and S. Reeves

FindDialogue
FindNowButton
StopButton
NewSearchButton
SearchFunctionWindow
FileMenu
EditMenu
ViewMenu
OptionsMenu
HelpMenu
MinimiseWindowButton
MaximiseWindowButton
CloseWindowButton
fdeventset : P EVENT

fdeventset = {fnbevent !} ∪ {sbevent !} ∪ {nsbevent !}∪
{sfwineventset} ∪ {fmenuevent !} ∪ {emenuevent !}∪
{vmenuevent !} ∪ {omenuevent !} ∪ {hmenuevent !}∪
{minwbevent !} ∪ {maxwbevent !} ∪ {clswbevent !}

Each of the individual widget event! outputs are unioned to create FindDia-
logue’s fdeventset. The elements of eventset at any given time are determined by
the value of each component’s controlstate. If it has a controlstate value Active
then its event! value will be present in eventset, otherwise the value NoEvent
will be present. For example in the state of the system where the controlstate
observation of MinimiseWindowButton is Active, then MinimiseWindowEvent
will be present in fdeventset. Describing each of the component schemas of Find-
Dialogue in full to show what their event! values are is too long a process for the
purposes of this paper. However, in order to fully understand the application of
the guidelines to this example, we do need to know what the possible values for
fdeventset are. We therefore now provide a simplified view of what fdeventset
would look like if it contained every possible event! value provided by its com-
ponent widgets. This is done for reader convenience only and is not a part of
our general process.

fdeventset = {FindNowEvent ,StopFindEvent ,NewSearchEvent ,
FileMenuEvent ,EditMenuEvent ,ViewMenuEvent ,
OptionsMenuEvent ,HelpMenuEvent ,MinimiseWindowEvent ,
MaximiseWindowEvent ,CloseWindowEvent ,BrowseEvent}

We will refer to this as the maximum possible value for fdeventset. Notice that
the value NoEvent does not appear in this maximum set as it will only be present
if one of the components widgets is not active.

The following guidelines are those that we wish to adhere to when designing
our interface in this example. We provide them first in their original form and
then how they appear in our specification of the GNOME guidelines [2].

Including Design Guidelines in the Formal Specification of Interfaces in Z 467

Dialogues :
Provide all dialogues with the following window command: Minimise.

Provide all dialogues with a Cancel Button. This provides an escape route
for users to stop an action. Clicking the Cancel button closes the dialogue
box and reverts the application to its state prior to the user action.

These appear in our guideline specification as:

Identify all schemas describing Dialogues, these will be all schemas called
xDialogue, where x is a parameter representing the actual name given to
the dialogue. The following predicate must then apply, again you must
replace x with the actual dialogue name:

∃ dw : xDialogue • MinimiseWindowEvent ∈ dw .eventset
∃ dw : xDialogueWindow • CancelDialogEvent ∈ dw .eventset

Notice that we are reliant on the naming conventions that we propose
in our interface specification instructions. We expect that all Dialogue
boxes described will follow the xDialogue naming convention, and that all
events generated will follow the actionEvent naming convention, where
action is the behaviour indicated by the event.

We now set about trying to prove that both of these existentially quantified
predicates hold true in our example, i.e. can we prove them of FindDialogue?
For this we need to examine our maximum possible value for eventset. Our first
guideline requires that:

∃ dw : FindDialogue • MinimiseWindowEvent ∈ dw .eventset

The maximum possible set for dw.eventset where dw.eventset is actually fde-
ventset is:

{FindNowEvent ,StopFindEvent ,NewSearchEvent ,FileMenuEvent ,
EditMenuEvent ,ViewMenuEvent ,OptionsMenuEvent ,
HelpMenuEvent ,MinimiseWindowEvent ,MaximiseWindowEvent ,
CloseWindowEvent ,BrowseEvent}

This satisfies our predicate as it gives us an instance which does contain the
MinimiseWindowEvent, so we can state that FindDialogue exhibits the property
required of our first guideline. Moving on to the second guideline, we require that

∃ dw : FindDialogue • CancelDialogEvent ∈ dw .eventset

Again we examine the maximum possible value of fdeventset, but in this case
there is no CancelDialogEvent so our predicate is false. We have therefore iden-
tified a problem with our specification. It does not adhere to our required guide-
lines. We would expect that the next step would be to fix this problem prior to

468 J. Bowen and S. Reeves

further refinement or implementation of the specification. Notice that the two
guidelines used are specific to all dialogue windows, so any other dialogues in the
interface would also be expected to adhere to these rules and would be tested in
the same way.

In these simplified examples we have been able to prove or disprove properties
by inspection of our specification, whereas in larger examples this would not be
the case. Consider the following guideline which is taken from [18]:

Be consistent in command names. If a command refers to the same ac-
tion as another, both should use the same command name.

In a large and complex system the interface may be made up of many different
views leading to a long and detailed specification. In order to prove that the
above guideline is adhered to throughout the specification we would need addi-
tional predicates as constraints on the interface schemas which would have to be
discharged at the refinement stage.

6 Conclusions

We have presented our method for incorporating design guidelines into the formal
specification of interfaces and discussed how this may form part of a whole
system specification. We have described how we use a particular framework for
the formal description of interfaces based on the categorisation of widgets, and
the notion of the interface as a collection of these widgets. We have noted that
the process of formalisation can lead to the identification of mistakes in informal
guidelines.

By using this framework and adopting a shared vocabulary between the GUI
description and the sets of guidelines we wish to use we can also incorporate
design guidelines into our specification. The guidelines can then be used to as-
sist with the refinement of our specification into a more concrete collection of
widgets, as well as proving that a described interface has particular desirable
properties. We believe that this may encourage software engineers to incorpo-
rate the interface into their system specifications as an integral part of that
specification. It may also assist GUI designers in their work by removing some
of the burden of monitoring ever-changing prototypes with reference to guide-
lines, trying to work out how they should be interpreted or incorporated into
the design of their interface.

We have proposed a specific framework and vocabulary for our interface and
guideline descriptions using Z which is based on what we have found to be a clear
and helpful way for doing this. Our aim throughout was to ensure that we de-
scribed the GUI in as concise a way as possible to prevent the specification from
exploding in size and becoming unreadable and unmanageable. We recognise
that there may be other ways of describing the GUI and linking it to the under-
lying system behaviour which would also work, provided the interface description
and the guideline specification both use the same structure and terminology and
their model follows a shared hierarchy which supports the abstraction problem.

Including Design Guidelines in the Formal Specification of Interfaces in Z 469

Our aim here was to show how we have undertaken this work so that others may
follow our framework or devise their own methods based on it.

7 Future Work

In our second example we discussed the notion of reverse-engineering an existing
interface (or prototype). We are mindful that in an iterative design process
where incremental prototypes are used and changed regularly, the overhead of
this sort of work may lead to a reluctance to perform it. With this in mind
we propose the development of tools which can be used by interface designers
to aid them in this task. Rather than suggest brand-new GUI design tools and
then hope people adopt them, we suggest finding ways to use the existing tools
which are commonly used in the early design stage. These may be RAD (rapid
application design) tools, or full implementation suites and include such things
as VisualBasic, JBuilder, Glade etc.

Rather than propose that the users of these tools abandon them for some new
tool we suggest that we build tools and systems which can be used in conjunction
with these existing tools. We have already developed some prototypes of such
tools. We have created a VisualBasic component which can be imported into any
VisualBasic project and which will interrogate an interface form and produce an
output file which contains the widget breakdown for that interface form in a set
of basic Z schemas. Similarly we have looked at ways of parsing Java class files to
extract the interface elements described using the SWING toolkit and produce a
similar widget hierarchy output. We believe that there is much work that could
be done in this area. A separate research group at the University of Waikato
is currently looking at automating design guidelines in the Glade development
environment using XML descriptions, and we are interested in working more
closely with this group to see what possible collaboration there may be between
our projects.

In the near future we aim to publish the full framework we propose for describ-
ing interfaces along with the widget hierarchy and breakdown and refinement
assistance documents. In conjunction with this we would like to fully describe
some of the commonly used sets of guidelines such as the Gnome Human Inter-
face Guidelines(1.0) [2], the Apple Human Interface Guidelines [1] and Smith and
Mosier’s Guidelines for Designing User Interface Software [18]. We also hope to
produce a full system and interface specification for a large “real-world” system
and examine some applications of our work in conjunction with this.

References

1. Apple Human Interface Guidelines (2004), available at http://developer.apple.
com/documentation/UserExperience/Conceptual/OSXHIGuidelines/index.html

2. GNOME Human Interface Guidelines (1.0) (2002), available at
http://developer.gnome.org/projects/gup/hig/1.0/

470 J. Bowen and S. Reeves

3. Isys Information Architects Inc., Interface Hall of Shame,
http://digilander.libero.it/chiediloapippo/Engineering/iarchitect/
target.htm

4. Bodard, F., Hennebert, A., Leheureux, J., Vanderdonckt, J.: Towards a Dynamic
Strategy for Computer-Aided Visual Placement, In Catarci, T., Costabile, M.,
Levialdi, S., and Santucci, G., eds. Proceedings of Advanced Visual Interfaces.
pp.78–87.(1994)

5. Bowen, J.: Formal Specification and Documentation Using Z, A Case Study Ap-
proach. International Thomson Computer Press.(1996)

6. Dix, A., Runciman, C.: Abstract models of interactive systems. People and Com-
puters: Designing the Interface, Ed.P.J. and S.Cook, Cambridge University Press.
pp.13–22.(1985)

7. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction, second
edition. Prentice Hall Europe. (1997)

8. Duke, D., Harrison, M.: Abstract Interaction Objects. Computer Graphics Forum,
12(3):C-25–C-26.(1993)

9. Duke, D., Harrison, M.: Interaction and task requirements. In Palanque, P. and
Bastide, R., eds. DSV-IS’95: Eurographics Workshop on Design, Specification and
Verification of Interactive Systems, pp.54–75. Springer-Verlag.(1995)

10. Harrison, M., Dix, A.: A state model of direct manipulation in interactive sys-
tems. In Formal Methods in Human-Computer Interaction, eds. Harrison, M. and
Thimbleby, H.Cambridge University Press. (1990)

11. Horrocks, I.: Constructing the User Interface with Statecharts. Addison Wesley.
(1999)

12. Jacky, J.: The Way of Z: Practical programming with formal methods. Cambridge
University Press. (1997)

13. Jacquot, J.-P., Quesnot, D.: Early Specification of User-Interfaces: Toward a For-
mal Approach. Proceedings of the 19th International Conference on Software En-
gineering, pp.150–160, ACM Press. (1997)

14. Knight, J., Brilliant, S.: Premliminary Evaluation of a Formal Approach to User
Interface Specification. Proceedings of the 10th International Conference of Z Users
on the Z Formal Specification Notation, pp.329–346. (1997)

15. Lok, S., Feiner, S., Nga, G.: Evaluation of Visual Balance for Automated Layout,
Proceedings of the 9th International Conference on Intelligent User Interface, ACM
Press.(2004)

16. Took, R.: Putting Design into Practice: Formal Specification and the User Inter-
face. In Formal Methods in Human-Computer Interaction, eds. Harrison, M. and
Thimbleby, H.Cambridge University Press, 1990.

17. Saaltink, M.: The Z/EVES System. In Bowen, J., Hinchey, M., Till, D., eds. Pro-
ceedings of the 10th International Conference on the Z Formal Method (ZUM),
vol.1212 of Lecture Notes in Computer Science, pp. 72–88. Springer Verlag.(1997)

18. Smith, S., Mosier, J.: Guidelines for designing user interface software. Report EDS-
TR86 -278. The MITRE Corporation, Bedford. (1986)

19. Stepney, S., Polack, F., Toyn, I.: An outline pattern language for Z. In: ZB2003:
Formal Specification and Development in Z and B: Third International Confer-
ence of B and Z Users, Turku, Finland, June 2003. Proceedings, Springer-Verlag
Heidelberg, pp 2–19.(2003)

20. Stepney, S., Polack, F., Toyn, I.: A Z patterns catalogue I: specification and refac-
toring, v0.1. Technical Report YCS-2003-349, York. (2003)

Including Design Guidelines in the Formal Specification of Interfaces in Z 471

21. Sufrin, B., He, J.: Specification, analysis and refinement of interactive processes.
In Formal Methods in Human-Computer Interaction, eds. Harrison, M. and Thim-
bleby, H.Cambridge University Press, 1990.

22. Systä, K.: Adding user interface to a behavioral specification. In Engineering for
Human-Computer Interaction, pp 227–244. Chapman and Hall.(1995)

23. Thimbleby, H.: User interface design with matrix algebra. ACM transactions,
Computer-Human Interaction, vol.11,2, pp181–236. (2004)

Some Guidelines for Formal Development of
Web-Based Applications in B-Method

Abdolbaghi Rezazadeh and Michael Butler

School of Electronics and Computer Science,
University of Southampton,

Highfield, Southampton SO17 IBJ, United Kingdom
{ar02r, mjb}@ecs.soton.ac.uk

Abstract. Web-based applications are the most common form of dis-
tributed systems that have gained a lot of attention in the past ten
years. Today many of us are relying on scores of mission-critical Web-
based systems in different areas such as banking, finance, e-commerce and
government. The development process of these systems needs a sound
methodology, which ensures quality, consistency and integrity. Formal
Methods provide systematic and quantifiable approaches to create co-
herent systems. Despite this there has been limited work on the formal
modelling of Web-based applications. In this paper our aim is to provide
researchers with some guidelines based on results from ongoing work to
model a Web-based system using the B-Method. Session and state man-
agement, developing formal models for complex data types, abstraction
of distributed database systems and formal representation of communi-
cation links between different components of a web-based system are the
main issues that we have examined.

1 An Introduction to Web-Based Systems

Web-based applications are distributed systems that can be accessed using a Web
browser. During recent years the extent and scope of their use has grown rapidly,
significantly affecting all aspects of our lives. Industries such as manufacturing,
travel and hospitality, banking, education, and government are Web-enabled to
improve and enhance their operations. E-commerce has expanded quickly, cut-
ting across national boundaries. Even traditional legacy systems have migrated
to the Web. The scope and complexity of current Web applications varies widely:
from small-scale, short-lived services to large-scale enterprise applications dis-
tributed across the Internet and corporate intranets and extranets.

Although numerous Web-based systems are in use now and many of us rely on
them, the manner in which they are developed raises serious concerns [1, 2, 3];
they need to be reliable and perform well. To build such systems, Web-based
system developers need a sound methodology, a disciplined process and a set of
good guidelines. Due to the high amount of new demands, Web applications are
evolving continually and the complexity of these systems is increasing rapidly.
Therefore the use of a rigorous method becomes more important.

H. Treharne et al. (Eds.): ZB 2005, LNCS 3455, pp. 472–492, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Some Guidelines for Formal Development of Web-Based Applications 473

Formal methods use mathematical notation to describe systems in a clear
and rigorous manner. Abstraction and stepwise refinement employed by formal
methods is a valuable approach for developing complex Web-based systems. The
B-Method is a well-known formal method [4] which has been applied to sev-
eral software development missions including academic and industrial projects
[5, 6, 7].

Our aim in this paper, through the modelling of this specimen Web-based
system, is to identify some challenging aspects of these types of systems and
propose an approach to their formal representation. We hope to provide a set
of guidelines which could serve as a basis for further work. In the rest of this
paper we present the travel agency case study and briefly discuss its initial aims
and objectives. The chosen case study has been selected to be inclusive enough
to represent the main properties and functionality of typical Web applications.
By developing formal models in B we have extracted some generic and essential
patterns. These patterns are considered to model some common properties and
functionality shared by a broad category of Web applications. In the next step
we have tried to find some appropriate formal refinements for these abstract
patterns which could be provable within the framework of the B prover tool [8, 9,
10]. As Web applications are distributed systems, the decomposition of primary
refinement models into subsystems and introducing suitable formal models for
communication links are other objectives. The last section concludes the paper
with recommendations for further work and discussions.

2 Informal Representation of the Case Study

Here we outline the main requirements and sketch the overall architecture of
the system. The aim is to develop a Web-based Travel Agency system to enable
potential users to access it through an Internet connection using a standard Web
browser to perform one or more of the following tasks:

– Book a flight or Cancel a booked flight
– Book a room or or Cancel a booked room
– Hire a car or Cancel a hired car

The Travel Agency Web-based system is hosted on the Travel Agency Server
which is responsible for processing the Web-clients’ requests. These messages
are produced and sent by the client browser through Internet links and based on
HTTP or other similar standards. The travel agency system relies on a group of
secondary agencies’ servers like flight agencies to accomplish the client requests.
The travel agency system uses Internet links to communicate with the secondary
servers. A simple architecture of this system is depicted in Figure 1.

In Figure 1 we see that more than one client could communicate with the
travel agency system simultaneously. The travel agency system will manage the
status of different sessions using state variables, stored in a local database. For
booking requests like flight booking, a message which includes details about the
request will be broadcast to all related agencies’ servers by travel agency system.

474 A. Rezazadeh and M. Butler

Client Client Client Client

Web-based Travel agency system

……..

Hotel system

Flight agency
system

Flight agency
system

:
:

Hotel system

:
:

Car Hire system Car Hire system

Http Links

Http Links

Http Links
Http Links

Fig. 1. A Simple Architecture of the System

Responses which the travel agency should expect could vary from zero to the
number of all secondary agencies in the best situation. The collected response
will be sent by the travel agency system to the appropriate client. In other cases,
like cancelling a booked flight, the request will be sent directly to the related
flight agency. Also it is quite convenient to assume a local database in the travel
agency server for representing all booked services. This database could reduce
the amount of communication and complexity of un-booking process.

3 An Overview of Formal Development Process

As we mentioned previously our main objective, in applying formal method
to this case study, was to identify some common challenging issues and propose
some formal models for them. Therefore instead of detailed presentation of formal
models, in this section we have summarised the formal development process.

This work is based on Event-B style for development of distributed systems
[11, 12]. Unlike standard B, which is used to specify and develop software modules
in B, Event-B was introduced for modelling of distributed systems. In the Event-
B style operations are called ”events” which may occur spontaneously rather
than being invoked. Those events are no longer pre-conditioned, but guarded by
a predicate, which express the condition under which the event can be enabled.
When we refine a model, we either refine an existing event by strengthening the
guard or/and the before-after predicate (removing non-determinism or applying
data refinement), or add a new event which is supposed to refine the skip event.
The introduction of new events is supported by superposition method [13, 14].
In superposition, new functionality is added to an existing model in the form of
additional variables and assignments to these variables as new operations, while
the original computation is preserved.

Some Guidelines for Formal Development of Web-Based Applications 475

In the first stage of formal process an abstract model based on Event-B style
has been produced. The abstract model is a single B-machine which encloses
some operations to model the main functionality of the travel agency system
from the viewpoint of the users. In the second step we have refined the abstract
specification by introducing client side operations based on the superposition
methodology. Operations of the abstract model have been classified as the server
side operations at this stage. Some operations of the abstract model which are
influenced by the introduction of client operations have been refined by adding
extra guards and removing non-determinism.

Operations of the secondary agencies servers have been introduced in the
second refinement model. In this stage some formal definitions for distributed
databases have been added. Each secondary server has a local database which is
contains information about available service that this agency can offer to its cus-
tomers. Data distribution among secondary servers and the travel agency system
leads to distribution of processing between servers. In other words, introducing
new operations which finally reside on secondary servers for manipulating dis-
tributed data resulted in further refinement of the travel agency operations in
this stage. In the second refinement we have operations of the clients, the travel
agency system and the secondary servers.

Decomposition is the main strategy to tackle the complexity of the model
in Event-B style. Introducing communication links between different parts is a
pre-stage to the decomposition process. Therefore in the third refinement stage
we have introduced communication links. The main challenging questions which
we have identified during the above mentioned development processes are:

– Session and State Management in Both Client and Server side
– Inter-Server Interactions
– Refinement of Complex Data types
– Abstraction of Distributed Databases
– Formal Modelling of Communications Links

In the following sections we have examined these issues in detail and we have
presented some solutions for them. Although we have used the travel agency
case study to discuss the main properties of a Web application and to clarify the
key issues in developing a B-model for them, the identified aspects and proposed
solutions could be applied to a wide range of Web applications.

4 State Representation in Web-Based Systems

The Web started as a means for sharing documents among scientists. Its design-
ers have built the underlying technology (e.g., HTTP and HTML) with these
goals in mind. Since then, people have realised the Web’s potential as an ap-
plication delivery medium and have started to exploit it. With the growth of
e-business applications, the Web is rapidly being transformed into an application-
intensive environment. In Web-based application the core functionality of sys-
tem, the business logic, is handled by the server. Most web applications need

476 A. Rezazadeh and M. Butler

to maintain communication sessions with their client, and monitor each client’s
individual status and activities. Unfortunately, the communication protocol be-
tween web browser and web server (HTTP) is stateless and it does not provide
the functionality on session control. Therefore it is not trivial to maintain infor-
mation about each client interaction with server. The server-centric architecture
of current Web applications makes a server-side session the natural choice. In
the following sections we have examined this subject in detail.

4.1 Session Handling and State Management in Server Side

State maintenance is one of the major issues in many applications, such as e-
commerce and banking applications. As transactions between Web clients and
Web servers occur in a stateless environment, state must somehow be passed
from one transaction to the next in a Web application. Keeping state data on
the server side is generally considered the safest and most appropriate technique
when handling information of a sensitive nature.

The server uses a session’s state variables to identify a user, process the input
data provided by a client and determine user rights or the type of access to be
offered to a user. Furthermore, based on the information which has been provided
by the client, the server can set state variables to determine the next possible
execution path.

Challenge: How do you represent the state information related to a user’s
interaction with a Web application?

Guideline: We have used explicit state variables to represent sessions state in-
formation on the server side. By defining two reference sets for state and sessions
ID and a mapping function from a session ID to session state we can manage
each session in the server side identically. So each session has a session identifier
“sid” which could be used as an index to access session information on the server
side. A new “sid” could be allocated to a new client as soon as it establishes a
connection with server and afterward the client can use this “sid” on subsequent
interactions.

To clarify the guideline we have presented a snapshot of the specification
machine for the Travel agency case study in Figure 2. We have introduced the
set “STATE” and “SESSION”. The first definition represents the possible states
for a client session and the second one serves as a typing reference for sessions’
ID. The “session state” variable maps each client session to its related state. The
variable “session” represents the set of all current active sessions. The operation
“StartNewSession” models the creation of a new session by the travel agency
system. This operation allocates a free session ID for the newly created session
and sets the necessary environmental variables for it. Any changes in a session’s
state variable could enable a operation and execution of an operation could
resulted in some changes in a state variable. For example, the “SelectService”
operation is enabled when the session state is “fresh” and its execution changes
the state of related session to one of “booking”, “unbooking” or “signed in” state.

Some Guidelines for Formal Development of Web-Based Applications 477

MACHINE TravelAgency
SETS
 SESSION;
STATE={fresh,booking,unbooking,service_selct,options_ret,choice_made,
 signed_in,certified,valid,invalid,booking_ret,unbooked_sel};
DEFINITIONS
 freshSESSION SESSION - session;
VARIABLES
 session, session_state,
INVARIANT
 session SESSION
 session_state session STATE ...
INITIALISATION
 session := || session_state := || ...
OPERATIONS
 StartNewSession
 ANY sid WHERE sid freshSESSION THEN
 session := session {sid} ||
 session_state(sid) := fresh
 END;
 SelectService
 ANY sid WHERE sid session session_state(sid)=fresh THEN
 SELECT (…….) THEN
 session_state(sid):= booking
 WHEN (…….) THEN
 session_state(sid):= unbooking
 WHEN (…….)THEN
 session_state(sid):= signed_in
 END || ...
 END;
 FlightRequest
 ANY sid WHERE sid session session_state(sid)= booking THEN
 session_state(sid):= service_selct
 END;

Fig. 2. Abstract model of the travel agency system

The “SelectService” operation models the interaction of the clients with the
system, when they select an available service.

4.2 State Management in Client Side

In Web based application Web clients generally are classified as thin clients.
This implies that processing in the client side usually is not significant. Web
clients take input from users, perform type checking and simple data validation
and in some cases carry out data encryption if necessary. Web clients use the
application through Web browsers, over the Internet. They interact with system
concurrently, independently, in an asynchronous manner. You can’t control what
they’re doing and when they do it. Although the browser and underling mecha-

478 A. Rezazadeh and M. Butler

nism do not support sate handling, still some coordination mechanism and state
passing between server and client operations is necessary.

Challenge: How do you maintain the state information in the client side and
perform coordination between different clients and the Web server.

Guideline: We have used a message-based mechanism for this purpose. Each
message is mapped to a session ID which relates the message to a specific client
session. The message-based mechanism could be considered as an implicit state
representation in the client side. Therefore from this viewpoint we can assume
that two different approaches have been taken for state representation in the
server and the client side. We have found that the main advantage of this ap-
proach is to avoid shared state variables among clients and the Web server which
in its turn could lead to further complication.

We have presented some operation of the clients along with the server’s op-
erations from first refinement of the case study in Figure 3 to illustrate the
guideline. We have used comments to make a distinction between the server and
newly introduced client’s operations. The server operations use explicit state
variables for state representation. On the other hand, the client operations em-
ploy an implicit message-based method for state representation and coordination
with the server operations.

The session ID, “sid”, plays a central role to convey state information between
client and server. However there is a situation that a client has triggered a new
session but it has not obtained a session ID yet. In this step the client should
use a temporary identification mechanism which could be the IP address or
any other similar mechanism. The “Client ReqSession” operation in Figure 3
depicts this situation. We have defined a new variable named “handle” to use it
as temporary index to represent a client request for a new session. When in the
“StartNewSession” operation the server has processed this request it allocates a
new session ID for this specific client session and replies to the client by placing
the new session ID in the “new client” message buffer. In the “Get SessionID”
operation the client receives this allocated “sid” and it will use it through the
rest of session to communicate with the travel agency server. For example in the
“PicService” operation we have a message buffer named “reqsevice buf ” which
has been defined as a mapping from “session” to “REQUEST” to carry the
client’s requests to the Server.

As we have mentioned in section 3, we have used superposition refinement to
introduce client operation. This means that we retain the variables and opera-
tions of the abstract specification and introduce new operations which have no
effect on the pervious variables. Some new variables which can be exploited by
both the clients’ operations as well as the Web server have been introduced in
this stage. New variables are used as message buffers to exchange data between
client and server operations. The introduction of these new variables has some
implication on the Web server’s operations.

Some Guidelines for Formal Development of Web-Based Applications 479

SETS
 HANDLE
DEFINITIONS
 freshHANDLE HANDLE - dom(new_client)
INVARIANT
 /* Client Variables */
 new_handle HANDLE
 new_client HANDLE SESSION
 token SESSION
 fresh_session SESSION
 reqsevice_buf SESSION REQUEST
OPERATIONS
 Client_ReqSession /* Client Operation */
 ANY handle WHERE handle freshHANDLE THEN
 new_handle:= new_handle {handle}
 END;
 StartNewSession /* Server Operation */
 ANY sid, handle WHERE sid freshSESSION handle new_handle THEN
 session:= session {sid} ||
 session_state(sid) := fresh ||
 new_client(handle):= sid ||
 new_handle:= new_handle - {handle}
 END;
Get_SessionID /* Client Operation */
 ANY sid WHERE sid SESSION sid ran(new_client) THEN
 token:= token {sid} ||
 fresh_session:= fresh_session {sid} ||
 new_client:= new_client |{sid}
 END;
PicService /* Client Operation */
 ANY sid, req WHERE sid fresh_session req REQUEST THEN
 reqsevice_buf(sid):= req ||
 fresh_session:= fresh_session - {sid}
 END;

Fig. 3. Some operation of the first refinement

In the abstract model some operations use nondeterministicly chosen values
which need to satisfy just some typing and basic state conditions. In the refine-
ment model some changes have been made in these operations’ guard. This is to
refine the nondeterministic choices to the available values in the related message
buffers which are provided by clients. By using superposition refinement instead
of more general Event B refinement in this stage, we do not require any gluing
invariant which implies an easier set of prove obligations.

4.3 Conducting Inter-server Interactions

Coordination and communication management is an important issue in mod-
elling interactions between two or more servers. In the case of inter-server com-
munications, unlike client and server communication, both parties which are
involved in a session are providing some services. Interaction between the travel
agency system and secondary servers is an example of such inter-server commu-

480 A. Rezazadeh and M. Butler

nication. For example the travel agency system can ask a flight Agency server
for available flight options and the flight agency server will reply with available
options.

Challenge: What is the best way to model inter-server interactions?

Guideline: Considering the fact that the servers are independent, any approach
to modelling their interaction, should provide a solution with minimum possible
cohesion between these subsystems. Using the message-based approach seems to
be a good candidate for this purpose and furthermore it complies with common
web services technologies.The messages are defined as mapping from a session
ID to the requested information.

INVARIANT
 /* Server's New Variables */
 reqflight_buf FLIGHT_AGENCY (SESSION FLIGHT_REQUEST)
 /* Flight Agency Variables */
 respflight_buf SESSION (FLIGHT_AGENCY (FLIGHT_DETAIL))
OPERATIONS
Request_Flight /* Server Operation */
 ANY sid,fr WHERE sid SESSION fr FLIGHT_REQUEST THEN
 reqflight_buf:= fa . (fa FLIGHT_AGENCY | reqflight_buf(fa) {sid fr})
 END;
Resp_FlightReqs /* Flight Agency Server Operation */
 ANY sid,fa,fr WHERE sid session fa FLIGHT_AGENCY
 fr FLIGHT_REQUEST THEN
 ANY xx WHERE xx (FLIGHT_DETAIL) xx
 Matchflight(fr flight_db1(fa)) THEN
 respflight_buf(sid):= respflight_buf(sid) {fa xx}
 END ||
 reqflight_buf(fa):= reqflight_buf(fa)- {sid fr}
 END;

Fig. 4. Some operations of the secondary servers

The message-based approach could be exploited to exchange both data and
state information between servers. Regarding the fact that server to server com-
munications are mostly asynchronous, the message-based communication is an
appropriate candidate.

Some operations of the secondary servers and the travel agency system which
involve communication are presented in Figure 4. In this model, “reqflight buf”
is used to transmit requests from the travel agency to flight agencies. Flight
agencies use “respflight buf” message buffer to send responses to the travel
agency.

Some Guidelines for Formal Development of Web-Based Applications 481

5 Abstraction and Refinement of Complex Data-Types

In many Web applications frequently we need to represent some complex data
types in different abstraction levels. For example this data could be a record with
many fields containing all necessary information for a booking request. Refining
abstract data types in a single step, especially when we do not need all details
in this step, is not a good approach to refinement; because it swiftly turns our
simple abstract model into an over-complicated refined model. Therefore we need
to find a mechanism for stepwise refinement of the abstract data types.

Challenge: What is a proper abstraction for data structures like records and
how we can refine an abstract representation of a record in a step-wise manner?

Guideline: We found that most details could be abstracted away by defining
some simple data types in the form of set definitions in the specification level.
In refinement stage to overcome the problem of unnecessary detail we found
that, instead of direct refinement of abstract data types, some constant mapping
could be used. A mapping defines a relation from an abstract data type to the
required additional detail. By employing this method we introduce fields into
refined model when it is necessary.

The abstract data types make operations very simple and understandable at
specification level and help us to have a clearer picture of overall functionality of
system. But we need to introduce the necessary details into these abstract data
types in the refinement level. Using constant mappings to introduce new fields of
a previously defined abstract type could help to avoid unnecessary complication
in the early stage of refinement and postpone the detailed refinement of abstract
data types to after decomposition.

Using constant mapping to refine an abstract record may present some am-
biguity to the reader. So we will try to make some clarification here. Let assume
that we have an abstract record, “REC” in the specification level. We want to
refine this abstract record by introducing two new fields of it, namely “afield”
and “bfield”. We can define these two fields as a constant mapping from “REC”
to two arbitrary types “SETA” and “SETB” respectively. Now we can assert
that for any “aa” and “bb” that “aa” belong to “SETA” and “bb” belong to
“SETB” we can define a record that belongs to “REC”. Performing record re-
finement with a constant mapping rather than a variable mapping simply means
that this information is global to all subsystems. Using constant mapping has
not any restrictive impact on records manipulation. To clarify this issue we have
presented an example operation in Figure 5 that adds a record to a database.

Here is An example from the case study is provided in Figure 6. We have
two abstract data types; the first one is an abstraction for a record which con-
tains all the necessary information for a flight request and the second one is the
abstraction of a record which contains all details about an offered flight by a
flight agency. We have used two abstract set definitions “FLIGHT REQUEST”
and “FLIGHT DETAIL” for these two abstract records respectively. In the re-

482 A. Rezazadeh and M. Butler

MACHINE Database
SETS
 REC; SETA; SETB
CONSTANTS
 afield, bfield
PROPERTIES
 afield REC SETA bfield REC SETB
 (aa, bb ((aa SETA bb SETB)
 rr. (rr REC afield(rr) = aa bfield(rr) = bb))
VARIABLES
 db
INVARIANT
 db (REC)
INITIALISATION
 db:=
OPERATIONS
 Add_Database
 ANY af,bf,rn WHERE af SETA bf SETB rn REC
 afield(rn)=af bfield(rn)= bf
 THEN
 db:= db {rn}
 END
END

Fig. 5. An example of constant mapping

CONSTANTS
 flightagency
PROPERTIES
 flightagency FLIGHT_ DETAIL FLIGHT_AGENCY
SETS
 FLIGHT_REQUEST; FLIGHT_DETAIL; FLIGHT_AGENCY;

Fig. 6. An example of constant mapping from the case study

finement stage we need to access the flight agency that has provided a flight.
We assume that the flight agency identifier is a part of the “FLIGHT DETAIL”
record. Instead of direct refinement of the abstract data type, we have defined
a constant mapping from “FLIGHT DETAIL” to “FLIGHT AGENCY” which
could satisfy our requirement in this stage. The definition of this constant map-
ping is presented in Figure 5. The use of a constant function provides a way
of modelling a record’s field in B. By using similar techniques we are able to
introduce any extra detail which might be necessary in successive refinement
steps. Obviously at the implementation stage we have to replace these constant
mapping with an actual data field; but the fact that we could postpone this step
until after decomposition is helpful.

Some Guidelines for Formal Development of Web-Based Applications 483

6 Abstraction and Refinement of Distributed Databases

Data that is shared between Web components and persistent between invocations
of a Web application is usually maintained by one or more databases. These
databases generally are distributed over different servers. Developing a formal
abstract model and refinement for them is another challenge that we examine in
this section. This issue has a close relation with process distribution; therefore
we consider the process distribution and distributed databases together. We can
assume different functionality for a database system. For example the simplest
case is a database which allows its contents to be viewed by different parts
of the Web application. On the other hand a complex database could support
different type of queries and permits updating current information or removing
some records from it. As the system is distributed it means that when a server
makes some changes in its database which could affects another part of the Web
application, it takes some time for the other part to know about it.

Challenge: How we can represent a proper abstraction and refinement of certain
distributed database operations?

Guideline: In a distributed setting involving multiple clients, the high level
specification of a transaction such as confirming a flight booking needs to include
the possibility of failure. Also query operations involving multiple databases
should be specified very loosely at the abstract level.

To understanding the complicate relation of process and Database refinement
we need some examples. In the travel agency system as depicted in Figure 1 we
have a set of secondary servers which store some information about their avail-
able services. Based on web clients’ requests the travel agency server occasionally
initiates and sends a distributed query to these secondary servers for information
lookup. Later it should collect and send available services to related Web clients.
Obviously in the specification level we need an abstract formal representation of
these distributed processes and databases.

The first abstract model is presented in Figure 7. In this specification “Match-
flight” is a constant function type definition. It takes “FLIGHT REQUEST” as
an abstraction for user request and an abstract database which contains some
“FLIGHT DETAIL” records and returns a set of “FLIGHT DETAIL” records
which match the user request. In this abstract model we have defined the vir-
tual database, “flight db”, as an abstract representation for a set of distributed
databases which reside on secondary servers. As we mentioned earlier the content
of these distributed databases could change independently from the travel agency
system. Based on the above assumption we have defined the operation “Re-
trieve FlightOptions” which is an abstraction for collecting secondary servers’
responses to a distributed query for a service. Obviously we have not introduced
secondary servers and their related databases in the abstract model to avoid
making the model over-complicated.

484 A. Rezazadeh and M. Butler

CONSTANTS
 Matchflight
PROPERTIES
 Matchflight FLIGHT_REQUEST (FLIGHT_DETAIL) (FLIGHT_DETAIL)
INVARIANT
 flight_db (FLIGHT_DETAIL)
Retrieve_FlightOptions /* Server Operation */
 ANY sid, fr WHERE sid session fr FLIGHT_REQUEST THEN
 ANY xx WHERE xx (FLIGHT_DETAIL) xx Matchflight(fr flight_db)
 THEN
 flight_options(sid) := xx
 END
END;

Fig. 7. An abstract model of the database operation

A refinement of the abstract model is presented in Figure 8. In this refinement
based on the superposition technique we have introduced some new operations.
The “Request Flight” operation models the travel agency side event that initiates
a query broadcast to a set of secondary servers. Equally when a secondary server
receives a query for a service, it responds if it has any available option(s). This
is demonstrated in “Resp FlightReqs” operation. The virtual database definition
has been replaced by actual databases which are distributed among secondary
servers and we have defined these by a mapping form “FLIGHT AGENCY”
to power set of “FLIGHT DETAIL”. The “Retrieve FlightOptions” has been
refined in response to the introduction of the new operations and now clearly
reflects the fact that it should collect the secondary servers’ responses to reply
the initial service query. Our intention is that the abstract database is an ab-
straction of the union of all of the distributed databases. The response to a client
request is formed from the union of the responses from each of the agencies so
this may seem like a reasonable abstraction. However, we faced some difficulties
when we tried to prove that the model in Figure 8 is a valid refinement of the
abstract model in Figure 7. The problem is that the abstract specification of
“Retrieve FlightOptions” is based on the value of (the abstraction of) all the
flight agency databases at the point at which the results are collated by the
travel agency. But the results collated in the refined version will have been gen-
erated by the individual flight agencies at earlier points in time. If the flight
agency databases did not change in between the point at which they respond
to a flight request and the point at which those responses are collated by the
travel agency, then our refinement would be valid. However, this is clearly an
unrealistic restriction. The fact that the user gets information about an available
flight is no guarantee that that flight will still be available when they try to book
it. In principle the value of a flight agency database at the point of generating
a response might be completely different to its value at the point at which that
response is collated with other responses.

Some Guidelines for Formal Development of Web-Based Applications 485

CONSTANTS
 Matchflight
PROPERTIES
 Matchflight FLIGHT_REQUEST (FLIGHT_DETAIL) (FLIGHT_DETAIL)
INVARIANT
 flight_db FLIGHT_AGENCY (FLIGHT_DETAIL)
OPERATIONS
 Request_Flight /* Server Operation */
 ANY sid,fr WHERE sid SESSION fr FLIGHT_REQUEST THEN
 reqflight_buf:= fa . (fa FLIGHT_AGENCY | reqflight_buf(fa) {sid fr})
 END;
 Resp_FlightReqs /* Flight Agency Server Operation */
 ANY sid,fa,fr WHERE sid session fa FLIGHT_AGENCY
 fr FLIGHT_REQUEST
 THEN
 ANY xx WHERE xx (FLIGHT_DETAIL) xx
 Matchflight(fr flight_db1(fa))
 THEN
 respflight_buf(sid):= respflight_buf(sid) {fa xx}
 END
 END;
 Retrieve_FlightOptions /* Server Operation */
 ANY sid WHERE sid session THEN
 flight_options(sid):= fa.(fa FLIGHT_AGENCY
 fa dom(respflight_buf(sid)) | respflight_buf(sid)(fa))
 END;

Fig. 8. A refinement of the database operations

Retrieve_FlightOptions /* Server Operation */
 ANY sid WHERE sid session THEN
 VAR xx IN
 xx : (xx (FLIGHT_DETAIL)) ||
 flight_options(sid):= xx
 END
 END;

Fig. 9. A valid abstraction of the database operation

One possible abstract specification for this kind of distributed database query
is presented in Figure 9. Although it appears to be a very loose specification but
it is the strongest specification that we could introduce in the abstract level.
In this specification we do not use definitions like “Matchflight” and virtual
database “flight db”. As we mentioned earlier data and process distribution have
a reciprocal effect on each other. We present another scenario from the travel
agency case study to clarify this issue further. During the booking process when

486 A. Rezazadeh and M. Butler

Flight_Booking
 ANY sid,fd WHERE sid session fd FLIGHT_DETAIL
 session_state(sid)= valid sid fd selctflight_buf THEN
 CHOICE
 flight_booking := flight_booking {session_user(sid) fd} ||
 selctflight_buf := {sid} selctflight_buf ||
 session_state(sid):= fresh || session_request(sid):= none
 OR
 selctflight_buf:= {sid} selctflight_buf ||
 session_state(sid) := fresh || session_request(sid):= none
 END
 END;

Fig. 10. Modelling the possibility of failure

a web client receives some available options from the travel agency system, it can
select one of them and send back its selected service to the travel agency system.
Now the travel agency system will know which secondary server has offered this
service and then send a booking request to this specific secondary server. In
the meantime this service could have been offered to another Web client and is
no longer available. Therefore in general the travel agency system could expect
either a successful or a failed response for a requested service booking. If the
travel agency system receives a confirmation for service booking it will add an
appropriate record to it local database for booked services. In either case of
success or fail, it should reply to the related Web client with a suitable response.

Developing an abstract formal specification for this case is not a straightfor-
ward task. In the abstract level we have not introduced secondary servers, just
to avoid complication, but we have to find a mechanism to model the system
behaviour. Using nondeterministic “choice” could be an acceptable approach to
model this case in the abstract level. This solution is depicted in Figure 10. It
should be emphasised that in the actual system the booking process is a two stage
process. If the requested service is still available on a specific secondary server,
then the first stage takes place on that secondary server. In the second stage,
when the travel agency system receives a message from this specific secondary
server denoting successful booking in the first stage, then the travel agency sys-
tem will add this booking to its database. Therefore the booking database on
each secondary server just stores booked services which have been offered by this
specific server. On the other hand the booking database on the travel agency
system stores all booked services of its users. The “Flight Booking” operation in
Figure 10 demonstrates the booking process in the travel agency system. This
operation is defined as the nondeterministic choice of two outcomes. In cases,
the request is processed. In the first case it results in a successful booking, while
in the second (failed) case, no booking is made. In the refined model when we
introduced databases in the secondary servers, now the booking process in the
Travel agency system is no longer nondeterministic and it depend on the state

Some Guidelines for Formal Development of Web-Based Applications 487

CONSTANTS
 flght_agency
PROPERTIES
 flght_agency FLIGHT_DETAIL FLIGHT_AGENCY
Agency_flight_booking /* Flight_agency Server Operation*/
 ANY fa,sid,fd WHERE fa FLIGHT_AGENCY
 sid SESSION fd FLIGHT_DETAIL
 THEN
 SELECT fd flight_db1(fa) THEN
 ANY fdb WHERE fdb (FLIGHT_DETAIL) fdb flight_db1(fa) THEN
 /* Updating original Database that maybe affected by booking */
 flight_db1(fa):= fdb
 END ||
 fa_booking(fa):= fa_booking(fa) {(fd session_user(sid))} ||
 flightbookingresp(sid) := success
 WHEN fd flight_db1(fa) THEN
 flightbookingresp(sid) := failed
 END
 END;
Flight_Booking /* Server Operation */
 ANY sid,fa,fd WHERE sid session fd FLIGHT_DETAIL
 fa FLIGHT_AGENCY
 THEN
 SELECT sid success flightbookingresp THEN
 taf_booking:= taf_booking {(session_user(sid) fd fa)} ||
 suc_session:=suc_session {sid}
 WHEN sid failed flightbookingresp THEN
 selectflight_buf(fa):= selectflight_buf(fa) - {sid fd} ||
 unsuc_session:=unsuc_session {sid}
 END
 END;

Fig. 11. Refined model after introduction of secondary servers

of these databases. Therefore the refined operation could be modelled as we
presented in Figure 11. Here the “Agency flight booking” shows the first stage
of booking in the secondary server and the “Flight Booking” has been refined
accordingly.

7 Developing Formal Models for Communication Links

Communication links are the medium for interaction between different parts of
distributed systems. In Web-based systems communication links connect a client
to a Web server or a Web server to another Web server or a data server. Al-
though communication in different levels could be based on different protocols
and standards, but in general a message-based approach is a widely accepted
method in Web based application. This approach is flexible and general enough

488 A. Rezazadeh and M. Butler

to be implemented in the context of available standards like XML based tech-
nologies and tools. In Event-B developments introducing communication is an
important stage before decomposition of a single model to several sub-models.
In the following sections we discuss the process of developing a formal model for
communication links.

7.1 Formal Models of Synchronised Communication Links

Synchronised communication is a common pattern of communication between
Web clients and Web servers. In other words generally the communication be-
tween clients and the Web sever follows the send-process-receive pattern.

Challenge: What is an appropriate abstract model and refinement for commu-
nication links between clients and the Web Server?

Guideline: At the abstract level it is convenient to model communication link
a one-place buffer. But this causes problems with model decomposition. So we
present a pattern for refining a communication link involving a one-place buffer
by an unbounded buffer.

To exemplify this issue we have presented some operation of the travel case
study in Figure 12. We have used a function definition to present a single place
buffer for data communication between each client and the travel agency server.
In this model the “reqsevice buf” and “resp buf” define a single-place buffer from
“session” to “REQUEST” and “RESPOSE” respectively. The “PicService” is a
client operation which puts a request in the “reqsevice buf”. The client then waits
for the server response, i.e., the first client operation is no longer enabled for this
session and the second client operation is enabled when a response appears in
the response buffer. On the server side the “SelectService” operation takes the
request from the buffer and then produces a response for the client by placing
a response in the “resp buf”. Later the client’s operation “Submit Servic Dtail”
can take this response from buffer when received it.

Before the decomposition step we have to refine each buffer by splitting it to
three buffers and distribute them between the client, the communication and the
server machines. But when we replace a single-place buffer with three single-place
buffers we face difficulty. We should be able to demonstrate that all buffers are
empty when for example a web client’s operation produces a new message to put
a in the buffer. Clearly this is not a practical solution since, for example, a client
cannot see whether or not a buffer on the server side is empty. To overcome this
difficulty we consider the refinement of the one-place buffers with unbounded
buffers based on using sequence definition in B-method.

This intermediate refinement would help to split the buffers between dif-
ferent machines and without too much restriction discharges prove obligations
associated with this distribution. Using unbounded buffers resolves the need for
condition that distributed buffers should be empty when we add a new message.

The intermediate refinement for the above model is presented in Figure 13.
Here the single-place buffers of Figure 12 have been replaced by unbounded

Some Guidelines for Formal Development of Web-Based Applications 489

INVARIANT
 reqsevice_buf SESSION REQUEST
 resp_buf SESSION RESPOSE
OPERATIONS
 PicService /* Client Operation */
 ANY sid, req WHERE sid fresh_session sid dom(reqsevice_buf)
 req REQUEST req none THEN
 reqsevice_buf(sid):= req ||
 fresh_session:= fresh_session - {sid}
 END;
 SelectService /* Server Operation */
 ANY sid,req WHERE sid session req REQUEST resp RESPONSE
 sid dom(reqsevice_buf) THEN
 session_request(sid):= req ||
 reqsevice_buf:= {sid} reqsevice_buf ||
 resp_buf(sid):= resp
 END;
Submit_Servic_Dtail /* Client Operation */
 ANY sid,resp WHERE sid dom(resp_buf) resp RESPONSE
 resp_buf(sid):= resp THEN
 resp_buf(sid):= {sid} resp_buf(sid)
 END;

Fig. 12. Abstract model with one-place buffers

buffers. Part of the necessary gluing invariant are illustrated as well. The gluing
invariant was constructed using an iterative approach in combination with the
B prover as described in [15]. We first considered the case of a single implicit
session. This simplification means that the invariant has no universal quantifiers
and the proof is much more automatic. We start with a trivial invariant con-
tains type information. We then generate and attempt to prove the refinement
proof obligations. Those that cannot be proved lead to a clause in the invari-
ant. The additional invariant clauses result in further proof obligations which
may in turn lead to further invariant clauses. In this case a sufficient invariant
was constructed in three iterations and the proof was completely automatic (for
the case without universal quantification). The invariant is then generalised to
multiple sessions and the proof goes through, though not completely automat-
ically. The above refinement indicates that single-place buffers could be refined
by multi-places buffers.

The refinement works because the request-response protocol that the client
and server follow. Multi-place buffers allow having more than one message at
the same time in different buffers. Although in this model message duplication
is impossible but due to error and delay in communication links, message du-
plication is very likely and it could be taken in to account in later refinements.
The next step refinement involves splitting each unbounded buffer into three
unbounded buffers and introducing new operations for communications between
these. These three buffers will be distributed between client, communication and

490 A. Rezazadeh and M. Butler

INVARIANT
 sreq_buf SESSION seq(REQUEST)
 sresp_buf SESSION seq(RESPOSE)
 /* Gluing Invariant */
 sid.(sid fresh_session reqsevice_buf(sid) =)
 sid.(sid dom(sreq_buf) sreq_buf(sid) []
 first(sreq_buf(sid)) reqsevice_buf(sid))
OPERATIONS
 PicService /* Client Operation */
 ANY sid, req WHERE sid fresh_session sid dom(sreq_buf)
 req REQUEST req none THEN
 sreq_buf (sid):= sreq_buf [req] ||
 fresh_session:= fresh_session - {sid}
 END;
 SelectService /* Server Operation */
 ANY sid,req WHERE sid session req REQUEST resp RESPONSE
 sid dom(sreq_buf) sreq_buf(sid) [] first(sreq_buf(sid)) = req THEN
 session_request(sid):= req ||
 sreq_buf:= tail(sreq_buf) ||
 sresp_buf(sid):= sresp_buf(sid) [resp]
 END;
Submit_Servic_Dtail /* Client Operation */
 ANY sid,resp WHERE sid dom(resp_buf) resp RESPONSE
 sresp_buf(sid) [] First(sresp_buf(sid)):= resp THEN
 sresp_buf(sid):= tail(sresp_buf(sid))
 END;

Fig. 13. Refined model with unbounded buffers

server respectively. This decomposition process is a straightforward task with a
simple gluing invariant which states that the order concatenation of the sub-
buffers should be equal to the original buffer. Due to space restriction we have
not presented this refinement here.

Using sequences to represent communication buffers imposes the order of mes-
sages. In other words it assumes that the communication link should guarantee
message delivery in the order which they been sent out by sender. This implica-
tion could be considered as a restriction and in some cases it might be necessary
to use a more general model to represent communication buffers. Therefore a
different model based on using unordered multi-place buffers which is defined in
[16] can be used. This unordered buffer had been named as a “Bag” which is a
collection of elements that may have a multiple occurrences of any element. Due
to space restriction we have not presented this solution here.

8 Summary of Results, Conclusions and Further Work

We have identified some key issues in formal modelling of Web-based systems
like state representation in server and client side, distributed database system

Some Guidelines for Formal Development of Web-Based Applications 491

abstraction and refinement, handling complex data types and formal model for
communication links. We have proposed some solutions for these aspects which
have been exemplified with event-b models of a Travel agency case study.

In formal modelling we have considered only the safety properties and we
have not tackled the liveness issue. Although our work has been influenced by
mainstream work in Web-based system modelling and implementation, our mod-
els require further refinement to implementation level.

Furthermore Web-based systems are constructed from distributed subsys-
tems which could operate concurrently. The fact that complicated nature of
such systems could not be completely enclosed by a single B machine, reveals
the importance of decomposition as a next step in formal development pro-
cess. Decomposition is also an essential strategy for tackling the rapid growth of
system complexity. Decomposition strategy could be based on CSP style value
passing channels which has been developed in [16] and applied to other types of
distributed systems [17].

References

1. Murugesan, S., Deshpande, Y., eds.: Web Engineering, Software Engineering and
Web Application Development. Lecture Notes in Computer Science 2016, Springer
(2001)

2. S. Murugesan, et al.: Web Engineering: A New Discipline for Development of Web-
based Systems. In: Proceedings of the First ICSE Workshop on Web Engineering.
LNCS 1189, Los Angeles (1999)

3. Y. Deshpande, et al.: Web Engineering: Beyond CS, IS and SE. In: Proceedings
of the First ICSE Workshop on Web Engineering, Los Angeles (1999) 171–176

4. J. R. Abrial: The B book - Assigning Programs to Meanings. Cambridge University
Press (1996)

5. E. Sekerinski and K. Sere (eds.): Program Development by Refinement Case
Studies Using the B Method. SpringerVerlag (1998)

6. P. Luigia et al.: A Methodology for Integrating of Formal Methods in a Healthcare
Case Study. Technical Report 436, TUCS (2001)

7. M. Butler and M. Waldén: Distributed system development in B. In: Proceedings
of the 1st Conference on the B Method, Nantes, France (1996) 155–168

8. J.-R. Abrial and D. Cansell: Click’n’Prove- Interactive Proofs Within Set Theory,
Version 23 (2003) http://www.loria.fr/~cansell/cnp.html.

9. : (Atelier B Web Page) http://www.atelierb.societe.com/.
10. : (B4free Web Page) http://www.b4free.com/.
11. J.-R. Abrial: Extending B without changing it (for developing Distributed Sys-

tems). In Abrias, H., ed.: Proceedings of the 1st Conference on the B Method.
(1996) 169–191

12. J.-R. Abrial and L. Mussat: Introducing Dynamic Constraints in B. In: B’98 : The
2nd International B Conference, Recent Advances in the Development and Use of
the B Method. (1998) 83–128

13. M. Waldén and K. Sere: Reasoning About Action Systems Using the B-Method.
Formal Methods in Systems Design 13 (1998) 5–35

14. R. Back and K. Sere: Superposition Refinement of Reactive Systems. Formal
Aspects of Computing 8 (1996) 324–346

492 A. Rezazadeh and M. Butler

15. C. Ferreira and M. Butler: Using B Refinement to Analyse Compensating Business
Processes. In: ZB 2003: Formal Specification and Development in Z and B: Third
International Conference of B and Z Users. LNCS 2651, Turku, Finland, Springer
(2003)

16. M. J. Butler: Stepwise Refinement of Communicating Systems. Science of Com-
puter Programming 27 (1996) 139–173

17. A. Rezazadeh and Michael Butler: Event-Based Modelling and Refinement of
Distributed Monitoring and Control Systems. In: Refinement of Critical Systems
(RCS’03), Turku (2003)

Author Index

Abrial, Jean-Raymond 162, 222
Amálio, Nuno 262
Amelot, Arnaud 334
Attiogbé, J. Christian 124

Badeau, Frédéric 334
Banach, Richard 203
Bert, Didier 299
Boiten, Eerke A. 374
Boström, Pontus 142
Bouquet, Fabrice 434
Bowen, Judy 454
Brückner, Ingo 414
Butler, Michael 472

Cansell, Dominique 222
Carrington, David 242
Conroy, Stacey 45

Dadeau, Frédéric 434
Derrick, John 24, 374
Dunne, Steve 45, 187

Fraser, Simon 203

Galloway, Andy 104
Groslambert, Julien 434
Groves, Lindsay 393

Hoang, Thai Son 162, 355

Jin, Zhendong 355
Jones, Cliff B. 1

Kim, Soon-Kyeong 242

Leuschel, Michael 6
Long, Benjamin W. 319

Malik, Petra 65
McIver, Annabelle 355
Méry, Dominique 222
Morgan, Carroll 162, 355

Polack, Fiona 262
Potet, Marie-Laure 299

Reeves, Steve 454
Rezazadeh, Abdolbaghi 472
Robinson, Ken 355
Rossmorris, Jemima 172

Smith, Graeme 85
Stepney, Susan 172, 262
Stoddart, Bill 187
Stouls, Nicolas 299

Toma, Diana 279
Toyn, Ian 104
Turner, Edd 6

Utting, Mark 65

Waldén, Marina 142
Wehrheim, Heike 24, 414
Wildman, Luke 85

Zeyda, Frank 187
Zimmermann, Yann 279

	Frontmatter
	Specification Before Satisfaction: The Case for Research into Obtaining the Right Specification {\itshape ---Extended Abstract---}
	Visualising Larger State Spaces in P{\bfseries\sc ro}{\bfseries B}
	Non-atomic Refinement in Z and CSP
	Process Refinement in B
	CZT: A Framework for Z Tools
	Model Checking Z Specifications Using SAL
	Proving Properties of Stateflow Models Using ISO Standard Z and CADiZ
	A Stepwise Development of the Peterson's Mutual Exclusion Algorithm Using B Abstract Systems
	An Extension of Event B for Developing Grid Systems
	The Challenge of Probabilistic {\itshape Event B---Extended Abstract---}
	Requirements as Conjectures: Intuitive DVD Menu Navigation
	A Prospective-Value Semantics for the GSL
	Retrenchment and the B-Toolkit
	Refinement and Reachability in Event_B
	A Rigorous Foundation for Pattern-Based Design Models
	An Object-Oriented Structuring for Z Based on Views
	Component Reuse in B Using ACL2
	{\sf GeneSyst}: A Tool to Reason About Behavioral Aspects of {\sc B} Event Specifications. Application to Security Properties
	Formal Verification of a Type Flaw Attack on a Security Protocol Using Object-Z
	Using B as a High Level Programming Language in an Industrial Project: Roissy VAL
	Development via Refinement in Probabilistic B --- Foundation and Case Study
	Formal Program Development with Approximations
	Practical Data Refinement for the Z Schema Calculus
	Slicing Object-Z Specifications for Verification
	Checking JML Specifications with B Machines
	Including Design Guidelines in the Formal Specification of Interfaces in Z
	Some Guidelines for Formal Development of Web-Based Applications in B-Method
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

